
R E S E A R CH AR T I C L E

Transient receptor potential vanilloid type 4 is expressed in
vasopressinergic neurons within the magnocellular subdivision
of the rat paraventricular nucleus of the hypothalamus

F.C. Shenton PhD | S. Pyner PhD

Department of Biosciences, Durham

University, Durham, UK

Correspondence

Dr Susan Pyner, Department of Biosciences,

Durham University, Durham DH1 3LE. Tel.

+44 (0)191 3341346;

Email: susan.pyner@durham.ac.uk

Funding information

British Heart Foundation, Grant/Award

Number: PG/14/53/309000

Abstract
Changes in plasma osmolality can drive changes in the output from brain centres known to con-

trol cardiovascular homeostasis, such as the paraventricular nucleus of the hypothalamus (PVN).

Within the PVN hypotonicity reduces the firing rate of parvocellular neurons, a neuronal pool

known to be involved in modulating sympathetic vasomotor tone. Also present in the PVN is

the transient receptor potential vanilloid type 4 (TRPV4) ion channel. Activation of TRPV4

within the PVN mimics the reduction in firing rate of the parvocellular neurons but it is unknown

if these neurons express the channel. We used neuronal tracing and immunohistochemistry to

investigate which neurons expressed the TRPV4 ion channel protein and its relationship with

neurons known to play a role in plasma volume regulation. Spinally projecting preautonomic

neurons within the PVN were labelled after spinal cord injection of FluoroGold (FG). This was

followed by immunolabelling with anti-TRPV4 antibody in combination with either anti-oxytocin

(OXT) or anti-vasopressin (AVP). The TRPV4 ion channel was expressed on 63% of the vaso-

pressinergic magnocellular neurosecretory cells found predominantly within the posterior mag-

nocellular division of the PVN. Oxytocinergic neurons and FG labelled preautonomic neurons

were present in the same location, but were distinct from the TRPV4/vasopressin expressing

neurons. Vasopressinergic neurons within the supraoptic nucleus (SON) were also found to

express TRPV4 and the fibres extending between the SON and PVN. In conclusion within the

PVN, TRPV4 is well placed to respond to changes in osmolality by regulating vasopressin secre-

tion, which in turn influences sympathetic output via preautonomic neurons.
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1 | INTRODUCTION

In mammals, plasma osmolality is precisely regulated despite the daily

variation in water and sodium intake (Bourque, 2008). The paraventricu-

lar nucleus of the hypothalamus integrates behavioural, cardiovascular

and neuroendocrine homeostatic responses (Swanson & Kuypers, 1980;

Swanson & Sawchenko, 1983; Guyenet, 2006). An increase in plasma

osmolality activates the PVN to increase arginine vasopressin (AVP)

release and sympathetic nerve activity to end organs such as the kidney

and heart (Stocker, Hunwick, & Toney, 2005; Antunes, Yao, Pickering,

Murphy, & Paton, 2006). This is dependent upon a neural pathway com-

prising osmoreceptors located in specific forebrain regions that lack the

blood brain barrier. Increasing plasma osmolality stimulates the subforni-

cal organ, the organ vasculosum of the lamina terminalis and median pre-

optic, which all send excitatory projections to the PVN. The multi-tasking

role of the PVN is made possible by bringing together within the nucleus
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different cell groups with distinct neuro-hormonal functions (Swanson &

Sawchenko, 1983). Two morphologically distinct cell groups have been

described: magnocellular neurosecretory cells (MNCs) that synthesise

and release the peptide hormones AVP and oxytocin (OXT) and project

exclusively to the posterior pituitary; and parvocellular neurons, that are

further subdivided into two groups: one which releases corticortropin-

releasing factor to evoke the release of adrenocorticotropic hormone

from the anterior pituitary (Antoni, 1993) and another group, the preau-

tonomic neurons that influences autonomic function via projections to

the brain stem and spinal cord (Pyner & Coote, 1999, 2000). The spinally

projecting preautonomic neurons have also been categorised as interme-

diate and named mediocellular (Kiss, Martos, & Palkovits, 1991). The pre-

autonomic neurons influence blood pressure, heart rate and sympathetic

nerve activity, including renal sympathetic nerve activity.

The transient receptor potential vanilloid type 4 channel (TRPV4)

is a non-selective cation channel transducing physical stress, for

example, osmotic cell swelling or mechanical stress into intracellular

Ca2+−dependent signalling (Sharif-Naeini, Ciura, Zhang, & Bourque,

2008). More recently, it has been demonstrated that TRPV4 is acti-

vated by increased cell volume irrespective of the molecular mecha-

nism underlying cell swelling and thus the channel is suggested to

function as a volume-sensor, rather than (or as well as) an osmo-

sensor (Toft-Bertelsen, Krizaj, & MacAulay, 2017).

The TRPV4 channel may be involved in systemic osmoregulation

and there is some evidence to support a physiological role for TRPV4 in

the hypothalamic osmosensing nuclei (Liedtke & Friedman, 2003; Car-

reño, Ji, & Cunningham, 2009). The TRPV4 channel is expressed in the

PVN and SON where it is co-localised with AVP containing cells

(Carreño, Ji, & Cunningham, 2009). Functionally, TRPV4 and calcium acti-

vated potassium (KCa) ion channels have been shown to couple as osmo-

sensors in the PVN in mouse brain slices and rat isolated PVN neurons

(Feetham, Nunn, Lewis, Dart, & Barrett-Jolley, 2015b). Again in mice,

intracerebroventricular administration of hypotonic artificial cerebrospi-

nal fluid decreases blood pressure but not heart rate and inhibition of the

TRPV4 ion channel attenuated this effect (Feetham, Nunn, & Barrett-Jol-

ley, 2015a). While these studies demonstrate a functional role for TRPV4

in osmosensing within the PVN, they do not establish which neurons

express the channel, leaving open the question of the neuronal mecha-

nism underlying these observations. Here we have used retrograde label-

ling of spinally projecting preautonomic neurons in combination with

immunohistochemistry for TRPV4, AVP and OXT to determine where

TRPV4 protein is expressed and its relationship to cell groups involved in

osmosensing and cardiovascular homeostasis within the PVN.

