
m6A Regulator-Mediated RNA
Methylation Modification Patterns
Regulate the Immune
Microenvironment in Osteoarthritis
Yang Duan1†, Cheng Yu1†, Meiping Yan2, Yuzhen Ouyang3 and Songjia Ni4*

1Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangdong, China, 2Outpatient Department,
Zhujiang Hospital, Southern Medical University, Guangdong, China, 3Air Force Hospital of Southern Theater Command of the
People’s Liberation Army, Guangdong, China, 4Department of Orthopedics and Traumatology, Zhujiang Hospital, Southern
Medical University, Guangdong, China

Epigenetic regulation, particularly RNA n6 methyl adenosine (m6A) modification, plays an
important role in the immune response. However, the regulatory role of m6A in the immune
microenvironment in osteoarthritis (OA) remains unclear. Accordingly, we systematically
studied RNA modification patterns mediated by 23 m6A regulators in 38 samples and
discussed the characteristics of the immunemicroenvironment modified bym6A. Next, we
constructed a novel OA m6A nomogram, an m6A-transcription factor-miRNA network,
and a drug network. Healthy and OA samples showed distinct m6A regulatory factor
expression patterns. YTHDF3 expression was upregulated in OA samples and positively
correlated with type II helper cells and TGFb family member receptors. Furthermore, three
different RNA modification patterns were mediated by 23 m6A regulatory factors; in Mode
3, the expression levels of YTHDF3, type II T helper cells, and TGFb family member
receptors were upregulated. Pathways related to endoplasmic reticulum oxidative stress
and mitochondrial autophagy showed a strong correlation with the regulatory factors
associated with Mode 3 and 23 m6A regulatory factors. Through RT-qPCR we validated
that SREBF2 and EGR1 as transcription factors of YTHDF3 and IGF2BP3 are closely
associated with the development of OA, hsa-miR-340 as a miRNA for YTHDF3 and
IGF2BP3was involved in the development of OA, we also detected the protein expression
levels of IGF2BP3, YTHDF3, EGR1 and SREBF2 by western blotting, and the results were
consistent with PCR. Overall, the constructed nomogram can facilitate the prediction of
OA risk.
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INTRODUCTION

Osteoarthritis (OA) is a degenerative multifactorial disease that is characterized by progressive joint
failure, which is often associated with joint pain, stiffness, and decreased range of motion (Lopes
et al., 2017; Endisha et al., 2021). The pathological changes associated with OA include cartilage
degeneration, synovitis, fibrosis, and subchondral bone sclerosis. The etiology of OA is complex and
is currently thought to result from a combination of biomechanical processes, trauma, chronic
inflammation, and immune response. Previous studies have shown that a variety of cells, cytokines,
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chemokines, complements, and other immune system factors are
involved in OA pathogenesis (Kandahari et al., 2015). However,
studies on the role of m6A regulatory factors in the immune
regulation of OA are scarce. Thus, further studies are needed in
this regard.

N6 adenosine methylation (M6A), which is the most
frequently observed RNA modification type, extensively occurs
in mRNA, lncRNAs, and miRNAs. Specifically, M6A plays a
crucial role in various physiological processes as well as in disease
progression. Its modification is also a dynamic and reversible
process controlled by different types of regulatory proteins,
namely: methyltransferase (“writer”), demethylase (“erasers”),
and the binding protein (“reader”). Furthermore, m6A
modification is greatly affected by the expression and function
of these regulatory proteins, and studying these regulatory
proteins can enhance understanding of the role of m6A in
gene regulation (Chong et al., 2021). It has also been observed
that m6Amodification under the influence of regulatory factors is
associated with inflammation, the tumor microenvironment
(TME), and immune response (Huang et al., 2021).

Previous studies have shown that m6A regulatory factors,
especiallyMETTL3 and FTO, are involved in OA progression via
the regulation of inflammatory response and extracellular matrix
degradation. On the one hand, FTO-dependent m6A
demethylation mediates the upregulation of AC008, which
inhibits chondrocyte viability and promotes chondrocyte
apoptosis and ECM degradation in OA (Yang et al., 2021). On
the other hand,METTL3 affects the stability of autophagy-related
7 (ATG7) mRNA, thereby influencing autophagic activity in an
m6A- YTHDF2-dependent manner. This in turn promotes FLS
fibroblast-like synovial cell senescence and OA progression
(Chen et al., 2022). Further, METTL3 regulates inflammatory
responses in OA. It has also been observed that extracellular
matrix degradation in OA is related to the balance between
TIMPs and MMPs, which are regulated by METTL3 (Sang
et al., 2021). Furthermore, METTL3 regulates cartilage tissue
by regulating cartilage fine-cellular NF-kB signal transduction,
while ECM synthesis plays a mediator role in OA progression
(Liu et al., 2019). Moreover, there is increasing evidence that m6A
is involved in the regulation of immune responses (Zhang et al.,
2021). Therefore, investigating the role of m6A regulatory factors
in the immune response of OA and studying the differences in
immune changes between healthy and OA tissues can improve
our understanding of OA pathogenesis from a completely
different perspective.

