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Abstract: Physical activity measures derived from wearable accelerometers have been shown to
be highly predictive of all-cause mortality. Prediction models based on traditional risk factors and
accelerometry-derived physical activity measures are developed for five time horizons. The data set
contains 2978 study participants between 50 and 85 years old with an average of 13.08 years of follow-
up in the NHANES 2003–2004 and 2005–2006. Univariate and multivariate logistic regression models
were fit separately for five datasets for one- to five-year all-cause mortality as outcome (number of
events 46, 94, 155, 218, and 297, respectively). In univariate models the total activity count (TAC)
was ranked first in all five horizons (AUC between 0.831 and 0.774) while the active to sedentary
transition probability (ASTP) was ranked second for one- to four-year mortality models and fourth
for the five-year all-cause mortality model (AUC between 0.825 and 0.735). In multivariate models
age and ASTP were significant in all one- to five-year all-cause mortality prediction models. Physical
activity measures are consistently among the top predictors, even after adjusting for demographic
and lifestyle variables. Physical activity measures are strong stand-alone predictors and substantially
improve the prediction performance of models based on traditional risk factors.

Keywords: accelerometry; physical activity; logistic regression; mortality; prediction horizon; NHANES

1. Introduction

Physical activity (PA) measured using wearable accelerometry devices holds great
promise for remote monitoring of physiological health and mortality risk assessment [1].
A growing number of health studies use objective PA measurements obtained from ac-
celerometry to either complement or replace the traditional self-assessment question-
naires [2]. Recent studies have shown that objective physical activity measures are among
the major mortality risk factors [3–10]. While some traditional risk factors, such as age,
are not modifiable, physical activity can be intervened on, which could decrease an indi-
vidual’s risk of mortality [11–13]. Moreover, higher PA is associated with better physical
performance and a healthier and longer life [14–17]. Translating these findings into action-
able public health guidelines and intervention monitoring requires a better understanding
and quantification of the association between objectively measured physical activity in the
free-living environment and the risk of mortality.

Physical activity has an important impact on an individual’s health and quality of
life [18]. Epidemiological studies over the past 50 years have shown that decline in
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physical activity, which is most likely associated with a number of unfavorable changes
in biochemical and physiological processes, is associated with cardiovascular and all-
cause mortality [19]. There is extensive evidence that physical activity reduces the risk of
developing many chronic diseases [20] including incident dementia [21–23], cardiovascular
diseases [24–26], and diabetes [27–30]. Public health recommendations emphasize the
importance of lifestyle changes to increase physical activity via common behaviors such
as walking, climbing stairs, and doing housework [31,32]. However, many older adults
remain predominantly sedentary [33–35], which could contribute to increased disability
and even premature death.

To date, the National Health and Nutrition Examination Survey (NHANES) 2003–2004
and 2005–2006 [33] and the UK Biobank [36] are the largest open-source population-based
studies that included physical activity measured by wearable accelerometry devices. To-
tal time spent in light, moderate, and vigorous physical activity has been previously shown
to be associated with mortality outcomes in the NHANES accelerometry data [1,3]. Fractal
analysis of NHANES accelerometer signals further revealed the potential of actigraphy data
to serve as a clinical biomarker for mortality risk [1]. Recently, Smirnova et al [9] studied
the predictive performance of physical activity summary measures obtained from hip-worn
accelerometer in the subset of 2978 NHANES 2003–2004 and 2005–2006 participants over
the age of 50. Physical activity measures were among the strongest five-year all-cause
mortality predictors in logistic regression models. However, single horizon models could
miss important time-specific effects of physical activity and other traditional measures
of predictive performance. In the UK Biobank data Leroux et al [37] showed that similar
physical activity measures obtained from wrist-worn accelerometers were among the top
mortality predictors in Cox regression models. However, previous analyses have not
explicitly considered the time-dependent predictive value of PA variables. In summary,
previous reports do not explore the individual and joint predictive performance of objective
measures of physical activity as a function of mortality prediction horizon. Thus, there is
current need for conducting analyses for multiple prediction horizons to provide comple-
mentary information to previous studies that have either focused on one-time horizon [9]
or on time-to-event analyses [37].

In this study, we examine the predictive performance of physical activity derived
measures in one- to five-year all-cause mortality for 2978 individuals over the age of 50
in the NHANES 2003–2006 study. We hypothesize that: (1) physical activity features
are highly predictive of all-cause mortality in both short (one to two years) and medium
(three to five years) follow up periods; and (2) the predictive value of PA features is most
strong over shorter follow-up periods, but persists when looking at longer follow-up times.
To test these hypotheses, the objectives of the current study are to: (1) identify the strongest
horizon-specific mortality predictors in individual and combined models; (2) develop a
combined prediction model for one- to five-year all-cause mortality; and (3) examine the
changes in the strength of mortality predictors as a function of prediction horizon.

2. Materials and Methods
2.1. Study Population

The NHANES is a large study conducted by the Centers for Disease Control (CDC) to
assess the health and nutritional status of the US population [38]. The study collects infor-
mation on the demographic, socioeconomic and health status of the US population using
survey questionnaires and physical activity data using hip accelerometers. The NHANES
2003–2004 and 2005–2006 data were downloaded, processed, and combined with survey
weights and mortality data (updated through 2015) using the R package rnhanesdata [39].
Under specific assumptions on the missing data patterns the function reweight accel() in
the rnhanesdata package was used to recalculate the sampling weights for the selected
subset of participants.