2 | MATERIALS AND METHODS

2.1 | Ethical Approval

All experiments were approved by the Local Ethics Committee of Dur-

ham University and performed in accordance with UK Animals

(Scientific Procedures) Act, 1986 and the European Commission

Directive 86/609/EEC (European Convention for the Protection of

Vertebrate Animals used for Experimental and Other Scientific Pur-

poses). All surgical procedures were carried out on anaesthetised

animals that minimised suffering with the minimum number of animals

used. Animal were killed with an overdose of sodium pentobarbital

(60 mg/kg) at the termination of the experiment.

2.2 | Injection of retrograde tracers

Six male wistar rats were anaesthetised intraperitoneally with

medetomidine 0.25 mL/100 g and ketamine 0.06 mL/100 g prior to

spinal cord injection of the retrograde tracer FluoroGold (FG; Fluoro-

chrome –Denver, Colorado, USA LLC). The FG (2% in 0.9% saline) was

pressure injected into the left intermediolateral region of the spinal

cord at the T2 level (Watkins, Cork, & Pyner, 2009). Following injec-

tion, analgesia was administered (0.01 mL/100 g buprenorphine) and

the animals recovered for 7–10 days with ad libitum food and water.

2.3 | Perfusion-Fixation

After the recovery period, animals were terminally anaesthetised and

perfused with heparinised saline followed by 4% paraformaldehyde in

0.1 M phosphate buffer (PB; pH 7.4). Brains and spinal cord were

removed, post fixed overnight at 4 �C and then transferred to 30%

sucrose-phosphate buffer (4 �C) until sectioned.

2.4 | Immunohistochemistry

Immunohistochemistry was carried out on free floating sections cut on a

freezing microtome at 40 μm. Transverse sections of PVN were collected

at the levels containing centres engaged in cardiovascular control

(Swanson & Sawchenko, 1983; Pyner & Coote, 1999) and longitudinal

sections of spinal cord (100 μm) were used to confirm the location of the

injection site within the intermediolateral cell column (Swanson & Saw-

chenko, 1983; Pyner & Coote, 1999). Nonspecific binding sites were

blocked with 10% normal goat serum (NGS; Abcam Cambridge CB4 0FL,

UK, Ab7481)-0.1% Triton-X-100 (TX) in PB for 45 minutes, rinsed in PB

(1 x 10 mins) then incubated in rabbit anti-TRPV4 (1:400 in 1% NGS-

0.1% TX in PB; Abcam 94,868 lot GR276084, RRIDAB_10675981) over-

night at 4 �C. Four animals underwent double labelling for anti-TRPV4

combined with either guinea pig anti-oxytocin (1:1000; BMA Biomedi-

cals, CH-4302 Augst, Switzerland, T-5021.0050, RRID:AB_518526) or

guinea pig anti-(Arg 8) vasopressin (1:800; BMA Biomedicals, T-

5048.0050, RRID:AB_518680). After washing (x 3 in PB) the secondary

antibody, either Alexafluor 594 goat anti-rabbit (1:200; ThermoFisher,

UK, A-11037, RRID:AB_2534095) alone or together with Alexafluor

488 anti-guinea pig (1:200; ThermoFisher, UK, A-11073, RRID:

AB_142018) for double labelled sections, was applied for 2 hours at

room temperature. Finally, the sections were washed as before and

mounted onto gelatinised slides. After air drying overnight, sections were

dehydrated through a series of alcohols, cleared in xylene and then

mounted under DPX.

2.5 | Confocal Microscopy

Sections were examined using a Zeiss 880 Laser Scanning Confocal

Microscope. Images were captured using Zen 2.1 SP2 (black; version

13.0.2.518). Frame mode acquisition was utilised to capture FluoroGold

(excitation 405 nm, emission 530–600 nm), Alexafluor 488 (excitation
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488, nm emission 494–600 nm) and Alexaflour 594 (excitation 594 nm,

emission 604–735 nm). Overview images were captured using x20

objective (NA 0.8) in tile scan mode to generate the large field of view

required and z stacks as required. Regions of interest were subsequently

imaged with either x40 or x63 oil objectives (NA 1.3 and 1.4 respec-

tively). Raw images were processed using Zen (blue edition) software and

final images were imported into Adobe Photoshop (CS4 extended

v. 11.02) to create annotated figures.

2.6 | Cell Counts

Cell counts were generated using a cell counter plugin in the Java-

based image processing program ImageJ (https://imagej.nih.gov/ij/,

1997–2016.). FluoroGold labelled neurons were counted in consecu-

tive sections throughout the rostrocaudal extent of the PVN, from

approximately Bregma −1.40 to −2.12, ipsilateral to the spinal cord

injection site. Abercrombie's correction for double counting errors

was applied to these counts (Abercrombie, 1946). In four animals

alternate sections were labelled with anti-TRPV4 and AVP (every

other section receiving the TRPV4 and OXT combination). Therefore

cell counts of TRPV4 and AVP labelled populations were obtained

from alternate sections. As the effective size of these sections was

80 μm, no correction was made for double counting errors.

2.7 | Antibody Specificity

These are all commercial antibodies subject to routine quality assur-

ance (Table 1). Where positive results were obtained the pattern of

reactivity was characteristic of that particular antibody with distinct

cell populations consistently labelled by that antibody on repeat

assays. There was an absence of labelling with secondary antibodies

alone. For the anti-TRPV4 antibody a further antigen preadsorption

control was included. Prior incubation of the antibody with the immu-

nising peptide (Abcam 230,486 1 mg/mL, 1:1 with antibody overnight

at 4 �C) abolished labelling (Fig 1bc). Although preadsorption controls

for the antibodies to OXT and AVP were not undertaken, both these

antibodies have been used in previous, published studies to identify

MNC's in rat PVN (Nedungadi & Cunningham, 2014; Reuss,

Brauksiepe, Disque-Kaiser, & Olivier, 2017).

3 | RESULTS

3.1 | Spinally projecting preautonomic neurons

The injection site was identified and confirmed as being in the left

intermediolateral cell column in all those animals whose tissues were

used for immunohistochemistry (Figure 1a).