In this study, we systematically evaluated the modification
patterns of m6A regulatory factors in OA. Thus, we found that
m6A regulatory factors were distinguished between healthy and
OA samples. The abundance of OA-infiltrating immune cells and
the immune response genome were found to be significantly
correlated with the m6A regulator, thus suggesting the existence
of a strong correlation between m6A regulators and immune
regulation. We also found different immune characteristics for
different m6A molecular subtypes and analyzed their biological
functions. These results indicated that the m6A modification
pattern has a significant effect on the immune microenvironment
in OA. We also constructed an m6A transcription factor-miRNA

network as well as a drug network. Simultaneously, a new m6A
OA nomogram that can facilitate the prediction of OA risk was
established.

MATERIALS AND METHODS

Data Acquisition and Difference Analysis
The relevant OA dataset, GSE114007 (Fisch et al., 2018), was
downloaded from the GEO database. This dataset, with data
platforms GPL11154 and GPL18573, consists of sequencing data
corresponding to Homo sapiens. Further, this GSE114007 dataset
includes 38 samples (including 18 control samples and 20 OA
samples), all of which were included in this study. The R package
DEseq2 (Love et al., 2014) was used to analyze differences in m6A
gene expression values between the control and OA groups. The
results of the different analyses were presented as heat maps and
volcanic maps using R-package heat and ggplot2, respectively.

Analysis of m6A Regulatory Factors in OA
The expression relationships of 23 m6A regulatory factors in
healthy and OA samples were evaluated using Spearman’s
correlation analysis. The random forest (Ishwaran and Lu,
2019) was first used to identify m6A regulators related to OA.
Thereafter, the least absolute shrinkage and selection operator
(LASSO) regression (Beinse et al., 2022) was used for feature
selection, dimensionality reduction, and m6A regulator classifier
developments. The distinguishing performances of the signature
were then evaluated via receiver operating characteristic (ROC)
curve analysis.

Analysis of the Correlation Between m6A
Regulators and Immune Characteristics
Single-sample gene set enrichment analysis (ssGSEA)
(Hanzelmann et al., 2013) was employed to estimate the
number of specific infiltrating immune cells and the activity of
specific immune responses. The absolute enrichment degree of a
given gene set in each sample within a given dataset was expressed
as an enrichment score. Further, gene listings for the gene set of
infiltrating immune cells were obtained from previous studies
(Shen et al., 2018; Zhang et al., 2020) and the immunoreaction
gene set was obtained from the ImmPort database (http://www.
immport.org) (Bhattacharya et al., 2014). The enrichment
fraction represented the abundance of immune cells as well as
the absolute enrichment of the immune response. The correlation
of m6A regulators with immunocyte fractions and immune
reaction activity was determined using Spearman’s correlation
analysis.

Identification of m6A Modification Pattern
Based on the expression of 23 m6A regulatory factors, different
m6A modification patterns were identified via an unsupervised
clustering analysis. Clustering was performed using R-package
ConsonsuclusterPlus (Wilkerson and Hayes, 100). The number
of clusters and robustness elation map of the patterns were also
evaluated. Principal component analysis (PCA) further verified
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the expression patterns of the 23 m6A regulators in the different
modification modes. Kruskal–Wallis test was then performed to
compare the expression of m6A regulatory factors, abundance
scores of infiltrating immune cells, immune response scores, and
HLA gene expression levels in the three different
modification modes.

Biological Enrichment Analysis for Distinct
m6A Modification Patterns
Biological signaling pathways may also reflect biological changes.
Thus, we obtained the gene sets corresponding to “h.all.v7.0.
symbols,” and “c5. go.v7.0. symbols” in the MSigDB database and
converted the expression matrix into a pathway activation score
matrix using the GSVA package. Thereafter, the activation scores
of the two groups were compared using the R-package limma
(Ritchie et al., 2015). Simultaneously, we also analyzed the
correlation between the activation scores corresponding to the
endoplasmic reticulum oxidative stress and mitochondrial
autophagy pathways and the expression levels of m6A
regulatory factors.