The NHANES 2003–2004 and 2005–2006 have a total of 14, 631 study participants
with accelerometry records. For the purpose of our analyses some study participants
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were excluded for the following reasons: (1) were younger than age 50 and older than
85 years at the time of accelerometers wear (10,859 participants); (2) had missing BMI and
education information (41 participants); (3) had missing systolic blood pressure, total or
HDL cholesterol measurements (293 participants); (4) had missing mortality information
(21 participants); (5) had fewer than 3 days of activity data with at least 10 h of estimated
wear time or had various data reliability issues (517 participants). Non-wear time was
estimated as intervals with at least 90 consecutive min of 0 activity counts and at most
2 min with counts between 0 and 100 [33,40–44]. Alcohol consumption had four categories:
non-drinker, moderate drinker, heavy drinker, and missing alcohol. The “missing alcohol”
category was created because 86 study participants did not have the alcohol consumption
information available. All-cause mortality was defined for each time horizon between
one and five years. For example, the three-year all-cause mortality was defined as study
participants who died in the first three years after accelerometry data collection. Thus,
all mortality cases for one-year all-cause mortality were included among the cases for
three-year all-cause mortality. Table 1 provides the demographic summaries separated by
alive and deceased status for each of the one- to five-year all-cause mortality outcomes in
the accelerometry study in NHANES 2003–2006 cohorts.

2.2. Variables Used in the Statistical Analysis
2.2.1. Traditional Mortality Predictors

The demographic, socioeconomic and health related predictors used in the analysis are
age, gender, race (White, Black, Mexican American, Other, Other Hispanic), education level
(less than high school, high school, more than high school), smoking status (never, former,
current), drinking status (non-drinker, moderate drinker, heavy drinker, missing alcohol),
body mass index (BMI, kg/m2), mobility problem (any difficulty, no difficulty), diabetes
(yes/no), coronary heart disease (CHD, yes/no), congestive heart failure (CHF, yes/no),
stroke (yes/no), cancer (yes/no), systolic blood pressure (SYS, mmHg), total cholesterol
(LBXTC, mg/dL), and HDL cholesterol (LBDHDD, mg/dL).

2.2.2. Accelerometry Derived Predictors

The physical activity data were collected by a hip-worn ActiGraph AM-7164 accelerom-
eter (formerly the CSA/MTI AM-7164 manufactured by ActiGraph of Ft. Walton Beach, FL,
USA) that provided minute level activity counts, a proprietary summary of accelerometry,
for a period of seven days. These data were further summarized at the day level and
the resulting summaries were averaged over valid days. For the analyses in this paper
the following accelerometry derived predictors were used: (1) total activity count (TAC),
the sum of minute level activity counts; (2) total log activity count (TLAC), the sum of
log(1+activity count) at the minute level; (3) total minutes of moderate to vigorous physical
activity (MVPA); (4) total minutes of light intensity physical activity (LIPA); (5) sedentary
to active transition probability (SATP), the ratio of the total number of sedentary bouts to
the total sedentary time; (6) active to sedentary transition probability (ASTP), the ratio of
the total number of active bouts to the total activity time [45]; (7) total minutes of wear
time (WT); and (8) total minutes of sedentary time (ST). A sedentary minute was defined
as having an activity count smaller than 100, an active minute was defined as having an
activity count larger or equal to 100, a LIPA minute was defined as having an activity count
greater or equal to 100 and less than 2020, and an MVPA minute was defined as having an
activity count greater or equal to 2020 [33,45]. Thus, the sum of ST, LIPA, and MVPA min-
utes is equal to 1440, the number of minutes in a day. Due to the deterministic association
between ST, LIPA, and MVPA, only two of the variables are included in any given model.
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Table 1. Unadjusted number of alive and diseased participants and complex-survey adjusted demographic characteristics separated by alive and deceased status for 1-, 2-, 3-, 4-, 5-years
after the participation in the accelerometry study in NHANES 2003–2006 cohorts. For each prediction horizon, the unadjusted number of participants is calculated as the total number of
participants who were alive and deceased one, two, three, four and five years after participating in the study. The complex survey weighted number of participants in each category is
calculated as the sum of all adjusted sampling weights for all participants in that category.

Horizon 1 Horizon 2 Horizon 3 Horizon 4 Horizon 5

Alive
(n = 2932)

Deceased
(n = 46)

Alive
(n = 2884)

Deceased
(n = 94)

Alive
(n = 2823)

Deceased
(n = 155)

Alive
(n = 2760)

Deceased
(n = 218)

Alive
(n = 2681)

Deceased
(n = 297)

Age 63.07
(9.58)

73.23
(7.45)

62.96
(9.52)

72.29
(9.2)

62.82
(9.47)

72.23
(9.01)

62.69
(9.38)

71.86
(9.6)

62.5
(9.27)

71.81
(9.83)

Gender:
Female

1572
(53.4%)

15.1
(48.1%)

1552.7
(53.4%)

34.4
(48.8%)

1537.2
(53.7%)

49.9
(44%)

1523.4
(54.1%)

63.8
(39.6%)

1492.4
(54.1%)

94.8
(43.2%)

Gender: Male 1374.5
(46.6%)

16.3
(51.9%)

1354.7
(46.6%)

36.2
(51.2%)

1327.2
(46.3%)

63.7
(56%)

1293.6
(45.9%)

97.3
(60.4%)

1266.3
(45.9%)

124.5
(56.8%)

BMI:
Underweight

31.1
(1.1%)

1.7
(5.4%)

29.1
(1%)

3.7
(5.3%)

28.2
(1%)

4.7
(4.1%)

27.6
(1%)

5.3
(3.3%)

27.6
(1%)

5.3
(2.4%)

BMI: Normal 786.7
(26.7%)

9.3
(29.6%)

772.8
(26.6%)

23.2
(32.9%)

758
(26.5%)

38
(33.5%)

743
(26.4%)

53
(32.9%)

722.5
(26.2%)