Within the PVN, spinally projecting preautonomic neurons labelled

with FG were ipsilateral to the spinal cord injection site although some

neurons in the contralateral PVN were also evident. Spinally projecting

preautonomic neurons were distributed rostro-caudally (Bregma −1.40

to −2.12) within the parvocellular division of the PVN (Figures 2 & 4:

a3-d3). Within the more caudal regions of the PVN the spinally project-

ing neurons were confined to the dorsal and ventral regions of the

nucleus with an intermediate “empty” region corresponding to theT
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posterior magnocellular and medial parvocelluar regions (Figures 2 & 4:

d3). The number of FG labelled cells on the ipsilateral side to the injection

site was 896 � 220 SD (n = 6), comparable to previous counts of spinally

projecting preautonomic neurons within the PVN (Sawchenko & Kuypers

1980; Watkins, Cork & Pyner 2009).

3.2 | TRPV4 ion channel expressing neurons

The majority of TRPV4 labelled cells were prevalent in the posterior mag-

nocellular region of the PVN (Figures 2 & 4: a2-d2). The TRPV4 labelling

appeared granular and was evident throughout the cytosol (Figure 5:

c4, Y, red cells labelled with double asterix). Immunoreactivity for TRPV4

was evident on neurons in the SON (not shown) and also those lining

the 3rd ventricle (Figure 5: c4 arrows). Fine varicose fibres identified with

TRPV4 immunoreactivity coursed laterally and ventrally between the

PVN and SON (Figure 3: c4, Z) but no fibres were observed to emanate

from the TRPV4 cells lining the 3rd ventricle. A population of TRPV4

cells was also observed dorsal to the fornix with fibres extending laterally

and a further population ventral to the spinally projecting preautonomic

neurons with fibres projecting towards the SON. In the most caudal

region of the PVN lateral to and just beyond the “wings” of the spinally

projecting preautonomic neuronal grouping a few neurons were found

to express TRPV4 and again fibres extended towards the supraoptic

decussation and optic tract (not shown).

3.3 | Relationship between TRPV4 and spinally
projecting neurons

Rarely were neurons expressing TRPV4 identified as spinally project-

ing preautonomic neurons apart from in one case found in the caudal

region of the PVN and this neuron was also vasopressinergic

(Figure 5: c4, Y asterix). Spinally projecting preautonomic neurons and

TRPV4 neurons were observed as discrete populations throughout

the rostral-caudal extent of the PVN nucleus (Figures 2–5). In the pos-

terior magnocellular region where TRPV4 immunoreactive cells were

most abundant, the spinally projecting neurons were positioned

immediately dorsal and ventral to the TRPV4 cells with some overlap

between the distinct populations.

3.4 | Relationship between TRPV4 and
vasopressinergic neurons

Neurons immunoreactive for vasopressin were predominantly con-

fined to the posterior magnocellular region with a posterior dorsolat-

eral distribution (Figure 4: a1-d1). The number of vasopressinergic

neurons counted was 1,065 � 191 SD (n = 4), consistent with previ-

ous studies (Rhodes, Morrell & Pfaff, 1981; Sawchenko & Swanson,

1982). This region also contained the majority of the TRPV4 immuno-

reactive neurons (Figures 2 & 4: a2-d2). All TRPV4 neurons were

found to be vasopressinergic (Figure 5: c4, X) with TRPV4 expressing

neurons making up 63% of the total vasopressinergic neuronal popu-

lation. A further TRPV4-AVP expressing population was also observed

within the SON (not shown). The only neuron identified as a spinally

projecting neuron and expressing TRPV4, also contained vasopressin

immunoreactivity (Figure 5: Y asterix, see section 3.3).

3.5 | Relationship between TRPV4 and
oxytocinergic neurons

Oxytocinergic neurons were present rostro-caudally throughout the

PVN and were most abundant in the posterior magnocellular cell

region (Figure 2: a1-d1). The TRPV4 neurons and fibres occupied the

same region but the two populations were separate and there was no

evidence of TRPV4 being expressed on oxytocinergic neurons

(Figure 3: Y double asterix OXT neurons, single asterix TRPV4 neu-

rons). A similar pattern was observed for the SON i.e. intermingled

but discrete TRPV4 and oxytocinergic pools of neurons (not shown).

3.6 | Relationship between spinally projecting- and
vasopressinergic neurons and spinally projecting- and
oxytocinergic neurons

Only occasionally were the spinally projecting neurons found to be

vasopressinergic (Figure 5: Y asterix). A similar pattern for OXT was

observed, however while only a small number of spinally projecting

preautonomic neurons were immunoreactive for OXT it was more

than for AVP (Figure 3: X asterix). The spinally projecting –

oxytocinergic neurons were predominantly located within the caudal

FIGURE 1 Injection site and immunogen preadsorption control for anti-TRPV4 antibody. Panel a: Micrograph of a longitudinal section of spinal

cord, showing the FG injection site (arrow) into the IML of the T2 segment that resulted in labelling of neurons in the PVN. Abbreviations: CAA-
central autonomic area, IML- intermediolateral cell column, LF- lateral funiculus. Panels b and c: Prior incubation of the anti-TRPV4 antibody with
its immunising peptide (Abcam 230,486 1 mg/mL, 1:1 with antibody overnight at 4 �C) abolished labelling. b and c show consecutive sections of
the PVN labelled with anti-TRPV4 (b) and the same antibody following the blocking step (c). Cell bodies (arrows) and fibres (arrowheads) are
clearly seen in b, but absent in c. Abbreviations: Br-Bregma, 3 V- 3rd ventricle [Color figure can be viewed at wileyonlinelibrary.com]
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parvocellular regions of the PVN (Figure 3: X asterix) although a few

were found in the posterior magnocellular region, the region where

TRPV4 expressing neurons were most abundant.