Transcription Factors: miRNA Networks
and Drug-Compound Networks
We analyzed the targeted transcription factors, targeted miRNAs,
and interacting drugs corresponding to high-expression genes in
OA using the NetworkAnalyst database (Zhou et al., 2019), and
thereafter constructed a network diagram.

Cartilage Donors
Normal human knee cartilage tissues were procured by tissue
banks (approved by Scripps Institutional Review Board) from 5
females and 13 males (age 18–61, mean 38) without history of
joint disease or trauma and processed within 24–48 h post
mortem. Full thickness cartilage was harvested for RNA
isolation from identical locations on the weightbearing
regions on medial and lateral femoral condyles, and
adjacent tissue sections were harvested for histology to
verify the cartilage integrity. OA-affected cartilage was
harvested from the tissue removed during knee replacement
surgery from 12 female and 8 male donors (age 52–82, mean
66). Body mass indices between the normal (BMI = 32.4 ± 8.0)
and OA (BMI = 30.7 ± 8.1) were not significantly (p = 0.506)
different.

Tissue Processing, RNA and DNA Isolation
Cartilage was stored at −20°C in Allprotect Tissue Reagent
(Qiagen, V alencia, CA) immediately after harvest until RNA
extraction. For RNA isolation, a minimum of 150 mg of cartilage
(dry weight) was pulverized using a 6770 Freezer/Mill Cryogenic
Grinder (SPEX SamplePrep, Metuchen, NJ), and homogenized
in Qiazol Lysis Reagent (Qiagen, V alencia, CA) at a
concentration of 25 mg tissue sample per 700 µl Qiazol. To
remove proteins and cellular debris, a initial phenol-chloroform
extraction was performed. Briefly, samples were mixed with 0.2
volumes of chloroform, incubated for 5 min in ice, and

centrifuged a t 14,000 rpm for 15 min at 4°C. The aqueous
phase was collected, mixed with 1 volume of Qiazol and
incubated for 30 min in ice. Then, samples were mixed with
1 volume of 100% ethanol, loaded into a mRNeasy Mini kit
column (Qiagen) and digested on-column with DNAse
following manufacturer instructions. RNA was eluted in 15 µl
of RNase-free water. RNA purity was assessed using NanoDrop
(ND-1000, Thermo Scientific, Wilmington, DE) and RNA
integrity number (RIN) was calculated using a 2100
Bioanalyzer (Agilent, Santa Clara, CA). Average RIN
numbers were 6.08 ± 0.95.

Library Preparation and Sequencing
RNA samples from 18 normal and 20 OA cartilage donors were
sequenced using 150 ng of total RNA as input. Sequencing mRNA
libraries were prepared using the Encore Complete RNA-Seq DR
Multiplex System 1–8 and 9–16 (NuGen, San Carlos, CA) with 16
unique indexed adapters (L2V6DR-BC2-L2V6DR-BC16). Two
lanes of an Illumina HiSeq 2000 instrument were used to
generate a total of 8–30 million 100 bp reads. The Illumina
Genome Analyzer Pipeline Software (Casava v1.8.2) was used to
convert the original image data generated by the sequencing
machine into sequence data via base calling in order to generate
fastq files and to demultiplex the samples.We performed a per base
sequence quality check using the software FastQC (v0.10.1) (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) prior to
read mapping. Raw RNAseq reads were aligned to the human
genome (hg19) using the STAR aligner. The number of reads
sequenced per sample ranged from 19 to 24 million reads, which
should be sufficient for gene level quantification, but only 2–12
million reads per sample mapped to protein coding genes. To
account for this issue, we applied high stringency the filtering of
lowly expressed genes (log counts per million >3) so that only the
differential expression analysis included only genes that were
expressed in high enough abundances to be confident in their
relative gene expression values.

