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Direct observation of the effects 
of cellulose synthesis inhibitors 
using live cell imaging of Cellulose 
Synthase (CESA) in Physcomitrella 
patens
Mai L. Tran1, Thomas W. McCarthy  2,5, Hao Sun4, Shu-Zon Wu3,6, Joanna H. Norris1, 
Magdalena Bezanilla3,6, Luis Vidali4, Charles T. Anderson  2 & Alison W. Roberts  1

Results from live cell imaging of fluorescently tagged Cellulose Synthase (CESA) proteins in Cellulose 
Synthesis Complexes (CSCs) have enhanced our understanding of cellulose biosynthesis, including 
the mechanisms of action of cellulose synthesis inhibitors. However, this method has been applied 
only in Arabidopsis thaliana and Brachypodium distachyon thus far. Results from freeze fracture 
electron microscopy of protonemal filaments of the moss Funaria hygrometrica indicate that a 
cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), fragments CSCs and clears them from 
the plasma membrane. This differs from Arabidopsis, in which DCB causes CSC accumulation in the 
plasma membrane and a different cellulose synthesis inhibitor, isoxaben, clears CSCs from the plasma 
membrane. In this study, live cell imaging of the moss Physcomitrella patens indicated that DCB and 
isoxaben have little effect on protonemal growth rates, and that only DCB causes tip rupture. Live 
cell imaging of mEGFP-PpCESA5 and mEGFP-PpCESA8 showed that DCB and isoxaben substantially 
reduced CSC movement, but had no measureable effect on CSC density in the plasma membrane. 
These results suggest that DCB and isoxaben have similar effects on CSC movement in P. patens and 
Arabidopsis, but have different effects on CSC intracellular trafficking, cell growth and cell integrity in 
these divergent plant lineages.

Cellulose is composed of β-1,4-glucan chains that are hydrogen-bonded together to form microfibrils, which are 
major contributors to the strength of plant cell walls. These microfibrils are synthesized by Cellulose Synthase 
(CESA) proteins that reside in the plasma membrane within Cellulose Synthase Complexes (CSCs). CSCs both 
polymerize β-1,4-glucan chains and facilitate their assembly into microfibrils. Mutations in Arabidopsis CESAs 
result in phenotypes that range from mild dwarfism to lethality, indicating the importance of cellulose in vascu-
lar plant development1. Much less is known about the function of cellulose in the development of non-vascular 
plants such as mosses2.

The study of CESAs and CSCs entered a new era with the development of methods for tagging CESAs with flu-
orescent proteins (FPs), facilitating live cell imaging of CSC movement behaviors3. These methods have facilitated 
investigations of CESA intracellular trafficking4–7, CSC interaction with the cytoskeleton and other proteins8–11, 
regulation of CESA and CSC function by endogenous and environmental factors12, and the mechanisms of action 
of cellulose synthesis inhibitors13–18, among other aspects of cellulose biosynthesis. All but one of these investiga-
tions have been performed in Arabidopsis, and imaging of CSCs in tip-growing cells has been precluded because 
FP-CESA fusion proteins fail to accumulate in the plasma membrane of these cell types19. Investigating cellulose 
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synthesis in a nonvascular plant such as the moss Physcomitrella patens would enable us to better understand 
the evolution of cellulose synthesis and the functions of cellulose in a wider range of developmental processes, 
including tip growth.

The advantages of P. patens as an experimental organism include a high quality genome sequence20,21 and the 
capacity for targeted genetic manipulation due to its high rate of homologous recombination22,23. The P. patens 
plant body is typical of mosses, with two haploid stages: a filamentous protonemal stage, and gametophores con-
sisting of leafy stalks with rhizoids24. The protonemal filaments extend by tip growth in a manner similar to the 
pollen tubes and root hairs of seed plant species25–27. The gametophore leaf cells expand by diffuse growth28 like 
most cell types in seed plants29.