4 | DISCUSSION

This study investigated the anatomical relationship existing between

the TRPV4 ion channel and neurons known to be involved in modulat-

ing osmotic stress and sympathetic output from the PVN. The study

has provided evidence that the TRPV4 ion channel was localised

within the posterior magnocellular subdivision of the PVN. This region

also contained both the magnosecretory neurons containing OXT and

AVP, in agreement with previous studies (Swanson & Sawchenko,

1983; Son et al., 2013). Neurons immunoreactive for TRPV4 were

exclusively vasopressinergic and TRPV4 had no relationship with the

oxytocinergic population i.e. not co-localised. In addition, spinally pro-

jecting preautonomic neurons within the parvocellular cell group of

the PVN did not show any anatomical relationship with the TRPV4

ion channel. The TRPV4 channel was also expressed within the SON,

FIGURE 2 Oxytocin immunoreactive-, TRPV4 immunoreactive- and spinally projecting preautonomic neurons within the PVN. The series

a ! d are PVN sections moving rostro-caudally from Bregma −1.4 to −2.0. Panels a1-d1 are oxytocin (OXT, green) neurons, a2-d2 are transient
receptor potential vanilloid 4 (TRPV4, red) neurons and a3-d3 are spinally projecting preautonomic neurons retrogradely labelled with FluoroGold
(FG, blue). Panels a4-d4 are the merge of these three. All three cell groups occupy distinct regions of the PVN. Spinally projecting preautonomic
neurons lie dorsal (panels a4, b4) and dorso-ventral (panels c4, d4) to the mixed OXT and TRPV4 cells. Scale bar = 100 μm. Abbreviations:
Br-Bregma, 3 V- 3rd ventricle [Color figure can be viewed at wileyonlinelibrary.com]
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where again TRPV4 was always associated with AVP immunoreactive

neurons.

4.1 | TRPV4 ion channel

The TRPV4 ion channel, a member of the transient receptor potential

family of cation channels, responds to a broad range of stimuli includ-

ing osmoregulation (Liedtke et al., 2000; Voets, Talavera, Owsianik, &

Nilius 2005; Stiber, Tang, Li, & Rosenberg 2012). In addition to show-

ing the colocalisation of TRPV4 with AVP in the posterior magnocellu-

lar subdivision of the PVN we also found varicose fibres

immunoreactive for TRPV4 extending laterally and ventrally. The pro-

jections are assumed to be vasopressinergic since such fibres were

seen originating from AVP neurons but co-localisation with TRPV4

could not be established. It is not possible to unequivocally determine

whether these fibres are axons or dendrites. Previous studies have

shown vasopressinergic neurons within the magnocellular subdivision

of the PVN extend varicose fibres (axons) laterally and ventrally

towards the median eminence and SON while the dendrites spread

into the parvocellular region (Son et al., 2013). In contrast, Carreño

and colleagues described TRPV4 to be on both parvocellular and mag-

nocellular neurons of the PVN colocalised with AVP, with a similar

pattern for the SON (Carreño, Ji, & Cunningham, 2009). However,

from their published paper it is not possible to unequivocally identify

the TRPV4 immunoreactive neurons as parvocellular. We have taken

serial sections throughout the rostrocaudal extent of the PVN and our

high power confocal images unambiguoulsy demonstrate TRPV4

expression on vasopressinergic MNCs. Our images clearly show gran-

ular expression of TRPV4 protein throughout the cytosol (Figure 4:

c4, Y, red cells labelled with double asterix) and on fine varicose fibres

extending laterally and ventrally between the PVN and SON (Figure 4:

c4, Z). Our observations are in agreement with recent work showing

TRPV4 expressed throughout the cytosol, dendrites and axons of cul-

tured hippocampal neurons (Gu et al., 2017). While the channel may

be found throughout the cytoplasm in unstimulated cells, it is likely

that mechanical perturbation leads to recruitment of intracellular

pools of TRPV4 to the plasma membrane as has been shown in native

and recombinant TRPV4-expressing cells (Baratchi et al., 2016). The

granular nature of our staining is of interest. It may be accounted for

by co-localisation of TRPV4 with actin and microtubule rich struc-

tures, which can resemble focal adhesion points (Goswami, Kuhn,

Heppenstall, & Hucho, 2010). Certainly the expression of TRPV4

appears to be highly dynamic: in non-stimulated endothelial cells the

channel has been found clustered in small protein islands, subsequent

shear stress generated by blood flow leads to the formation of smaller

clusters with the majority of the TRPV4 protein then located outside

of these (Baratchi, Knoerzer, Khoshmanesh, Mitchell, & McIntyre,

2017). The TRPV4 channel appears to function as part of a complex

FIGURE 3 Relationship between oxytocin immunoreactive- TRPV4 neurons and spinally projecting preautonomic neurons within the PVN.
Panel c4 from Figure 2 with high magnification insets (X, Y and Z) to show the relationship between the different cell groups: OXT/spinally
projecting preautonomic neurons inset X, OXT/TRPV4 cells inset Y, OXT/TRPV4 fibres inset Z.Expanded inset X: Occasionally FG labelled spinally
projecting preautonomic neurons also expressed OXT (*) Expanded inset Y: The OXT and TRPV4 cells are in close proximity with one another but
OXT cells (*) are distinct from TRPV4 cells (**). Expanded inset Z: Similarly, the fibres (OXT fibres arrows, TRPV4 fibres arrowheads) extending
laterally from the cells are separate from one another. Abbreviation: 3 V- 3rd ventricle [Color figure can be viewed at wileyonlinelibrary.com]
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containing cytoskeletal proteins and regulatory kinases, where it can

integrate intracellular signalling with cytoskeletal dynamics (Goswami

et al., 2010).