Cell Culture
DMEM, 0.25% trypsin, and phosphate buffered saline (PBS)
were equilibrated at room temperature and used for
chondrocytes (Procell, Cat NO.: CP-H107, Wuhan, China)
culture. Thereafter, the old medium was discarded and
washed twice with PBS, which was followed by the addition
of an appropriate amount of trypsin and digestion at 37°C for
1–2 min. The digestion was stopped by adding the culture
medium, and the chondrocytes were then collected via
blowing. The chondrocytes density was adjusted and the cells
were inoculated into a 6-well plate, which was placed in an
incubator at 37°C with 5% CO2; the culture was incubated
overnight. The next day, the cell culture plate was removed
and washed with PBS three times; 1 ml of PBS was added in each
wash cycle, and the resulting solution was shaken gently to avoid
washing out the cells. Thereafter, the cells in the degeneration
group were added to the medium containing IL-
1β(PEPROTECH) concentration of 40 ng/ml, while those in
the control group were added to the normal medium. Culturing
was then continued for 48 h.
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Reverse Transcription-Quantitative
Polymerase Chain Reaction (RT-qPCR)
Total RNA of 1*106 cells was extracted using TRIzol reagent
(15,596–026; Invitrogen, Carlsbad, CA, United States). A reverse
transcription reaction system was constructed using the
PrimeScript RT reagent kit with GDNA Eraser (# RR047A,
Tokyo, Takara), and reverse transcription was performed
onboard. The PCR system was constructed using the SYBR
Green qPCR Mix (#D7260; Beyotime, Shanghai, China), and
PCR detection was performed on a computer system. The 2-ΔΔCt
method was used to calculate the relative expression levels in the
samples during RT-qPCR data processing. The primers used are
listed in Supplementary Table S1.

Western Blotting
The total protein of 1*106 cells was extracted using a whole cell
lysis assay (KeyGEN Biotech, Nanjing, Jiangsu Province, China).
Eighty micrograms of sample protein were subjected to SDS-
PAGE (KeyGEN Biotech) and transferred to PVDF membranes
(Millipore). The membranes were blocked and probed with the
indicated primary antibodies at 4 °C for 12 h. The membranes
were then incubated with the indicated HRP-conjugated
secondary antibodies at room temperature for 2 h, and the
expression of the target proteins was detected by ECL
(KeyGEN Biotech). The following antibodies were used:
IGF2BP3 (MA5-27484, 1:1000; Thermo Fisher), YTHDF3
(PA5-107309, 1:1000, Thermo Fisher), EGR1 (MA5-15008, 1:
2000; Thermo Fisher), SREBF2 (1:2000; Thermo Fisher) and
GAPDH (1:1000; Beyotime Biotechnology, Shanghai, China).

Statistical Analysis
All data calculations and statistical analyses were performed using
R software (https://www.r-projec t. org/, version 4.0.2).
Comparison between two groups of continuous normally
distributed variables were realized by performing the
independent Student’s t-test, and the difference between non-
normally distributed variables was analyzed using the Mann-
Whitney U test (Wilcoxon rank-sum test). All statistical p values
were bilateral, and statistical significance was set at p < 0.05.

RESULTS

Expression of the m6A-Related Genes in OA
Figure 1 shows the flowchart associated with the analysis of the
expression of m6A-related genes in OA. To analyze the effect of
m6A-related gene expression values on OA tissues relative to
normal tissues, differentially expressed m6A-related genes in the
dataset were obtained using the DEseq2 package and the results
obtained were presented as a volcano plot (Figure 2A). From this
figure, it is evident that OA showed high IGF2BP3 and YTHDF3
expression levels; significantly low YTHDC1 expression levels;
and low WTAP, IGF2BP2, FMR1, RBM15, ALKBH5, LRPPRC,
HNRNPC, and METTL14 expression levels. Meanwhile, a heat
map (Figure 2B), chromosomal circos map (Figure 2C), and box
map (Figure 2D) were generated based on the expression of
m6A-related genes. As shown in the abovementioned figures,
YTHDC1, WTAP, IGF2BP2, FMR1, ALKBH5, LRPPRC,
HNRNPC, and METTL14 showed low expression levels in OA.

Correlation Between the Expression Levels
of the m6A-Related Genes in OA
To analyze the correlations between the expression levels of the
m6A-related genes in OA, we performed correlation analysis on
the expression levels of the m6A-related gene. In this regard, we
used the corplot packet to plot the correlation results as a heat
map (Figure 3A) and network map (Figure 3B). Figures 3C–J
shows the scatter diagrams corresponding to the strongly
correlated m6A-related genes in OA. Our results indicated
that METTL3 expression showed a strong correlation with
METTL14 expression, KIAA1429 expression showed a strong
correlation with YTHDF3 expression, and RBM15 expression
showed a strong correlation withWTAP and LRPPRC expression.
Additionally, HNRNPA2B1 showed a strong correlation with
RBM15B and ALKBH5 expression, and YTHDC2 showed a
strong correlation with RBM15 and LRPPRC expression.