Seven CESA isoforms have been identified in P. patens30. Mutation analysis has shown that PpCESA5 is 
required for gametophore development31. ppcesa5 knockout (KO) mutants have strong developmental pheno-
types including failure of gametophore buds to sustain meristematic growth and produce leaves31. In addition, 
a subtle gametophore length phenotype has been reported for one double ppcesa6/7 KO line32. We have recently 
found that ppcesa8 KO mutants also have a developmental phenotype consisting of reduced cellulose deposition 
in the midrib stereid cells, which have thickened cell walls33. Because ppcesa5 KO and ppcesa8 KO lines have clear 
phenotypes, the functionality of mEGFP-PpCESA fusion proteins can be determined by testing transformed lines 
for complementation of these phenotypes.

One aspect of cellulose biosynthesis that has been clarified through the use of live cell CESA imaging is dif-
ferences in the mechanisms of action between cellulose biosynthesis inhibitors34. In Arabidopsis, treatment with 
2,6-dichlorobenzonitrile (DCB) immobilizes YFP-AtCESA6 in the plasma membrane, whereas treatment with 
isoxaben causes accumulation of YFP-AtCESA6 in vesicles below the membrane14. Although particle density was 
not measured, DCB reduced mEGFP-BdCESA particle velocity in Brachypodium distachyon18. In contrast, freeze 
fracture electron microscopy of protonemal filaments from the moss Funaria hygrometrica indicated that CSCs 
are lost from the plasma membrane after DCB treatment35. Freeze fracture examination of wheat roots treated 
for short periods with DCB showed increased CSC density in the plasma membrane of cortical cells36, indicating 
that this discrepancy is not due to differences in the CSC visualization method. DCB affects growth in widely 
divergent plants and related phyla, including red37, green38 and brown39 algae, but in most species little is known 
about its specific effect on CSCs. One possibility is that tip growing cells respond differently to DCB. The effects of 
DCB on pollen tubes of various plants such as lily, petunia40, and Pinus bungeana41 include distortion of cell walls 
and changes in cell wall composition40,41. Treatment with DCB also causes tip rupturing of pollen tubes40 and root 
hairs19, as well as moss protonemal filaments35. Treatment with isoxaben inhibits growth and induces tip swelling 
in conifer pollen tubes42 and retards growth in Arabidopsis root hairs19.

Here we show that CSC behavior can be analyzed by live cell imaging of mEGFP-PpCESAs in tip growing 
protonemal filaments of P. patens. Live cell imaging was applied to test the effects of the cellulose synthesis inhib-
itors DCB and isoxaben on both CSC behavior and protonemal filament growth. mEGFP-tagged PpCESA par-
ticles exhibited linear motility at the cell surface that was similar to the behavior of FP-CESA particles observed 
in Arabidopsis cells. Similar to results in Arabidopsis, treatment with DCB inhibited mEGFP-PpCESA particle 
motility without changing particle density at the cell surface. Whereas isoxaben treatment also greatly diminished 
mEGFP-PpCESA particle motility, it did not cause complete loss of particles from the cell surface in contrast 
to the case in Arabidopsis. Protonemal growth rates were not inhibited by either DCB or isoxaben treatment, 
but DCB treatment frequently resulted in tip bursting. Together, these data indicate that cellulose synthesis, cell 
growth control, and the regulation of wall integrity in tip growing protonemal filaments of P. patens share funda-
mental similarities and differences with these processes in diffusely growing Arabidopsis cells.