73.6
(33.5%)

BMI:
Overweight

1124.6
(38.2%)

7.9
(25.3%)

1113.1
(38.3%)

19.4
(27.5%)

1100.8
(38.4%)

31.8
(27.9%)

1084.9
(38.5%)

47.6
(29.6%)

1064.8
(38.6%)

67.7
(30.9%)

BMI: Obese 1004.2
(34.1%)

12.5
(39.7%)

992.4
(34.1%)

24.2
(34.3%)

977.5
(34.1%)

39.1
(34.4%)

961.5
(34.1%)

55.2
(34.3%)

943.9
(34.2%)

72.8
(33.2%)

Race: White 2361.1
(80.1%)

25.1
(79.8%)

2327.5
(80.1%)

58.6
(83%)

2296.9
(80.2%)

89.2
(78.5%)

2253.9
(80%)

132.2
(82.1%)

2205.4
(79.9%)

180.7
(82.4%)

Race: Mexican
American

120.1
(4.1%)

0.5
(1.6%)

119.8
(4.1%)

0.8
(1.2%)

119.1
(4.2%)

1.5
(1.3%)

117.5
(4.2%)

3.1
(2%)

114.4
(4.1%)

6.2
(2.8%)

Race: Black 280
(9.5%)

4.4
(14.1%)

274.7
(9.4%)

9.8
(13.8%)

268.7
(9.4%)

15.8
(13.9%)

265.9
(9.4%)

18.5
(11.5%)

260.7
(9.4%)

23.8
(10.8%)

Race: Other 118.1
(4%)

1.4
(4.5%)

118.1
(4.1%)

1.4
(2%)

114.6
(4%)

4.9
(4.3%)

114.6
(4.1%)

4.9
(3.1%)

113.8
(4.1%)

5.7
(2.6%)
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Table 1. Cont.

Horizon 1 Horizon 2 Horizon 3 Horizon 4 Horizon 5

Alive
(n = 2932)

Deceased
(n = 46)

Alive
(n = 2884)

Deceased
(n = 94)

Alive
(n = 2823)

Deceased
(n = 155)

Alive
(n = 2760)

Deceased
(n = 218)

Alive
(n = 2681)

Deceased
(n = 297)

Race: Other
Hispanic

67.3
(2.3%)

0
(0%)

67.3
(2.3%)

0
(0%)

65.1
(2.3%)

2.2
(1.9%)

65.1
(2.3%)

2.2
(1.4%)

64.4
(2.3%)

2.9
(1.3%)

Education:
Less than high
school

558.1
(18.9%)

8.1
(25.7%)

547
(18.8%)

19.2
(27.2%)

531.4
(18.6%)

34.8
(30.6%)

516
(18.3%)

50.2
(31.1%)

496.3
(18%)

69.9
(31.9%)

Education:
High school

792.8
(26.9%)

16.8
(53.4%)

782.5
(26.9%)

27.2
(38.5%)

771.4
(26.9%)

38.5
(33.9%)

755.5
(26.8%)

54.1
(33.6%)

739.4
(26.8%)

70.2
(32%)

Education:
More than
high school

1595.6
(54.2%)

6.6
(20.9%)

1577.9
(54.3%)

24.2
(34.3%)

1561.8
(54.5%)

40.3
(35.5%)

1545.4
(54.9%)

56.8
(35.3%)

1523
(55.2%)

79.2
(36.1%)
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Additional summary measures were obtained using functional principal component
analysis (fPCA) of the daily activity trajectories. The fPCA decompositions were obtained
using the fpca.face() function in the refund package [46] in R [47]. The procedure was
applied to the data matrix where each row corresponds to a subject/day activity profile of
the log (1+activity count) data and every column corresponds to a particular time of the
day. The first six principal components explained approximately 57% of the variability in
the activity data. Principal component scores were obtained for each wear day and each of
the first six principal components and were summarized at the study participant level by
taking the mean and standard deviations over the individual specific scores. This resulted
in 12 additional summaries (mean and standard deviations of scores for six principal
components). A backward selection approach was used on these twelve summaries
separately for each mortality prediction horizon (one to five years). The criterion used for
backward selection was the efficient parsimony information criteria (EPIC) [48]. For the
one- and two-year all-cause mortality prediction the mean of the first principal component
scores was significant. For three-, four-, and five-year mortality the mean of the first
and of the second principal component scores and the standard deviation of the sixth
principal component scores were statistically significant. The mean of the fourth principal
component scores was significant in the four-year all-cause mortality model, while the
standard deviation of the fifth principal component scores was significant in the five-year
all-cause mortality model. This procedure was used for screening variables derived from
fPCA decompositions and did not account for traditional or accelerometry-derived physical
activity predictors. To facilitate interpretability of the PCA measures we replaced them
with surrogate variables that can be calculated directly from the data [49].

2.3. Statistical Analysis

To account for the complex survey design of NHANES, participant demographic char-
acteristics were obtained using the tableone package [50] in R. For each prediction horizon
univariate (one predictor at a time) survey weighted logistic regression was conducted
to compare the individual prediction performance. Predictors were ranked in decreasing
order of the cross-validated area under the curve (CV-AUC) separately for each outcome
for one- to five-year all-cause mortality. The ranking and prediction performance of the top
seven predictors in the five-year all-cause mortality model were compared across the one-
to five-year mortality models. A forward selection survey weighted multivariate logistic
regression model was obtained for each mortality prediction horizon (one- to five-year) by
minimizing EPIC [48] and the CV-AUC was reported for all resulting models. This resulted
in five models, each corresponding to a different mortality prediction horizon. To compare
the relative prediction performance of covariates across models, a combined model was ob-
tained by selecting all significant predictors from these five models. This combined model
was then fitted to each horizon data to quantify changes in estimated coefficients across
prediction horizons. CV-AUC was calculated for the combined model using each year
mortality data. In each horizon model, the variable predictive importance was evaluated as
the difference between CV-AUC in the full union model and the combined model without
that variable. All survey weighted logistic regression models were estimated using the
svyglm() function in the R package survey [51].