Construction of an m6A Gene Prediction
Model in OA
To analyze the resolution of OA by m6A regulatory factors, we
first used the random forest method (Figures 4A,B). Samples
were randomized into a training set (70%) and a verification set
(30%), and the boxplots (Figures 4C,D) obtained thereafter
showed significant differences in model scores between OA
and healthy groups in the training and validation sets. Further,

FIGURE 1 | Study flow chart.
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the ROC curve (Figure 4E) showed that the model constructed
using the random forest method exhibited a good diagnostic
capability for OA; given that the results of the random forest
analysis showed that all the m6A regulatory factors had good
predictive power, we used Lasso regression analysis to
characterize and reduce the m6A regulatory factors while
excluding insignificant regulatory factors (Figures 5A,B). The
obtained prediction model was: Risk Score = CBLL1 * 2.731 +
ZC3H13 * 7.407 + YTHDF2 * −0.732 + YTHDF3 * 2.384 +
YTHDC1 *−12.361 + IGF2BP2 * −5.030 + IGF2BP3 * 2.051 +
FMR1 *−5.042. Furthermore, the boxplot in Figure 5C showed a
significant difference in risk scores between the OA and healthy
groups. Subsequently, we constructed an OA risk-related
nomogram (Figure 5D), which could distinguish between
healthy and OA samples as a function of risk scores.

Correlation Between m6A Regulatory
Factors in OA and Immune Cells and
Immune Process
To investigate the correlation betweenm6A regulatory factors and the
immune microenvironment, we performed a correlation analysis
involving m6A regulators, infiltrating immunocytes, and immune

reaction gene sets (Figures 6A,B). The correlation analysis showed
that m6A regulatory factors are strongly correlated with several
immune cells. We also found that NK cells were positively
correlated with most m6A regulatory factors, while NKT cells and
CD8+T cells were negatively correlated with most m6A regulatory
factors. Additionally, during the immune process, most of the m6A
regulatory factors showed a negative correlation with cytokines and a
positive correlation with receptors belonging to the TGFb family.

Modification Patterns of m6A RNA
Methylation Mediated by 23 Regulatory
Factors in OA
To investigate the m6A modification pattern of bones and joints,
we performed unsupervised consensus clustering on OA samples
based on the expression of 23 m6A regulatory factors (Figures
7A–E). The results thus obtained showed that clustering
exhibited good stability at K = 3, and PCA revealed favorable
differences among the three m6A molecular subtypes
(Figure 7F). Further, the thermogram (Figure 7G) and
boxplot (Figure 7H) show that the expression levels of the 23
m6A regulatory factors in the three m6A modification patterns
were significantly different.

FIGURE 2 | Expression differences of m6A genes in OA. (A) The volcano plot of m6A gene difference: the abscissa is log2FC, and the ordinate is −log10(p-value).
(B) Heat map of m6A gene differences. (C) Chromosome circus map of differential expression of m6A gene, the inner circle is the expression heat map of OA samples,
and the outer circle is the expression heat map of normal samples. (D) Boxplot of m6A gene differences. (ns: p > 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001).
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Immune Microenvironment Characteristics
of Different m6A Modification Modes
To understand the differences in the immune
microenvironment characteristics of different m6A
modification modes, the infiltrating immune cells, immune
response genome, and HLA gene expression were evaluated.
Our results in this regard showed different immune cells for
the three patterns (Supplementary Figure S1A). Compared to
Modes 2 and 3, Mode 1 showed increased immunocytes
infiltration; the number of CD4+T cells, immature dendritic
cells, and natural killer cells corresponding to Mode 3 were
higher than those corresponding to Mode 2. Additionally,

members of the TGFB receptor family showed high activity
in Mode 3 (Supplementary Figure S1B), whereas the cytokine
process in Mode 1 was relatively active. This was consistent
with the previous analysis of the immune process. Similar
trends were observed for HLA gene expression
(Supplementary Figure S1C). In Mode 1, the overall
expression of genes belonging to the HLA family was high.
These results suggested that m6A modifications in Modes 1
and 3 mediated the master immune response, while the
modification in Mode 2 mediated the mild immune
response to OA. Further, the immune responses mediated
by Modes 1 and 3 were different.