Results
Construction and characterization of mEGFP-PpCESA fusion protein expression lines. To 
create FP-CESA fusion protein expression lines for live cell imaging of CESA dynamics, we transformed 
mEGFP-PpCESA expression vectors into cognate mutant lines with clear visual phenotypes. Transformation 
of ppcesa5KO-231 with the Ubi::mEGFP-PpCESA5 expression vector produced six stable hygromycin resistant 
lines in which the gametophore-deficient phenotype was rescued. We chose a single line for further analysis 
(Fig. 1a) based on screening for fluorescence intensity by spinning-disk confocal microscopy. Because our ppce-
sa8KO-5B line is hygromycin resistant33, we excised the lox-p flanked hygromycin resistance cassette by transient 
expression of the CRE protein43. Transformation of a hygromycin susceptible line with Act1::mEGFP-PpCESA8 
produced six stable hygromycin resistant lines. We chose one for further analysis based on screening for fluo-
rescence intensity by spinning-disk confocal microscopy. Expression of mEGFP-PpCESA8 partially rescued the 
cellulose deficient midrib phenotype base on polarization microscopy (Fig. 1b). Quantitative analysis of S4B flu-
orescence intensity confirmed that the Act1::mEGFP-PpCESA8 line is partially rescued (mean fluorescence inten-
sity = 5,939 ± 146 (SE) Arbitrary Units (AU)) in comparison to the parental ppcesa8KO line (mean fluorescence 
intensity = 3,971 ± 247 (SE) AU) and the wild type (mean fluorescence intensity = 7,938 ± 247 (SE) AU). The 
mEGFP-PpCESA8 line differed significantly from both ppcesa8KO (p = 0.00101) and the wild type (p = 0.00101) 
based on the results of one-way ANOVA with Tukey HSD test. Although complementation was tested for game-
tophore phenotypes, both PpCESA5 and PpCESA8 are expressed in protonema44. We also tested for cellulose 
deficiency phenotypes in ppcesa5KO-2 and ppcesa8KO-5B (Fig. S1). No significant differences were detected. 
However, PpCESA3 and PpCESA8 are partially redundant in secondary cell wall deposition33 and constitutive 
expression of both PpCESA3 and PpCESA8 can rescue the cesa5KO gametophore phenotype (Scavuzzo-Duggan 
et al., in review). So, lack of a cellulose deficiency phenotype for the cesa5KO and cesa8KO protonema can be 
explained by functional redundancy, and thus does not preclude a role for PpCESA3 and PpCESA8 in normal 
protonemal cell wall deposition.
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After confirming that mEGFP-PpCESA5 and mEGFP-PpCESA8 rescue the phenotypes of ppcesa5 and 
ppcesa8 knockouts, respectively, we imaged these fusion proteins in protonemal cells using variable angle epi-
fluorescence microscopy (VAEM). mEGFP-PpCESA5 particles were visible (Fig. 2a; Supplementary Movie S1), 

Figure 1. Expression of mEGFP-PpCESAs rescue the cognate mutant phenotypes. (a) Transformation 
of the gametophore defective ppcesa5KO-2 line with Ubi::GFP-PpCESA5 restores wild type gametophore 
development. (b) Transformation of the ppcesa8KO-5B line, which is characterized by weak midrib 
birefringence due to reduced secondary cell wall deposition, was partially restored to the wild type phenotype 
by transformation with Act1::GFP-PpCESA8. (c) Quantitative analysis of fluorescence intensity in midribs 
stained with S4B confirmed partial restoration of the wild type phenotype by expression of Act1::GFP-PpCESA8 
the ppcesa8KO-5B line.

Figure 2. Imaging particle motility for mEGFP-PpCESA5 and mEGFP-PpCESA8. (a,d) Single frames from 
10 min time-lapse imaging experiments. (b,e) Average projections of time-lapse images, with lines used to 
generate kymograph in yellow. (c,f) Kymographs of particle movement along lines in (b) and (e); diagonal lines 
represent movement over time. Images were acquired with VAEM with 2 s time interval.
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and moved across the cell surface along short linear paths (Fig. 2b,c) that were not aligned into co-linear arrays, 
as has been observed for FP-CESA particles that move in alignment with underlying cortical microtubule arrays 
in Arabidopsis3. We also detected mEGFP-PpCESA8 particles (Fig. 2d; Supplementary Movie S2), which moved 
across the cell surface along longer paths that were sometimes curved (Fig. 2e,f), but were also only rarely 
co-linear.