3. Results

Table 1 provides the unadjusted number of alive and deceased participants and
complex-survey adjusted participant characteristics by mortality status for all prediction
time horizons (one- to five-year all-cause mortality datasets). The study participants for
all models were the same (sample size 2978), though the subset of study participants who
were alive/deceased changed with the prediction time horizon. For example, there were
2932 study participants who were alive after one year and 2681 who were alive after five
years from the time of accelerometry data collection. The mean age varied slightly for the
alive groups between 62.5 and 63.07 years and for the deceased groups between 71.81 and
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73.23 years in the one-year and five-year mortality datasets, respectively. The percent of
men who were alive decreased slightly from 46.6% in the one-year and two-year mortality
datasets to 45.9% in the four-year and five-year mortality datasets. Correspondingly,
the percent of women who were alive increased slightly from 53.4% in the one-year and
two-year mortality datasets to 54.1% in the four-year and five-year mortality datasets.
The percentage of men who died was higher for all prediction horizons and varied between
51.2% for the two-year mortality and 60.4% for the four-year mortality datasets. It is
possible to have a small decrease in the percentage of men in the alive group and a larger
proportion of men who died in each time horizon because many more study participants
were alive in all time horizons.

The percent of alive participants varied slightly within race groups across prediction
time horizons. For example, the percent of alive white participants varied between 79.9%
and 80.2% in the one-year to five-year mortality datasets. The percent of alive black study
participants varied only slightly around the average 9.4% for all time horizons. There are
larger proportions of white participants in the alive and deceased groups because there
is a larger proportion of white study participants. Among white study participants the
proportion of alive is higher than that of deceased study participants in the one-year (80.1%
alive and 79.8% deceased) and three-year horizons (80.2% alive and 78.5% deceased).

The percent of alive participants varied slightly within BMI groups across prediction
time horizons. The percent of alive and overweight participants varied between 38.2%
and 38.6% in the one-year and five-year mortality data sets, respectively. The percent of
alive and obese participants was around 34.1% across horizons. Among study participants
with normal BMI, the proportion of alive is lower than that of deceased study participants
across all time horizons. Among the overweight study participants, the proportion of alive
is higher than that of deceased study participants across all time horizons. For the obese
category, the proportion of alive is lower than that of deceased study participants after one
year and up to four years, while the opposite holds for the five-year time horizon.

The percent of alive participants varied slightly within education groups across pre-
diction time horizons. For example, the percent of alive study participants who have
less than a high school education level varied between 18.9% and 18% in the one-year
and five-year mortality data sets. The percent of alive study participants with a high
school degree remained roughly the same around 26.8 to 26.9% across all time horizons.
The percent of alive participants who have a higher than high school education degree
varied between and 54.2% and 55.2% in the one-year and five-year mortality data sets,
respectively. Among these participants the proportion of alive subjects was higher than
that of deceased study participants.

Participant survey-adjusted comorbidities and physical activity by mortality status for
each prediction horizon are reported in Table A1 (Appendix A) of the appendix materials.
Participants who died within each horizon had less time in moderate to vigorous activity
(MVPA) except for the two-year horizon, higher active to sedentary transition probability
(ASTP), and lower total activity and log activity counts. There was a smaller proportion
of moderate drinkers, and a larger proportion of non-drinkers and heavy drinkers in the
deceased group compared to the alive group across all prediction horizons. The proportion
of participants with CHF, CHD and diabetes was consistently higher among those who
died across all prediction horizons.

Figure 1 displays the CV-AUC for the top seven predictors in the five-year univariate
mortality model across each prediction horizon (one- to five-year all-cause mortality).
All predictors had large CV-AUC across all prediction horizons (note the y-axis scale) and
included six accelerometry-derived physical activity measures (TAC, MVPA, ASTP, ST,
TLAC, and LIPA) and age. The total activity count (TAC, shown in violet in Figure 1) was
consistently the top-ranking predictor in all prediction horizons with the corresponding
CV-AUC decreasing from 0.831 in the one-year all-cause mortality model to 0.774 in the
five-year all-cause mortality model. The second highest ranking predictor in the five-year
mortality model was age (shown in dark blue in Figure 1) with CV-AUC 0.759, though it
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was outperformed in some time horizons by ASTP (one- to four-year), sedentary time and
LIPA (one-year mortality), and MVPA (four-year mortality). The third through seventh
ranking univariate five-year mortality predictors were the accelerometry-derived physical
activity measures MVPA, ASTP, ST, TLAC, and LIPA, respectively. The rankings of these
predictors changed slightly across prediction horizons, though they always stayed among
the top seven predictors of mortality. Similar CV-AUC results are provided for the other,
lower ranked, traditional predictors and accelerometry-derived physical activity measures
in Table A2 of the appendix materials.
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Figure 1. The cross-validated area under the curve (CV-AUC) values for the top seven predictors in the univariate five-year
all-cause mortality logistic regression models across one- to five-year mortality prediction horizons. The x-axis corresponds
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Models obtained using forward selection for each year prediction horizon are shown
in Table 2 and in the Figure A1 of the appendix materials. The one-year all-cause mortality
prediction model included four variables, TAC, age, ASTP, and education. The two-year
prediction model included four variables, ASTP, age, mobility problem, and CHF. The three-
year prediction model included five variables, ASTP, age, CHF, gender, and mobility
problem. The four-year prediction model included 11 variables: ASTP, age, gender, CHF,
drinking status, smoking status, the surrogate for the standard deviation on PC6, cancer,
mobility problem, the surrogate for the mean on PC4, and the surrogate for the mean on PC2.
Finally, the five-year horizon model included eight variables, age, ASTP, CHF, smoking
status, the surrogate for the SD on PC 6, mobility problem, gender, and drinking status. For
all years, variables are listed in the order they entered the model, which partially reflects
their relative prediction performance. The models for shorter time mortality prediction
(one- to three-year) tended to select a smaller number of variables because the number of
events is smaller and thus, have less power to detect significant associations. All models
included age and one or multiple accelerometry-derived physical activity measures with
TAC and ASTP being among the strongest predictors. A combined prediction model for all
five time horizons was obtained by selecting significant predictors across all individual time
horizon models. This combined model included age, ASTP, mobility problem, CHF, gender,
drinking and smoking status, the surrogate for the SD on PC 6, cancer, and the surrogate
for the mean on PC 2. The CV-AUC for the forward selection and combined models were
consistently high: (1) 0.883 and 0.843 for the forward selection and combined model for
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one-year all-cause mortality, respectively; (2) 0.829 and 0.841 for the forward selection
and combined model for two-year all-cause mortality, respectively; (3) 0.845 and 0.852 for
the forward selection and combined model for three-year all-cause mortality, respectively;
(4) 0.852 and 0.853 for the forward selection and combined model for three-year all-cause
mortality, respectively; and (5) 0.839 and 0.837 for the forward selection and combined
model for five-year all-cause mortality.