FIGURE 3 | Expression correlation of m6A genes in OA. (A) Heatmap of 23 m6A gene expression correlations. (B) m6A gene expression correlation network
diagram. (C–J) Scatter plot of some highly correlated m6A genes.
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Biological Characteristics of Three m6A
Modification Modes
To investigate the biological responses associated with the three
m6Amodificationmodes, we compared theHALLMARKS pathway
and the GO pathway and evaluated the activation state of the
biological pathway using GSVA enrichment analysis
(Supplementary Figures 2A–F). Compared with Modes 1 and 3,
relatively fewer pathwayswere enriched inMode 2, thereby revealing
the enrichment of pathways such as the ROS pathway. Meanwhile,
Modes 1 and 3 were enriched in almost the same pathway.
Specifically, Model 1 showed the enrichment of well-known
pathways, such as the PI3K, AKT, and MTORC1 pathways,
whereas Mode 3 showed the enrichment of pathways related to
endoplasmic reticulum oxidative stress and mitochondrial
autophagy. Previous studies have demonstrated that endoplasmic
reticulum oxidative stress and mitochondrial autophagy play
significant roles in OA; therefore, we investigated the correlation
between m6A regulatory factors, endoplasmic reticulum oxidative
stress, and mitochondrial autophagy pathway scores (Figure 8A).
These results showed that the m6A regulatory factors were strongly
correlated with endoplasmic reticulum oxidative stress and
mitochondrial autophagy pathways (Figures 8B–E).

m6A-Related TF-MIRNA Network
Construction and Drug Development for OA
Treatment
In this study, we observed high IGF2BP3 and YTHDF3
expression levels in OA. Based on these two genes, we
constructed a transcription factor-miRNA network and a
drug-compound network diagram using the Network Analyst
database. As shown in Supplementary Figure S3A,
formaldehyde, C646, and other compounds can
simultaneously act on these two regulatory factors. This
observation suggests that formaldehyde and C646
compounds have the potential to be used as therapeutic
drugs. As shown in Supplementary Figure S3B, SREBF1,
SREBF2, and EGR1 were identified as the common targeted
transcription factors of the two genes, while hsa-miR-590-3p
and hsa-miR-340 were identified as the commonly targeted
miRNAs of the two genes.

RT-qPCR and Western Blotting
The expression levels of IGF2BP3 and YTHDF3 were
upregulated in the IL-1β-induced degeneration group
(Figures 9A,B). This is consistent with the results of the

FIGURE 4 | Random forest analysis. (A,B) The m6A gene was modeled by random forest. (C,D) Boxplots of ratings for training and validation sets. (E) ROC plot of
random forest diagnosis.
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microarray analysis. Further, RT-qPCR results showed the
expression of EGR1 and miR-340 of degeneration group was
significantly decreased, while the expression of SREBF2 of
degeneration group was upregulated (Figures 9C–E). These
qPCR results for the two groups showed statistically
significant differences. On the other hand, we also detected

the protein expression levels of IGF2BP3, YTHDF3, EGR1, and
SREBF2 by western blotting, and the results were consistent
with PCR, IGF2BP3, YTHDF3, and SREBF2 were upregulated in
the IL-1β-induced degeneration group, and the expression of
EGR1 of degeneration group was significantly decreased.
(Figure 9F).

FIGURE 5 | LASSO regression modeling. (A,B) LASSO regression modeling m6A gene. (C) scoring boxplot. (D) diagnostic Nomo plot.

FIGURE 6 | Correlation of infiltrating immune cells, immune response genes and m6A regulators. (A) Dot plot shows the correlation between each immune
microenvironment aberrant infiltrating cell type and each abnormal m6A regulator. (B) Dot plot shows the correlation between each immune response genome and each
M6A regulator.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9212568

Duan et al. Genes and Mechanisms of Osteoarthritis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 7 | Unsupervised clustering of 23 m6A regulators. Three distinct isoforms of m6A modification patterns were identified in OA. (A–C) Heat map of the co-
occurrence ratio matrix of OA samples when k = 2–4. (D) Consensus clustering cumulative distribution function when k = 2–7. (E) Relative area under the CDF curve
when k = 2-7 Changes. (F) Principal component analysis of the transcriptome profiles of the 3 m6A isoforms showed that the transcriptomes of different modification
patterns were significantly different. (G) Unsupervised aggregation of 23 m6A regulators in the 3 modification patterns Class. (H) Expression status of 23 m6A
regulons in 3 m6A isoforms.