Protonemal growth rate is not inhibited by DCB or isoxaben. In preparation for testing the effect 
of cellulose synthesis inhibitors DCB and isoxaben on mEGFP-PpCESA particle movement, we examined their 
effect on P. patens protonemal filaments by live cell imaging to determine sensitivity relative to the related spe-
cies Funaria hygrometrica35. In initial experiments, 6 of 9 protonemal tips treated with 20 µM DCB ruptured 
within 10 min. In contrast, none of the tips treated with 20 µM isoxaben (n = 15), 10 µM DCB (n = 10), or con-
trol medium containing 0.05% ethanol (n = 9) ruptured after treatment (Fig. 3; Supplementary Fig. S2). Even 
at isoxaben concentrations as high as 100 µM, no tip rupture was observed. To measure the effect of inhibi-
tors on tip growth, we collected image series for 20 min (20 µM DCB) or 15 minutes (20 µM isoxaben and con-
trol) and subjected them to kymograph analysis (Supplementary Fig. S3). For tips treated with 20 µM DCB, 
13 of 20 ruptured with a mean rupture time of 11.5 ± 1.1 (SE) min. Tip growth rates measured up to the time 
of rupture were 0.216 ± 0.0325 (SE) µm min−1. Tip growth rates for control and isoxaben treatments were 
0.244 ± 0.0283 (SE) µm min−1 (n = 12) and 0.222 ± 0.0300 (SE) µm min−1 (n = 14), respectively, with no signifi-
cant differences among any of the treatments (p = 0.832). Control and isoxaben treated tips did not rupture. These 
data indicated that cellulose synthesis inhibitors do not affect the kinetics of protonemal tip growth per se in P. 
patens, in agreement with data for F. hygrometrica35, but that DCB can affect protonemal cell integrity in actively 
growing cells.

PpCESA-containing CSC particle motility, but not density at the cell surface, is reduced after 
DCB or isoxaben treatment. We then measured mEGFP-PpCESA particle density and motility under 
control conditions and after treatment with DCB or isoxaben. mEGFP-PpCESA5 particle velocities under 
control conditions averaged 262 ± 80 (SD) nm/min (Fig. 4a,d; Supplementary Movie S3), similar to the ~250–
300 nm/min FP-CESA particle velocities measured in Arabidopsis seedlings3,5,14 and slightly faster than the 
mean of 164 nm/min measured in B. distachyon using a different quantification method18. Treatment of pro-
tonemal filaments expressing mEGFP-PpCESA5 with DCB or isoxaben before imaging dramatically decreased 
mEGFP-PpCESA5 motility (Fig. 4b–d; Supplementary Movies S4, S5). However, we did not measure large 
changes in mEGFP-PpCESA5 particle density at the cell surface after treatment with DCB and isoxaben, as com-
pared to controls (Fig. 4a–c).

We also tested the effects of DCB and isoxaben on mEGFP-PpCESA8 particle velocity, which in control 
cells averaged 253 ± 79 (SD) nm/min (Fig. 5a,d; Supplementary Movie S6), remarkably similar to the veloci-
ties of particles containing mEGFP-PpCESA5. Also similar to the case for mEGFP-PpCESA5, treatment with 
DCB or isoxaben dramatically decreased mEGFP-PpCESA8 particle velocity compared to controls (Fig. 5b–d; 
Supplementary Movies S7, S8) with no large changes in mEGFP-PpCESA8 particle density at the cell surface. 
Although mEGFP-PpCESA8 particle densities were qualitatively lower than mEGFP-PpCESA5 particle density, 
we could not compare these densities statistically because they were estimated using different methods. In total, 
these results indicate that under control conditions, mEGFP-PpCESA particles behave similarly to FP-CESA par-
ticles in Arabidopsis in moving along linear trajectories at the cell surface at speeds of 250–300 nm/min, but that 
both DCB and isoxaben inhibit PpCESA particle motility and fail to completely remove FP-CESA particles from 
the cell surface, as has been reported for isoxaben-treated Arabidopsis cells14 .

Discussion
Whereas live-cell CESA imaging in Arabidopsis has contributed greatly to our understanding of the cell biology 
of cellulose synthesis, AtCESA fusion proteins have not been observed in the plasma membrane in tip grow-
ing cells19. Using live-cell CESA imaging in P. patens, we have shown that PpCESA-containing particles move 
in the membranes of tip-growing cells with velocities similar to those observed in diffusely growing cells of 
Arabidopsis3,5,14. Complementation of ppcesa mutant phenotypes by expression of the cognate mEGP-PpCESAs 
provides support for the normal behavior of the fusion proteins expressed with either the rice Actin1 promoter 
or maize Ubiquitin promoter.