Spinally projecting preautonomic neurons in the parvocellular

region of the PVN did not express TRPV4 or contain AVP and a top-

graphical segregation was evident between the spinally projecting and

the TRPV4-AVP neurons. Topgraphical segregation between AVP and

PVN-RVLM projecting neurons has also been reported (Son et al.,

2013). Only one preautonomic neuron was found to be immunoreac-

tive for both TRPV4 and AVP. In situ hybridisation suggests that 40%

of spinally projecting neurons contain mRNA for AVP. In colchicine

treated rats at least 35% of the PVN-spinally projecting neurons con-

tained AVP and sparsely distributed AVP axons can be found apposed

to adrenal medullary and stellate ganglion projecting sympathetic pre-

ganglionic neurons in the spinal cord (Cechetto & Saper, 1988;

Ranson, Motawei, Pyner, & Coote, 1998; Motawei et al., 1999; Hall-

beck, Larhammar, & Blomqvist, 2001). Functionallly, stimulation of the

PVN-spinal projection leads to a vasopressin-dependent excitation of

sympathetic preganglionic neurons in the spinal cord of the rat via a

V1a receptor (Gilbey, Coote, Fleetwood-Walker, & Peterson, 1982;

Backman & Henry, 1984; Ma & Dun, 1985; Malpas & Coote, 1994;

Sermasi, Howl, Wheatly, & Coote, 1998). The fact that rarely do PVN

parvocellular neurons contain AVP seems at odds with the functional

evidence and it may reflect that within the parvocellular neurons AVP

is stored as neurophysin (Swanson, 1977; White, Krause, &

McKelvy, 1986).

Putative dendrites from the TRPV4-AVP neurons were seen to

project into and through the preautonomic neurons and closley

appose them. Again a similar pattern has been reported for PVN-

RVLM projecting neurons (Son et al., 2013). As all TRPV4 neurons are

vasopressinergic and these neurons are a separate population to the

parvocellular neurons irrespective of autonomic target, then we can

suggest that the PVN-RVLM would not express TRPV4. Indeed a

recent study provides evidence for another TRP family member

FIGURE 4 Arginine-vasopressin immunoreactive-, TRPV4- immunoreactive and spinally projecting preautonomic neurons within the PVN. The
series a - > d are PVN sections moving rostro-caudally from Bregma −1.4 to −2.0. Panels a1-d1 are arginine-vasopressin (AVP, green) neurons,
a2-d2 are transient receptor potential vanilloid 4 (TRPV4, red) neurons and a3-d3 are spinally projecting preautonomic neurons retrogradely
labelled with FluoroGold (FG, blue). Panels a4-d4 are the merge of these three. All of the TRPV4 labelled cells are vasopressinergic and appear
orange/red in the merged panels. A small proportion of AVP cells do not express TRPV4 protein. The blue FG labelled cells lie predominantly
medial (panel c4) and dorso-ventral (panel d4) to the orange AVP/TRPV4 immunoreactive cell group. Scale bar = 100 μm. Abbreviations: Br-
Bregma, 3 V- 3rd ventricle [Color figure can be viewed at wileyonlinelibrary.com]
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TRPM4 to be expressed on PVN-RVLM preautonomic neurons (Son

et al., 2013).

Oxytocinergic MNCs had a similar distrubution within the poste-

rior magncoellular region of the PVN as vasopressinergic MNCs. How-

ever, the OXT neurons and fibres did not express TRPV4. Like

vasopressin around 40% of spinally projecting neurons contain OXT

mRNA (Hallbeck, Larhammar, & Blomqvist, 2001) while for those par-

vocellular neurons projecting to the stellate ganglion about 10% have

been shown to be oxytocinergic (Jansen, Wessendorf, & Loewy,

1995). Functionally, OXT has been implicated in autonomic regulation

with a direct action on sympathetic preganglionic neurons (Gilbey,

Coote, Fleetwood-Walker, & Peterson, 1982; Yasphal, Gauthier, &

Henry, 1987; Sermas & Coote, 1994; Deusaules, Reiter, & Feltz,

1995; Yang, Wheatley & Coote, 2002). While the primary roles of

AVP and OXT are very different, oxytocinergic MNCs can also be acti-

vated by increasing osmolality but our evidence would indicate the

TRPV4 ion channel is not part of the mechanism (Leng et al., 2001;

Oliveria et al., 2004).

4.2 | TRPV4-parvocellular interaction

The paraventricular nucleus of the hypothalamus has been shown to

be critical to sensing and responding to changes in plasma osmolality

(Bourque, 2008). Disturbances in osmolality and the evoked cellular

response involve TRPV4-activation coupled to the low-conductance

calcium-activated potassium (SK) channel. An in vitro study using

mouse brain slices and rat isolated PVN neurons demonstrated that

anatomically and morphologically defined parvocellular neurons

responded to osmolality (Feetham, Nunn, Lewis, Dart, & Barrett-

Jolley, 2015b). Superfusion of the brain slices with hypotonic artificial

cerebrospinal fluid was found to reduce action current frequency and

these effects were mediated by coupling of TRPV4/SK channels. Simi-

larly, an in vivo study investigated whether hypotonic TRPV4 driven

neuronal inhibition modulated cardiovascular parameters. In mice,

intracerebroventricular administration of hypotonic solutions

decreased mean blood pressure but not heart rate and inhibition of

the TRPV4 channels abolished these effects (Feetham, Nunn &

Barrett-Jolley, 2015a). These studies support a central TRPV4 channel

as important for sensing osmolality and the authors proposed the

effects of its activation to be mediated by the channel expressed on

spinally projecting preautonomic neurons (Feetham, Nunn, Lewis,

Dart, & Barrett-Jolley, 2015b). However, we have shown the TRPV4

channel is only associated with AVP MNCs. Therefore we suggest that

the spinally projecting preautonomic neurons are activated indirectly

by AVP released from MNCs in the same vicinity, this alternative

explanation would be compatible with both our observations and the

functional studies of Feetham and colleagues.

Release of AVP from MNCs is closely related to electrical activity

of these cells (Leng, Brown, & Russell, 1999). Magnocellular neurose-

cretory cells appear to positively correlate their rate of action poten-

tial discharge with extracellular fluid osmolality (Bourque, 1998).

Under normal body fluid osmolality, the firing rate of the MNCs

(~1–3 Hz) mediates basal AVP secretion, whereas hypotonicity and

hypertonicity decrease and increase respectively, firing frequency and

AVP release (Bourque, 1998).