Table 2. Forward regression selection results. Variables that were not selected in the specific horizon prediction model are
left blank.

Horizon 1 Horizon 2 Horizon 3 Horizon 4 Horizon 5

Predictor Estimate (p-Value) Estimate (p-Value) Estimate (p-Value) Estimate (p-Value) Estimate (p-Value)

Age 0.057
(0.005)

0.061
(0.001)

0.066
(<0.001)

0.075
(<0.001)

0.083
(<0.001)

ASTP 0.494
(0.039)

0.569
(<0.001)

0.688
(<0.001)

0.511
(0.001)

0.404
(0.002)

Cancer: yes 0.426
(0.051)

CHF: yes 0.861
(0.007)

1.158
(<0.001)

0.942
(0.003)

0.827
(0.003)

Heavy drinker 0.854
(0.040)

0.965
(0.013)

Missing alcohol 1.194
(0.034)

0.795
(0.080)

Non-drinker 0.780
(0.002)

0.603
(0.002)

Education: high-school 0.605
(0.163)

Education: more than
high-school

−0.717
(0.107)

Gender: female −0.608
(0.010)

−0.891
(0.001)

−0.640
(0.003)

Mobility problem 0.932
(0.005)

0.657
(0.026)

0.520
(0.050)

0.603
(0.009)

Mean on PC 2 0.153
(0.045)

Mean on PC 4 −0.206
(0.062)

Smoking: current 0.964
(0.001)

0.845
(< 0.001)

Smoking: former 0.245
(0.215)

0.340
(0.159)

SD on PC 6 −0.265
(0.015)

−0.277
(0.002)

TAC −0.729
(0.307)

The combined model performs consistently well and has the advantage that it replaces
five models with one. Moreover, using the combined model allows a direct comparison of
the relative prediction performance of variables across time horizons.

Panel A in Figure 2 displays the t-statistic values for all variables in the combined
model across years. Larger absolute values of the t-statistic correspond to stronger statistical
evidence against the null hypothesis that a particular variable is not associated with
mortality. Age, shown in blue with t-statistics values approximately in the range of
4 to 6, and ASTP, shown in red with t-statistics approximately in the range of 3 to 5,
have the largest positive values of the t-statistic across years one through four. For year
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5 the t-statistic for drinking is larger than for ASTP, though the t-statistic for ASTP is still
large (3.497). This indicates that older individuals with more frequent transitions from
active to sedentary activities have a higher mortality risk. Coronary heart failure (CHF),
shown in light blue, has consistently high t-statistics values in years 2 through 5 (values
between 2.519 for year 2 and 3.462 for year 5). These t-statistics are also the highest among
variables quantifying comorbidities. This indicates that CHF is among the most predictive
comorbidities for mortality across multiple time horizons. The smaller t-statistic for CHF
for year one is likely due to the low number of study participants who died in the first year
and had CHF at baseline (n = 9); for more details, see Table A3 in the Appendix. Gender
has the smallest negative t-statistics (large in absolute value) in years three through five
(–2.418, –3.946, and –3.596) indicating that being a female is statistically associated with a
reduced risk of mortality in these time horizons. Similarly, the surrogate for the standard
deviation of the sixth principal component, has the smallest negative t-statistics (large in
absolute value) in years one and two. The surrogate for the standard deviation of the sixth
principal component was computed as the standard deviation of the difference in average
log-transformed activity counts comparing the time intervals (8 a.m.–10 a.m., 3 p.m.–5 p.m.,
10 p.m.–12 a.m.) to (5 a.m.–7 a.m., 11 a.m.–1 p.m., 6 p.m.–8 p.m.) [34].
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A limitation of t-statistics is that they depend strongly on the sample size. Indeed,
with larger sample sizes and number of cases the t-statistics are likely to increase sub-
stantially due to the reduction in standard error. Therefore, for each variable and time
horizons we investigated the effect on CV-AUC of adding that particular variable to all
other variables in the combined model. Panel B in Figure 2 displays the variable relative
prediction performance as measured by the differences between the CV-AUC in the com-
bined model and the CV-AUC in the combined model without that variable. Results are
consistent with the prediction performance measured by the t-statistics, at least in terms of
ordering of variables. According to the improvement in CV-AUC in the combined model
criterion, age has the strongest relative prediction performance across all years (difference
in CV-AUC between 0.025 and 0.035). ASTP is second with an improvement in CV-AUC
around 0.01. For the other predictors, the relative prediction performance varies across
mortality prediction horizons. Indeed, some variables actually decrease the prediction
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performance of the model for certain years. This could be due to over-fitting the data and
to inherent sampling variability.