The cellulose synthesis inhibitors isoxaben and DCB were confirmed to affect mEGFP-PpCESA5 and 
mEGFP-PpCESA8 motility, since velocities of PpCESAs decreased dramatically upon treatment with either cel-
lulose synthesis inhibitor (Figs 4 and 5). The slowing of FP-PpCESA particle motility by DCB and isoxaben 
verify the potency of these drugs in P. patens, but their lack of effect on cell surface FP-PpCESA particle density 
and protonemal growth rates suggest that moss and seed plant cells respond to inhibition of cellulose synthesis 
by different mechanisms. In seed plants, cellulose synthesis inhibitors and CESA mutations activate a cell wall 
integrity-sensing pathway, resulting in production of reactive oxygen species, ectopic lignification, and growth 
inhibition (reviewed in45). It is possible that an inability to sense cell wall damage is responsible for the lack of 
growth inhibition following treatment with cellulose synthesis inhibitors in P. patens.

Although both DCB and isoxaben inhibited PpCESA motility, only DCB promoted bursting of protonemal 
tips. Differences in DCB and isoxaben mechanisms of action are manifested as opposing effects on CESA persis-
tence in the plasma membrane in Arabidopsis14. Neither inhibitor altered CESA particle density at the cell surface 
in P. patens, in contrast to a report that the density of rosette CSCs as visualized by freeze fracture declined in 
response to DCB treatment in the related species F. hygrometrica35. In Arabidopsis, root hair tip growth is sensi-
tive to DCB46, but not isoxaben19, perhaps because only DCB inhibits Cellulose Synthase-like D proteins (CSLDs), 
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which contribute to cell wall deposition in root hairs and pollen tubes19. Thus, it is possible that CSLD activity is 
required to prevent bursting in both Arabidopsis root hairs and P. patens protonemal filaments.

Our data suggest that cellulose synthesis inhibitors affect CESA motility, and presumably the patterning and 
extent of cellulose polymerization, in P. patens protonemal cells, and also that tip growth in P. patens is differen-
tially resilient to the inhibition of cellulose synthesis by these drugs. Differential effects, including the regulation 
of CSC trafficking and the sensing of cell wall integrity, will serve as fertile ground for future investigations into 
the unique and common mechanisms by which mosses and seed plants construct and expand their cell walls to 
control organismal growth and morphology during development.

Figure 3. Protonemal tips rupture after treatment with DCB. Wild type P. patens protonemal filaments grown 
on solid PPNO3 medium for 7 days were treated with liquid PPNO3 medium with 0.05% ethanol (a,b), 10 µM 
DCB + 0.05% ethanol (c,d), 20 µM DCB + 0.05% ethanol (e,f), or 20 µM isoxaben + 0.05% ethanol (g,h) and 
were imaged at 30 sec intervals. Protonemal tips ruptured after treatment with 20 µM DCB (f), but not 20 µM 
isoxaben (h), or 10 µM DCB (d). The number of ruptured tips/number of imaged tips is shown for each 
treatment.
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Materials and Methods
PpCESA KO vector construction. Vectors for expressing mEGFP-PpCESA fusion proteins were con-
structed using Multisite Gateway Pro according to the manufacturer’s instruction (Invitrogen, Grand Island, NY, 
USA). A pDONR P1-P5r entry clone containing the coding sequence for mEGFP47 was linked to a pDONR 
P5-P2 entry clone containing the coding sequence of PpCESA548 and inserted into the pTHUbiGate destination 
vector, which drives expression with the maize Ubiquitin promoter49. The P1-P5r mEGFP entry clone was linked 
to a pDONR P5-P2 entry clone containing the coding sequence of PpCESA833 and inserted into the pTHAct1Gate 
destination vector, which drives expression with the rice Actin1 promoter50. By using different destination vec-
tors, we were able to test two constitutive promoters for use in this application. Both vectors confer hygromycin 
resistance and target the expression cassette to the intergenic 108 locus22. Vectors were cut with SwaI for transfor-
mation into their respective knockout lines.