Recently crosstalk between AVP MNCs and PVN-RVLM projecting

preautonomic neurons has been proposed (Son et al., 2013). Activity

dependent dendritic release of AVP from neurosecretory neurons has

FIGURE 5 Transient receptor potential vanilloid 4 is expressed exclusively on AVP neurons within the PVN. Panel c4 from Figure 4 with high

magnification insets to show that TRPV4 is present on the majority of vasopressinergic (AVP) cells (inset X) and spinally projecting preautonomic
neurons are separate from these cell groups (inset Y). Expanded inset X: The majority of AVP neurons express TRPV4 (AVP/TRPV4*), however
37% of AVP neurons do not express TRPV4 (**). Expanded inset Y: A single spinally projecting preautonomic neuron immunoreactive for AVP
and TRPV4 (*). This was the only occasion on which a triple labelled cell was seen. Otherwise spinally projecting preautonomic neuron (FG, blue)
were always distinct from the AVP/TRPV4 (orange) and AVP (green) cells. Fine varicose fibres labelled with TRPV4 radiate laterally from the
AVP/TRPV4 cells (arrows). On occasion these fibres are closely apposed to the spinally projecting preautonomic neurons (arrowheads).

Abbreviation: 3 V- 3rd ventricle [Color figure can be viewed at wileyonlinelibrary.com]
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been shown to stimulate PVN-RVLM preautonomic neurons demon-

strating a mechanism for interpopulation crosstalk (Son et al., 2013). The

released AVP is proposed to act as a diffusible signal between popula-

tions of neurons within the PVN. A central osmotic challenge adminis-

tered via intracarotid infusion of increasing concentrations of sodium

chloride results in concentration dependent increases in renal sympa-

thetic nerve activity (Chen & Toney, 2001). This effect was shown to be

due to intranuclear release of AVP from MNCs because blockade of the

V1a receptor within the PVN blunted the increase in renal sympathetic

activity suggesting the AVP was contributing to the sympathoexcitation

(Son et al., 2013). Thus central osmotic challenge is able to modulate

sympathetic output; and separate studies have shown that this can be

attenuated centrally either by TRPV4 inhibition (Feetham, Nunn &

Barrett-Jolley, 2015a) or blockade of V1a receptors on spinally projecting

preautonomic neurons (Son et al., 2013). Our demonstration of TRPV4

on AVP MNCs suggests these effects may be mediated via release of

AVP from these neurons onto preautonomic sympathetic neurons with

which they are in close proximity.

4.3 | Conclusion

Our study provides an anatomical understanding of how changes in

osmolality may affect sympathetic output from spinally projecting

neurons within the PVN of the hypothalamus. Osmotic sensing by the

TRPV4 ion channel expressed on AVP MNCs may lead to dendritic

release of AVP and its subsequent diffusion onto preautonomic net-

works. The precise mechanism for sensing and signalling of osmotic

disturbances and thus blood plasma volume has important implica-

tions in heart failure as recent evidence would suggest AVP modula-

tion of sympathoexcitibility is impaired in disease. A reduction in the

expression of SK (small conductance Kca channels) in hypothalamic

MNCs in heart failure rats has been shown to contribute to the hyper-

excitibility of those neurons (Ferreira-Neto, Biancardi & Stern, 2017).

An increase in hypothalamic MNC excitability could lead to increased

AVP release and the well documented sympathoexcitation observed

in heart failure animals (Abboud, 2010). Functional studies in combina-

tion with anatomical analyses detailing the location of osmosensitive

proteins on cell groups within cardiovascular control centres and their

interconnections, is gradually revealing the mechanisms underpinning

cardiovascular homeostasis.

CONFLICT OF INTEREST STATEMENT

The authors declare they have no conflict of interest.

ACKNOWLEDGMENTS

This work was supported by a BHF project grant (PG/14/53/309000)

awarded to SP.

We thank Ms Joanne Robson for her expert contribution to the

confocal imaging, Ms Demi Minhinnett for assistance with animal

work and Dr Adrian Brown for his expertise in Mass Spectrometry

(MALDI-TOF MS).

In memory of Professor John H Coote (1936-2017).

AUTHOR CONTRIBUTIONS

The authors take responsibility for the integrity of the date and accu-

racy. Study concept and design FCS and SP. Acquisition of data FCS.

Analysis and Interpretation of data FCS and SP. Writing of manuscript

FCS and SP.

ORCID

S. Pyner https://orcid.org/0000-0002-6073-6234

REFERENCES

Abercrombie, M. (1946). Estimation of nuclear population from microtome

sections. Anatomical Record, 94, 239–247.
Abboud, F. M. (2010). In search of autonomic balance: the good, the bad,

and the ugly. American Journal of Physiology, 298, R1449–R1467.
Antoni, F. A. (1993). Vasopressinergic control of pituitary adrenocortico-

tropin secretion comes of age. Frontiers in Neuroendocrinology, 14,

76–122.
Antunes, V. R., Yao, S. T., Pickering, A. E., Murphy, D., & Paton, J. F. R.

(2006). A spinal vasopressinergic mechanism mediates

hyperosmolality-induced sympathoexcitation. Journal of Physiology,

576, 569–583.
Backman, S. B., & Henry, S. L. (1984). Effects of oxytocin and vasopressin

on the thoracic sympathetic neurons in the cat. Brain Research Bulletin,

13, 679–684.
Baratchi, S., Almazi, J. G., Darby, W., Tovar-Lopez, F. J., Mitchell, A., &

McIntyre, P. (2016). Shear stress mediates exocytosis of functional

TRPV4 channels in endothelial cells. Cell & Molecular Life Sciences,

73(3), 649–666.
Baratchi, S., Knoerzer, M., Khoshmanesh, K., Mitchell, A., & McIntyre, P.