4. Discussion

There is a rich literature indicating that objective PA features obtained from wearable
accelerometers are strong predictors of all-cause mortality. We hypothesized that physical
activity features would be highly predictive of all-cause mortality in short and medium
follow-up periods. The current study supports our hypothesis by showing that objective
physical activity measures outperform traditional mortality risk factors in adults over
50 years old from one to five years after the baseline measurement. We developed optimal
prediction models for each individual time horizon as well as a combined model for all
time horizons. The reasons for developing the combined model were (1) to simplify the
number of models and increase the translational component of the paper; (2) to compare
the association measures (e.g., covariate-specific t-statistics) and prediction measures (e.g.,
leave-one-covariate out loss in cross validated AUC) across time horizons; and (3) to build
a reference all-cause mortality model that contained both traditional and objective physical
activity risk factors. The prediction performance (as measured by cross-validated AUC)
of the combined model was comparable to that of individual optimal models developed
for the horizon-specific models, with some minimal losses, likely due to over-fitting in the
shorter time horizons.

Conducting analyses for multiple time horizons provides complementary information
to previous studies that have either focused on one-time horizon [9] or on time-to-event
analyses [37]. Single time horizons (e.g., five- or ten-year all-cause mortality) could miss
important differences in predictive performance. These models further allow to investigate
the hypothesis that the predictive value of PA features is most strong over shorted follow
up periods, but persists when looking at longer follow up times. In single variable models
we found that objective physical activity measurements strongly outperform age in shorter
time horizons (one to three years all-cause mortality). In longer time horizons (four to five
years all-cause mortality) these differences are reduced and can change sign (that is, age can
become a stronger predictor). Standard time-to-event analyses are not designed and have
not been used to quantify the different effects of risk factors on mortality by prediction
horizon. They could be modified to do that using interactions between time and covariates,
but we consider that the separate analysis for individual mortality time horizons: (1) is
easier to interpret and visualize; (2) provides insights into the types of interactions that
could be explored in the future; and (3) avoids some of the assumptions of time-to-event
analyses (e.g., proportional hazards). The current study examines immediate (one-year
prediction horizon) to medium term (five-year prediction horizon) effects of objective
measures of physical activity on mortality prediction. Results indicate that the statistical
evidence (measured by the t-statistic in the combined model) against the null hypothesis
that age is not associated with mortality increases with the prediction horizon (from around
4.03 for year 1 to 7.56 for year 5). In the combined model the active to sedentary transition
probability (ASTP) is the second strongest predictor of mortality with t-statistics between
3.00 for year 1 and 3.50 for year 5; see Panel A in Figure 2. These results complement the
results from single variable regressions (see Figure 1), where the total activity count (TAC)
outperformed both age and ASTP in all time horizons.

An important finding of this study is that we built a combined prediction model for
all five time horizons. This combined model includes age, ASTP, mobility problem, CHF,
gender, drinking, smoking, the surrogate for the SD on PC 6, cancer, and the surrogate for
the mean on the PC 2. The prediction performance of the combined model and the optimal
horizon-specific models were consistently high: (1) for the one-year all-cause mortality
CV-AUC was 0.843 for the combined and 0.883 for the optimal model; (2) for the two-year
all-cause mortality CV-AUC was 0.829 for the combined and 0.841 for the optimal model;
(3) for the three-year all-cause mortality CV-AUC was 0.845 for the combined and 0.852
for the optimal model; (4) for the three-year all-cause mortality CV-AUC was 0.852 for the
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combined and 0.853 for the optimal model; and (5) for the three-year all-cause mortality
CV-AUC was 0.837 for the combined and 0.839 for the optimal model.

The current study has several limitations. First, only main effects were used, and inter-
action terms were not considered to preserve simplicity and to allow for clearer interpreta-
tion of the results. Second, there are fewer deaths in the shorter time horizons, which leads
to more variable estimates that, in turn, may lead to less stable and generalizable results.
Third, the combined model has more predictors than the optimal models in shorter hori-
zons, which leads to some loss in predictive performance, likely due to overfitting. Fourth,
we concentrated on short prediction horizons even though the maximum available follow
up time for this study was 13.083 years. This was done to study the association between
objective physical activity measures and immediate to mid-term mortality. Studying the
long-term effects in larger prediction horizons and potential interactions between physical
activity measurements and time is a topic for future research.

The current study is not intended to address the question of causation; that is, we do
not hypothesize that the level (high or low) of physical activity as measured by wearable
devices is related to potential causes of death for older adults suffering from different
comorbidity conditions. Rather, we propose (and statistically verify) the possibility of using
PA as an additional diagnostic tool which may indicate higher or lower probability of death
due to any cause one, two, three, four and five years after PA assessment using wearable
accelerometry devices. An important limitation of using wearable accelerometers in PA
assessment, is that these devices provide an unbiased estimate of ambulation, however
stationary physical activity (e.g., weightlifting and core strength exercises) may not be
accurately detected by the accelerometers. Nevertheless, since walking and similar types of
activity are among the main sources of activity for most individuals, wearable accelerometry
devices provide a reliable estimate of an overall daily PA level that is more complete and
objective than self-reported information.