FIGURE 8 | Correlation of m6A gene expression and pathways related to endoplasmic reticulum stress and mitophagy in OA. (A) The overall heat map of the
correlation between m6A gene expression and ER stress and mitophagy-related pathways. (B–E) The correlation between HNRNPA2B1, YTHDC2, IGF2BP1, and
ALKBH5 gene expression and ER stress pathway.
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DISCUSSION

OA is a disease that involves biomechanics, inflammation, and
complex biological responses of the immune system (Woodell
May and Sommerfeld, 2019). Presently, there are still many
research gaps concerning the immune regulatory mechanism
of OA, especially m6A regulatory factor-mediated immune
regulation. In this study, we systematically investigated the
modification pattern of m6A in the OA immune
microenvironment; based on the results obtained, we arrived
at the following conclusions:

First, we observed a difference in the expression of some m6A
regulatory factors between healthy and OA samples, specifically
the upregulation of IGF2BP3 and YTHDF3 in OA samples.
Consistent results were obtained via RT-qPCR and WB, which
validated our findings. These results indicated that m6A
regulatory factors, especially IGF2BP3 and YTHDF3, may be
involved in OA development. Additionally, we observed the
existence of correlations between the expression levels of m6A
regulatory factors. Thus, we speculated that in OA, m6A
regulatory factors jointly regulate OA progression through a
regulatory network.

Next, we established an m6A classifier using m6A regulators
that offer the possibility to distinguish between healthy and OA
samples. This reaffirmed the important role of m6A regulatory
factors in OA. Further, to improve andmore conveniently predict
OA, we established a new m6A nomogram. Based on the review

of relevant literature, we found that nomograms are rarely used to
predict OA occurrence and progression. Daniel et al. developed a
nomogram for diagnosing the rapid progression of knee
osteoarthritis. Similarly, we established an m6A nomogram for
predicting the risk of OA from the perspective of m6A
modifications (Riddle et al., 2016). Different scores were
assigned to factors such as age, sex, CBLL1, ZC3H13,
YTHDF2, YTHDF3, YTHDC1, IGF1BP2, IGF2BP3, and FMR1.
The total score was obtained by adding the scores of each factor.
The total score was less than 160, the probability of OA was less
than 0.1, and probability of OA was greater than 0.9 if the total
score was greater than 180.

Moreover, we investigated the association between m6A
regulatory factors and the immune properties of OA, including
the gene set for immune cell infiltration and immune
response. We found that many m6A regulatory factors are
closely related to these immune characteristics. Unsupervised
clustering of periodontitis samples using m6A regulator
expression profiles led to three subtypes with distinctive
m6A modification patterns, and each subtype exhibited
unique immune characteristics. Considering that each
subtype has its immune characteristics, we believe that
classification based on immunophenotypes of different
m6A modulators is feasible. We believe that this
classification strategy for immune subtypes will help in
comprehensively understanding the mechanisms of immune
regulation.

FIGURE 9 | The mRNA or miRNA expression in the control and degeneration group. (A,B) Expression level of m6A genes in the control and degeneration group.
(C–E) Expression level of m6A-related transcription factor and miRNA in the control and degeneration group. (F) Expression level of m6A protein and m6A-related
transcription factor in the control and degeneration group. *p < 0.05 vs. Control.
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Notably, YTHDF3 was upregulated in OA samples. In an
immune correlation study, YTHDF3 was positively correlated
with type II T helper cells and TGFb family member receptors.
In Mode 3, the expression of YTHDF3, type II T helper cells, and
TGFb family member receptors were upregulated. Mode 3 could be
enriched in pathways related to endoplasmic reticulum oxidative
stress and mitochondrial autophagy. Meanwhile, we found that the
m6A regulatory factor also had a strong correlation with
endoplasmic reticulum oxidative stress and mitochondrial
autophagy pathway, which is consistent with our previous study.
Small extracellular vesicles-miR-151a-3p targeted YTHDF3 to
reduce the transcriptional inhibitory activity of SP3, promote the
transactivation of TGF-β1 in KCs, and then activate the SMAD2/3
pathway to enhance the stem cell-like characteristics of the incoming
GC cells (Li et al., 2021). TGF-β 1 plays a vital role inmaintaining the
homeostasis of articular cartilage and subchondral bone (He et al.,
2020). Apoptosis of articular chondrocytes is related to ROS-
induced oxidative stress, which leads to mitochondrial damage
and activates endoplasmic reticulum stress (Feng et al., 2019).
Mitochondrial autophagy disorders in chondrocytes accelerate the
development of OA (Wang et al., 2020). This suggests thatYTHDF3,
type II helper cells, TGFb family member receptors, endoplasmic
reticulum oxidative stress, and mitochondrial autophagy pathways
are closely related to OA.