(2017). Shear stress regulates TRPV4 channel clustering and transloca-

tion from adherens junctions to the basal membrane. Scientific Reports,

7, 9.
Bourque, C. W. (1998). Osmoregulation of vasopressin neurons: A synergy

of intrinsic and synaptic processes. Advances in Brain Vasopressin, 119,

59–76.
Bourque, C. W. (2008). Central mechanisms of osmosensation and sys-

temic osmoregulation. Nature Reviews Neuroscience, 9, 519–531.
Carreño, F. R., Ji, L. L., & Cunningham, J. T. (2009). Altered central TRPV4

expression and lipid raft association related to inappropriate vasopres-

sin secretion in cirrhotic rats. American Journal of Physiology, 296,

R454–R466.
Cechetto, D. F., & Saper, C. B. (1988). Neurochemical organisation of the

hypothalamic projection to the spinal cord in the rat. Journal of Com-

parative Neurology, 272, 579–604.
Chen, Q. H., & Toney, G. M. (2001). AT(1)-receptor blockade in the hypo-

thalamic PVN reduces central hyperosmolality-induced renal sym-

pathoexcitation. American Journal of Physiology, 281, R1844–R1853.
Deusaules, E., Reiter, M. K., & Feltz, P. (1995). Electrophysiological evi-

dence for oxytocin receptors on sympathetic preganglionic neurons-

an in vitro study on the neonatal rat. Brain Research, 699, 139–142.
Feetham, C. H., Nunn, N., & Barrett-Jolley, R. (2015a). The depressor

response to intracerebroventricular hypotonic saline is sensitive to

TRPV4 antagonist RN1734. Frontiers in Pharmacology, 6, 1–9.
Feetham, C. H., Nunn, N., Lewis, R., Dart, C., & Barrett-Jolley, R. (2015b).

TRPV4 and K-Ca ion channels functionally couple as osmosensors in

the paraventricular nucleus. British Journal of Pharmacology, 172,

1753–1768.
Ferreira-Neto, H. C., Biancardi, V. C., & Stern, J. E. (2017). A reduction in

SK channels contributes to increased activity of hypothalamic magno-

cellular neurons during heart failure. Journal of Physiology, 595,

6429–6442.
Gilbey, M. P., Coote, J. H., Fleetwood-Walker, S., & Peterson, D. F. (1982).

The influence of the paraventricular-spinal pathway and oxytocin and

vasopressin on sympathetic preganglionic neurons. Brain Research,

251, 283–290.

SHENTON AND PYNER 3043

https://orcid.org/0000-0002-6073-6234
https://orcid.org/0000-0002-6073-6234


Goswami, C., Kuhn, J., Heppenstall, P. A., & Hucho, T. (2010). Importance
of non-selective cation channel TRPV4 interaction with cytoskeleton
and their reciprocal regulations in cultured cells. PLoS One, 5, 16.

Gu, Y. Z., Jukkola, P., Wang, Q., Esparza, T., Zhao, Y., Brody, D., & Gu, C.
(2017). Polarity of varicosity initiation in central neuron mechanosen-
sation. Journal of Cell Biology, 216, 2179–2199.

Guyenet, P. G. (2006). The sympathetic control of blood pressure. Nature
Reviews Neuroscience, 7, 335–346.

Hallbeck, M., Larhammar, D., & Blomqvist, A. (2001). Neuropetide expres-
sion in rat paraventricuclar neurons that project to the spinal cord.
Journal of Comparative Neurology, 433, 222–238.

Jansen, A. S. P., Wesendorf, M. W., & Loewy, A. D. (1995). Transneuronal
labelling of CNS neuropeptide and monoamine neurons after pseu-
dorabies virus injections into the stellate ganglion. Brain Research,
683, 1–24.

Kiss, J. Z., Martos, J., & Palkovits, M. (1991). Hypothalamic paraventricular
nucleus - a quantitative-analysis of cytoarchitectonic subdivisions in
the rat. Journal of Comparative Neurology, 313, 563–573.

Leng, G., Brown, C.H & Russell, J. A. (1999). Physiological pathways regu-
lating the activity of magnocellular neurosecretory cells. Progress in
Neurobiology, 57, 625–655.

Leng, G., Brown, C. H., Bull, P. M., Brown, D., Scullion, S., Currie, J., …
Ludwig, M. (2001). Responses of magnocellular neurons to osmotic
stimulation involves coactivation of excitatory and inhibitory input: An
experimental and theoretical analysis. Journal of Neuroscience, 21,
6967–6977.

Liedtke, W., Choe, Y., Marti-Renom, M. A., Bell, A. M., Denis, C. S.,
Sali, A., & ……& Heller, S. (2000). Vanilloid receptor-related osmotically
activated channel (VR-OAC), a candidate vertebrate osmoreceptor.
Cell, 103, 525–535.

Liedtke, W., & Friedman, J. M. (2003). Abnormal osmotic regulation in
trpv4−/− mice. Proceedings of the National Academy of Sciences, 100,
13698–13703.

Ma, R. C., & Dun, N. J. (1985). Vasopressin depolarises lateral horn cells of
the neonatal rat spinal cord in vitro. Brain Research, 348, 36–43.

Malpas, S. C., & Coote, J. H. (1994). Role of vasopressin in sympathetic
response to paraventricular stimulation in anaesthetised rats. American
Journal of Physiology, 266, R228–R236.

Motawei, K., Pyner, S., Ranson, R. N., Kamel, M., & Coote, J. H. (1999). Ter-
minals of paraventricular spinal neurones are closely associated with
adrenal medullary sympathetic preganglionic neurones: immunocyto-
chemical evidence for vasopressin as a possible neurotransmitter in
this pathway. Experimental Brain Research, 126, 68–76.

Nedungadi, T. P., & Cunningham, J. T. (2014). Differential regulation of
TRPC4 in the vasopressin magnocellular system by water deprivation
and hepatic cirrhosis in the rat. American Journal of Physiology, 306,
R304–R314.

Oliveira, G. R., Franci, C. R., Rodovalho, G. V., Franci, J. A. A., Morris, M., &
Rocha, M. J. A. (2004). Alterations in the central vasopressin and oxy-
tocin axis after lesion of a brain osmotic sensory region. Brain Research
Bulletin, 63, 515–520.

Pyner, S., & Coote, J. H. (1999). Identification of an efferent projection
from the paraventricular nucleus of the hypothalamus terminating
close to spinally projecting rostral ventrolateral medullary neurons.
Neuroscience, 88, 949–957.

Pyner, S., & Coote, J. H. (2000). Identification of branching paraventricular
neurons of the hypothalamus that project to the rostroventrolateral
medulla and spinal cord. Neuroscience, 100, 549–556.

Ranson, R. N., Motawei, K., Pyner, S., & Coote, J. H. (1998). The paraventricu-
lar nucleus of the hypothalamus sends efferents to the spinal cord of the
rat which closely appose sympathetic preganglionic neurones projecting
to the stellate ganglion. Experimental Brain Research, 120, 164–172.