In summary, our conclusions support the results obtained in [9], which focused only
on the five-year all-cause mortality for adults over 50 years of age in NHANES 2003–2006.
Results also agree qualitatively with analyses based on the UK Biobank [37] study using
time-to-event analysis. However, our results complement these studies, which have not
parsed out results in individual time horizons. Indeed, focusing on different time horizons
provides information that was previously unavailable (e.g., that the prediction performance
of objective PA measurements is even better in shorter time horizons). Overall, we provide
new insights into the prediction performance of objective measures of PA of mortality,
an in-depth quantification of the prediction performance of objective measures of PA as
a function of prediction horizon, and provide a single, combined model for assessing
immediate to mid-term mortality risks.
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Appendix A

Table A1. Unadjusted number of alive and diseased participants and complex-survey adjusted comorbidities and physical activity characteristics separated by alive and deceased status
for 1-, 2-, 3-, 4-, 5-years after the participation in the accelerometry study in NHANES 2003–2006 cohorts.

Horizon 1 Horizon 2 Horizon 3 Horizon 4 Horizon 5

Alive
(n = 2932)

Deceased
(n = 46)

Alive
(n = 2884)

Deceased
(n = 94)

Alive
(n = 2823)

Deceased
(n = 155)

Alive
(n = 2760)

Deceased
(n = 218)

Alive
(n = 2681)

Deceased
(n = 297)

TAC 224,135.26
(114,718.3)

106,537.81
(72,247.73)

225,055.33
(114,023.62)

133,889.57
(119,354.91)

226,715.22
(113,748.63)

126,561.6
(103,550.69)

228,269.57
(113,468.66)

128,865.11
(99,724.72)

229,616.63
(113,240.73)

138,316.77
(102,558.28)

MVPA 15.72
(17.97)

5.5
(11.36)

15.79
(17.9)

8.26
(18.33)

15.95
(17.95)

7.04
(15.39)

16.13
(18.01)

6.63
(13.88)

16.31
(18.08)

6.9
(13.35)

ASTP 0.29
(0.08)

0.41
(0.11)

0.29
(0.08)

0.39
(0.12)

0.29
(0.08)

0.4
(0.11)

0.29
(0.08)

0.38
(0.11)

0.29
(0.08)

0.37
(0.11)

Sedentary
Time

1100.69
(104.86)

1223.78
(105.61)

1099.73
(104.2)

1194.95
(120.86)

1098.1
(103.48)

1200.06
(111.54)

1096.63
(102.55)

1195.65
(114.22)

1095.5
(102.06)

1183.58
(115.14)

TLAC 2832.74
(703.73)

1987.89
(770.79)

2838.99
(699.39)

2199.09
(840.54)

2849.34
(695.33)

2180.43
(764.16)

2859
(688.22)

2208.48
(793.74)

2866.94
(684.91)

2281.36
(788.63)

LIPA 323.59
(97.55)

210.72
(101.45)

324.48
(97)

236.79
(111.05)

325.95
(96.33)

232.9
(104.14)

327.24
(95.42)

237.72
(108.38)

328.19
(94.99)

249.52
(109.12)

SATP 0.08
(0.02)

0.07
(0.02)

0.08
(0.02)

0.07
(0.02)

0.08
(0.02)

0.07
(0.02)

0.08
(0.02)

0.07
(0.02)

0.08
(0.02)

0.07
(0.02)

Total
Cholesterol

206.63
(41.29)

202.87
(52.83)

206.94
(41.29)

191.93
(44.2)

207.25
(41.18)

189.84
(44.09)

207.33
(41.05)

193.56
(45.59)

207.57
(40.89)

194.26
(45.92)

CHF: yes 136
(4.6%)

6.6
(20.9%)

127.6
(4.4%)

15.1
(21.3%)

115.2
(4%)

27.4
(24.1%)

109.7
(3.9%)

32.9
(20.4%)

103.9
(3.8%)

38.7
(17.6%)

CHF: no 2180.5
(95.4%)

24.9
(79.1%)

2779.8
(95.6%)

55.6
(78.7%)

2749.2
(96%)

86.2
(75.9%)

2707.2
(96.1%)

128.2
(79.6%)

2654.8
(96.2%)

180.6
(82.4%)

Cancer: yes 470
(15.9%)

8.1
(25.8%)

455.4
(15.7%)

22.6
(32%)

444.3
(15.5%)

33.8
(29.7%)

431.3
(15.3%)

46.8
(29%)

418.3
(15.2%)

59.7
(27.2%)

Cancer: no 2476.6
(84.1%)

23.3
(74.2%)

2452
(84.3%)

48
(68%)

2420.1
(84.5%)

79.9
(70.3%)

2385.6
(84.7%)

114.3
(71%)

2340.4
(84.8%)

159.6
(72.8%)
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Table A1. Cont.

Horizon 1 Horizon 2 Horizon 3 Horizon 4 Horizon 5

Alive
(n = 2932)

Deceased
(n = 46)

Alive
(n = 2884)

Deceased
(n = 94)

Alive
(n = 2823)

Deceased
(n = 155)

Alive
(n = 2760)

Deceased
(n = 218)

Alive
(n = 2681)

Deceased
(n = 297)

Diabetes: yes 392.2
(13.3%)

8.3
(26.5%)

386.6
(13.3%)

13.9
(19.6%)

371.9
(13%)

28.6
(25.2%)

362.2
(12.9%)

38.3
(23.8%)

347.8
(12.6%)

52.7
(24%)

Diabetes: no 2554.4
(86.7%)

23.1
(73.5%)

2520.7
(86.7%)

56.7
(80.4%)

2492.5
(87%)

85
(74.8%)

2454.7
(87.1%)

122.8
(76.2%)

2410.9
(87.4%)

166.6
(76%)

CHD: yes 218.4
(7.4%)