Culture and transformation of ppcesaKOs. All cultures were maintained in a growth chamber on basal 
medium supplemented with ammonium tartrate (BCDAT) as described previously51. The hph resistance cassette 
was removed from a ppcesa8KO-5B line33 by transforming protoplasts with NLS-Cre-Zeo, selecting for 7 d on 
BCDAT plates containing 50 μg mL−1 zeocin, replica plating the zeocin resistant colonies on BCDAT with and 
without 15 μg mL−1 hygromycin, and recovering hygromycin-sensitive colonies43.

Ppcesa5KO and ppcesa8KO-lox lines were transformed with mEGFP-PpCESA5 and mEGFP-PpCESA8 
expression vectors, respectively, and subjected to two rounds of hygromycin selection as described previously51. 
Complementation of the ppcesa5KO31 and ppcesa8KO-lox33 morphological phenotypes was confirmed as 
described previously. Cellulose content of protonema cell walls was determined as described previously33 and the 
Kruskal-Wallis rank sum with Turkey-Kramer (Nemenyi) post hoc test (http://astatsa.com/KruskalWallisTest/) 
was used for statistical analysis.

GFP positive transgenic lines were selected using a Zeiss Cell Observer SD spinning disk confocal microscope 
(Zeiss, Carl-Zeiss-Strasse 22, 73447 Oberkochen) with a 488 nm excitation laser, a 525/50 emission filter, and a 
100 × 1.40 NA oil immersion objective.

Figure 4. DCB and isoxaben inhibit mEGFP-PpCESA5 particle motility, but do not affect particle density at the 
cell surface. (a) Control protonemal cell treated with 0.1% ethanol. Mean CSC density = 0.48 ± 0.11 particles/
μm2 (SD), n = 8 time-lapses. (b) Protonemal cell treated with 40 μM DCB. Mean CSC density = 0.51 ± 0.09 
particles/μm2 (SD), n = 8 time-lapses. (c) Protonemal cell treated with 40 μM isoxaben. Mean CSC 
density = 0.44 ± 0.11 particles/μm2 (SD), n = 8 time-lapses. Scale bars = 5 μm. (d) Velocity distribution of 
mEGFP-PpCESA5 particles pooled from 24 time lapses. Mean velocities ± standard deviation in nm/min were: 
262 ± 80 (Control); 18 ± 37 (40 μM DCB); and 36 ± 66 (40 μM isoxaben).

http://astatsa.com/KruskalWallisTest/


www.nature.com/scientificreports/

7Scientific REPORTS |  (2018) 8:735  | DOI:10.1038/s41598-017-18994-4

Tip growth analysis by live cell imaging. For cellulose synthesis inhibitor assays, protonemal fil-
ament explants were cultured on PPNO3 solid medium52 in glass bottom petri dishes (P35G-0.17-14-C, Mat 
Tek, Ashland, MA) for 7 d under continuous light53. DCB and isoxaben (40 mM stock in 100% ethanol) were 
added to PPNO3 liquid medium52 at a final concentration of 10 or 20 μM (0.05% ethanol); 0.05% ethanol was 
added to control medium. The dishes were flooded with 100 μL of medium and filament tips were imaged every 
30 sec for 20 to 25 min starting immediately after treatment using a Zeiss Axiovert 200 M DICII contrast micros-
copy (Zeiss) with dimensions set at 516 × 516 with AxioCam software. Image stacks were assembled into kymo-
graphs (Supplemenary Fig. S3) using the MultipleKymograph plugin in ImageJ (http://www.embl.de/eamnet/
html/body_kymograph.html) and tip growth distance was calculated as described previously53. Means and 
standard errors were calculated from the combined results of two independent experiments. One-way ANOVA 
with post-hoc Tukey HSD test (http://astatsa.com/OneWay_Anova_with_TukeyHSD/) was used for statistical 
analysis.

VAEM imaging of CESA-mEGFP particle trafficking. For VAEM imaging, 5- to 8-day-old plants regen-
erated from protoplasts were placed on an agar pad in Hoagland’s medium (4 mM KNO3, 2 mM KH2PO4, 1 mM 
Ca(NO3)2, 89 μM Fe citrate, 300 μM MgSO4, 9.93 μM H3BO3, 220 nM CuSO4, 1.966 μM MnCl2, 231 nM CoCl2, 
191 nM ZnSO4, 169 nM KI, 103 nM Na2MoO4), covered by a glass cover slip and sealed with VALAP (1:1:1 parts 
of Vaseline, lanoline, and paraffin). For inhibitor treatments, 20 or 40 µM of DCB or isoxaben (40 mM stock in 
ethanol) was added to the Hoagland’s solution in the agar pad and imaging was started within 10 min. Controls 
were treated with the corresponding concentration of ethanol.