Reuss, S., Brauksiepe, B., Disque-Kaiser, U., & Olivier, T. (2017).
Serine/threonine-kinase 33 (Stk33) - Component of the neuroendo-
crine network? Brain Research, 1655, 152–160.

Rhodes, C. H., Morrell, J. I., & Pfaff, D. W. (1981). Immunohistochemical
analysis of magnocellular elements in rat hypothalamus – distribution

and numbers of cells containing neurophysin, oxytocin and vasopres-
sin. Journal of Comparative Neurology, 198, 45–64.

Sawchenko, P. E., & Swanson, L. W. (1982). Immunohistochemical identifi-
cation of neurons in the paraventricular nucleus of the hypothalamus
that project to the medulla or to the spinal-cord in the rat. Journal of
Comparative Neurology, 205, 260–272.

Sermasi, E., & Coote, J. H. (1994). Oxytocin acts via V1 receptors to excite
sympathetic preganglionic neurones in neonate rat spinal cord in vitro.
Brain Research, 647, 323–332.

Sermasi, E., Howl, J., Wheatly, M., & Coote, J. H. (1998). Localisation of
arginine vasopressin V1a receptors on sympatho-adrenal preganglionic
neurones. Experimental Brain Research, 19, 85–91.

Sharif-Naeini, R., Ciura, S., Zhang, Z., & Bourque, C. W. (2008). Contribu-
tion of TRPV channels to osmosensory transduction, thirst, and vaso-
pressin release. Kidney International, 73, 811–815.

Son, S..J., Filosa, J.A., Potapenko, E.S., Biancardi, V.C., Zheng, H., Patel, K.
P.,…….& Stern, J.E. (2013). Dendritic peptide release mediates interpo-
pulation crosstalk between neurosecretory and preautonomic net-
works. Neuron, 78, 1036–1049.

Stiber, J. A., Tang, Y., Li, T., & Rosenberg, P. B. (2012). Cytoskeletal regula-
tion of TRPC channels in the cardiorenal system. Current Hypertension
Reports., 14, 492–497.

Stocker, S. D., Hunwick, K. J., & Toney, G. M. (2005). Hypothalamic para-
ventricular nucleus differentially supports lumbar and renal sympa-
thetic outflow in water-deprived rats. Journal of Physiology, 563,
249–263.

Swanson, L. W. (1977). Immunohistochemical evidence for a
neurophysin-containing autonomic pathway arising in the paraventri-
cular nucleus of the hypothalamus. Brain Research, 128, 346–353.

Swanson, L. W., & Kuypers, H. (1980). The paraventricular nucleus of the
hypothalamus - cytoarchitectonic subdivisions and organization of pro-
jections to the pituitary, dorsal vagal complex, and spinal-cord as dem-
onstrated by retrograde fluorescence double-labeling methods. Journal
of Comparative Neurology, 194, 555–570.

Swanson, L. W., & Sawchenko, P. E. (1983). Hypothalamic integration -
organization of the paraventricular and supraoptic nuclei. Annual
Review of Neuroscience, 6, 269–324.

Toft-Bertelsen, T. L., Krizaj, D., & MacAulay, N. (2017). When size matters:
transient receptor potential vanilloid 4 channel as a volume-sensor
rather than an osmo-sensor. Journal of Physiology, 595, 3287–3302.

Voets, T., Talavera, K., Owsianik, G., & Nilius, B. (2005). Sensing with TRP
channels. Nature Chemical Biology, 1, 85–92.

Watkins, N. D., Cork, S. C., & Pyner, S. (2009). An immunohistochemical
investigation of the relationship between neuronal nitric oxide
synthase, GABA and presympathetic paraventricular neurons in the
hypothalamus. Neuroscience, 159, 1079–1088.

White, J. D., Krause, J. E., & McKelvy, J. F. (1986). In vivo biosynthesis and
transport of oxytocin, vasopressin and neurophysin to the spinal cord.
Neuroscience, 17, 133–140.

Yang, Z., Wheatley, M., & Coote, J. H. (2002). Neuropeptides, amines
and amino acids as mediators of the sympathetic efects of paraven-
tricular nucleus activation in the rat. Experimental Physiology, 87,
663–674.

Yashpal, K., Gauthier, S., & Henry, J. L. (1987). Oxytocin administered
intrathecally preferentially increase heart rate rather than arterial pres-
sure in the rat. Journal of the Autonomic Nervous System, 20, 167–178.

How to cite this article: Shenton FC, Pyner S. Transient

receptor potential vanilloid type 4 is expressed in vasopressi-

nergic neurons within the magnocellular subdivision of the rat

paraventricular nucleus of the hypothalamus. J Comp Neurol.

2018;526:3035–3044. https://doi.org/10.1002/cne.24514

3044 SHENTON AND PYNER

https://doi.org/10.1002/cne.24514

	 Transient receptor potential vanilloid type 4 is expressed in vasopressinergic neurons within the magnocellular subdivisio...
	1  INTRODUCTION
	2  MATERIALS and METHODS
	2.1  Ethical Approval
	2.2  Injection of retrograde tracers
	2.3  Perfusion-Fixation
	2.4  Immunohistochemistry
	2.5  Confocal Microscopy
	2.6  Cell Counts
	2.7  Antibody Specificity

	3  RESULTS
	3.1  Spinally projecting preautonomic neurons
	3.2  TRPV4 ion channel expressing neurons
	3.3  Relationship between TRPV4 and spinally projecting neurons
	3.4  Relationship between TRPV4 and vasopressinergic neurons
	3.5  Relationship between TRPV4 and oxytocinergic neurons
	3.6  Relationship between spinally projecting- and vasopressinergic neurons and spinally projecting- and oxytocinergic neurons

	4  DISCUSSION
	4.1  TRPV4 ion channel
	4.2  TRPV4-parvocellular interaction
	4.3  Conclusion

	  CONFLICT OF INTEREST STATEMENT
	  ACKNOWLEDGMENTS
	  AUTHOR CONTRIBUTIONS
	  REFERENCES