Furthermore, we established a transcription factor-miRNA-
m6A regulatory factor network and a drug-compound-m6A
regulatory factor network. SREBF1, SREBF2, and EGR1 are
common transcription factors of IGF2BP3 and YTHDF3, while
hsa-miR-590-3p and hsa-miR-340 are two miRNAs that can be
combined by both. Compounds such as formaldehyde and C646
can be combined with these two regulatory factors simultaneously.

SREBP-1 is a transcription factor responsible for the
expression of enzymes involved in lipid and cholesterol
homeostasis under sterol stimulation. The adsorption of
glucose on chitosan membranes (CTS-Glc) stimulated the
proliferation of human chondrocytes by providing energy
through the regulation of lipogenesis via SREBP-1/Fans and
promoting the cell cycle process through the expression of cell
cycle regulators induced by SREBP-1 (Chang et al., 2017).

The cholesterol regulatory element-binding factor-2 (SREBF2)
gene is a well-known transcriptional regulator of the cholesterol
biosynthesis genes. Stigmasterol (STM) reduces IL-1β-induced
ATDC5 cell injury in mouse chondrocytes via SREBF2, and STM
reduces il -1β-induced ATDC5 cell iron ptosis via SREBF2 (Mo
et al., 2021). SIRT1 may aggravate osteoarthritis cartilage
degeneration by activating the SREBP2 protein-mediated
PI3K/AKT signaling pathway (Yu et al., 2016).

EGR1 (early growth response 1) is a transcription factor of the
c2h2 type zinc finger protein EGR family that regulates
chondrocyte hypertrophy by activating the β-catenin signaling
pathway (Sun et al., 2019). The EGR1 gene has been identified as
the central gene of OA development (Chen et al., 2021). EGR1,
cartilage degeneration, and the expression of EGR1 in the
articular cartilage of OA patients increased (Huan et al., 2021).
Mir-340-5p may inhibit the ERK signaling pathway through the
FMOD gene, promote the proliferation of OA mouse
chondrocytes, and inhibit apoptosis (Zhang et al., 2019).

To examine the expression of these genes in healthy and IL-
1b-induced osteoarthritis samples, we performed RT-qPCR and
confirmed that IGF2BP3 and YTHDF3 were closely associated
with the development of OA and SREBF2, EGR1, and miR-340
could be involved in OA progression by regulating the expression
of IGF2BP3 and YTHDF3. However, this study had some
limitations. First, the data were downloaded from a public
database and could not be evaluated for input errors. Second,
based on bioinformatics analysis, RT-qPCRwas used to detect the
difference in molecular expression between OA and healthy
samples; However, flow cytometry still need to be
supplemented to verify the role of the molecules and the
potential mechanism of OA. Single cells can also be sequenced
to obtain the most accurate number of immune cells.

In conclusion, our study revealed a potential regulatory
mechanism of m6A modification in the immune
microenvironment of OA. Different modification modes of
m6A cannot be ignored as they affect the immune
microenvironment of OA, thus influencing the occurrence and
development of OA. A comprehensive analysis of the
modification mode of OA m6A in our study will help to
understand the immune regulatory mechanism of OA, provide
a reference for the treatment of OA, and supplement the research
blank in this field. Meanwhile, the developed m6A OA
nomogram can help assess the risk of OA, thus providing a
reference for the clinical diagnosis of OA.
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Supplementary Figure S1 | Differences in immune microenvironment
characteristics between different m6A modification patterns. (A) Differences in
the abundance of infiltrating immune cells in each immune microenvironment
under the three M6A modification patterns. (B) differences in the activity of each
immune response genome under the three M6A modification patterns. (C) HLA
genes in the three m6A modifications Expression differences in patterns.

Supplementary Figure S2 | There are differences in the underlying biological
functional characteristics of the three m6A modification patterns. (A,B) The

difference between the enrichment integrals of M6A modification mode 1 and
mode 2 signaling pathways. (B) the difference between the enrichment integrals
of M6A modification mode 1 and mode 3 signaling pathways. (C)M6A modification
mode 2 and mode 3 signaling pathways Differences in enrichment scores.

Supplementary Figure S3 | Network graph analysis of highly expressed m6A
genes in OA. (A) The interaction network of YTHDF3 and IGF2BP3 with
compounds. (B) The transcription factor and miRNA binding network of YTHDF3
and IGF2BP3.
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