A Nikon Eclipse Ti microscope with a 100 X 1.49 NA TIRF objective and Andor DU-897 EMCCD camera was 
used to capture images every two seconds to create time-lapse videos of mEGFP-PpCESA5. A Nikon Eclipse Ti 
microscope with a 100X 1.49 NA TIRF objective and Zyla sCMOS camera (Zyla VSC-01746) was used to capture 
images every two seconds to create time-lapse videos of mEGFP-PpCESA8. Time lapses were from samples that 
were independently mounted and treated with inhibitor or solvent (5–8 time lapses per treatment).

Figure 5. DCB and isoxaben inhibit mEGFP-PpCESA8 particle velocity, but do not affect particle density at 
the cell surface. (a) Control protonemal cell treated with 0.05% ethanol. Mean CSC density = 0.20 ± 0.09 (SD) 
particles/μm2, n = 11 time-lapses. (b) Protonemal cell treated with 20 μM DCB. Mean CSC density 0.15 ± 0.11 
particles/μm2, n = 5 time-lapses. (c) Protonemal cell treated with 20 μM isoxaben. Mean CSC density 0.07 ± 0.09 
(particles/μm2), n = 5 time-lapses. Scale bars = 5 μm. (d) Velocity distribution of mEGFP-PpCESA8 particles 
pooled from 21 time lapses. Mean velocities ± standard deviations in nm/min were: 253 ± 79 (Control); 47 ± 38 
(20 μM DCB); and 42 ± 40 (20 μM isoxaben).

http://www.embl.de/eamnet/html/body_kymograph.html
http://www.embl.de/eamnet/html/body_kymograph.html
http://astatsa.com/OneWay_Anova_with_TukeyHSD/
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Analysis of CESA-mEGFP velocities. Time-lapse files were opened in Fiji image-processing software54. 
Image contrast was normalized to improve the visibility of particles. CSC velocity was measured by identifying 
each particle of a size and brightness consistent with Arabidopsis CSCs3 within the first slice of a time-lapse (time 
0 seconds), measuring its position, tracking it until it was no longer visible, and measuring its last position. The 
displacement of the particle and the time necessary for travel were calculated to yield speed measurements for 
each particle. Particles that did not persist for at least one minute were excluded from analysis, as were particles 
whose size, speed, or brightness identified them as CESA-containing vesicles rather than CSCs. This process of 
identifying particles that appeared to be CSCs was repeated at slices corresponding to increments of 2.5 minutes, 
and identified particles were traced backwards and forwards through the time-lapse so that the beginning and 
end points would correspond to the first and last appearance of the identified particles. This was done to minimize 
bias in the experimenter toward particles that moved at “normal” CSC speeds.

Analysis of mEGFP-PpCESA densities. To estimate CSC density in the mEGFP-PpCESA5 protonemal 
cells, time-lapse files were opened in Fiji and a Region of Interest (ROI) was selected with the freehand tool and its 
area measured with the measure function. The Particle Detector plugin was used to detect fluorescent CSCs with 
the following settings: 2 pixel radius, 0 cutoff, 1.9 percentile. The Particle Analysis Point Picker tool was used to 
select each particle within the ROI to acquire a count. Density was estimated as the number of particles detected 
by the Particle Detector plugin divided by the area of the ROI.

Signal levels of mEGFP-PpCESA8 particles were too low for the Particle Detector plugin to be able to reliably 
select CSC particles. Area of the cell was again determined using the freehand tool, but CSC count had to be 
approximated by the number of measured velocities from within the first slice of each time-lapse. This under-
counted the number of CSCs because it ignored any that did not persist for 60s or whose paths could not be 
tracked during velocity measurements.

Data availability. Additional images generated during the current study are available from the correspond-
ing author on reasonable request.
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