4.8
(15.4%)

208.6
(7.2%)

14.7
(20.8%)

200.7
(7%)

22.6
(19.9%)

194.6
(6.9%)

28.7
(17.8%)

186
(6.7%)

37.3
(17%)

CHD: no 2728.1
(92.6%)

26.6
(84.6%)

2698.8
(92.8%)

55.9
(79.2%)

2663.7
(93%)

91
(80.1%)

2622.3
(93.1%)

132.4
(82.2%)

2572.7
(93.3%)

182
(83%)

Systolic Blood
Pres

131.14
(20.3%)

141.2
(33.12%)

131.11
(20.17)

136.7
(30.79)

131.11
(20.18)

134.51
(27.21)

131
(20.18)

135.41
(25.16)

130.9
(20.04)

135.59
(25.24)

Stroke: yes 134.1
(4.6%)

3
(9.4%)

129.7
(4.5%)

7.4
(10.5%)

124.5
(4.3%)

12.6
(11.1%)

119.2
(4.2%)

17.9
(11.1%)

108.3
(3.9%)

28.8
(13.1%)

Stroke: no 2812.4
(95.4%)

28.5
(90.6%)

2777.7
(95.5%)

63.2
(89.5%)

2739.9
(95.7%)

101
(88.9%)

2697.8
(95.8%)

143.1
(88.9%)

2650.4
(96.1%)

190.5
(86.9%)

HDL
Cholesterol

56.08
(16.47)

52.39
(21.86)

56.1
(16.46)

53.92
(19.36)

56.12
(16.47)

54.25
(18.02)

56.12
(16.4)

54.78
(18.8)

56.13
(16.43)

54.98
(17.86)

Wear Time 879.48
(125.1)

884.27
(168.04)

878.94
(124.55)

903.81
(162.16)

878.72
(124.17)

899.84
(156.72)

878.93
(123.95)

890.09
(151.58)

879.13
(122.83)

884.62
(156.53)

Mobility Problem:

Any Difficulty 776.8
(26.4%) 21.1 (67.3%) 749.1

(25.8%)
48.9

(69.2%)
725.1

(25.3%)
72.9

(64.1%)
701.3

(24.9%)
96.7

(60%)
669.7

(24.3%)
128.3

(58.5%)

No Difficulty 2169.7
(73.6%)

10.3
(32.7%)

2158.3
(74.2%)

21.7
(30.8%)

2139.3
(74.7%)

40.8
(35.9%)

2115.7
(75.1%)

64.3
(40%)

2089
(75.7%)

91
(41.5%)

Drinking Status:

Moderate
Drinker

1559.9
(52.9%)

8.8
(27.9%)

1546.7
(53.2%)

22
(31.1%)

1535.8
(53.6%)

32.9
(28.9%)

1522.8
(54.1%)

45.8
(28.4%)

1500.2
(54.4%)

68.4
(31.2%)

Non-Drinker 1090.3
(37%)

18.3
(58.1%)

1068.2
(36.7%)

40.4
(57.2%)

1044
(36.4%)

64.6
(56.8%)

1016.7
(36.1%)

91.8
(57%)

990
(35.9%)

118.6
(54.1%)
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Table A1. Cont.

Horizon 1 Horizon 2 Horizon 3 Horizon 4 Horizon 5

Alive
(n = 2932)

Deceased
(n = 46)

Alive
(n = 2884)

Deceased
(n = 94)

Alive
(n = 2823)

Deceased
(n = 155)

Alive
(n = 2760)

Deceased
(n = 218)

Alive
(n = 2681)

Deceased
(n = 297)

Heavy
Drinker

210.5
(7.1%)

4
(12.7%)

207.6
(7.1%)

6.9
(9.8%)

204.2
(7.1%)

10.3
(9.1%)

198.7
(7.1%)

15.8
(9.8%)

190.4
(6.9%)

24.1
(11%)

Missing
alcohol

85.9
(2.9%)

0.4
(1.3%)

84.9
(2.9%)

1.4
(1.9%)

80.4
(2.8%)

5.9
(5.2%)

78.6
(2.8%)

7.6
(4.7%)

78.1
(2.8%)

8.1
(3.7%)

Smoking Status:

Never 1350.6
(45.8%)

11.8
(37.4%)

1338
(46%)

24.4
(34.6%)

1327.4
(46.3%)

35
(30.8%)

1314.3
(46.7%)

48.1
(29.9%)

1295.8
(47%)

66.6
(30.4%)

Former 1093.1
(37.1%)

11.9
(37.9%)

1078.2
(37.1%)

26.9
(38%)

1054.6
(36.8%)

50.4
(44.4%)

1034.1
(36.7%)

70.9
(44%)

1003.9
(36.4%)

101.1
(46.1%)

Current 502.8
(17.1%)

7.8
(24.7%)

491.2
(16.9%)

19.4
(27.4%)

482.4
(16.8%)

28.2
(24.8%)

468.6
(16.6%)

42
(26.1%)

459
(16.6%)

51.6
(23.5%)

Table A2. Univariate cross-validated AUC for each prediction horizon. The variables are ranked according to year 5 horizon.

CV-AUC and
Ranking Horizon 1 Horizon 2 Horizon 3 Horizon 4 Horizon 5

AUC Rank AUC Rank AUC Rank AUC Rank AUC Rank

TAC 0.831 1 0.778 1 0.787 1 0.788 1 0.774 1

Age 0.789 5 0.764 3 0.763 3 0.753 4 0.759 2

MVPA 0.773 7 0.748 4 0.746 5 0.755 3 0.751 3

ASTP 0.825 2 0.768 2 0.785 2 0.763 2 0.735 4

Sedentary
time 0.804 3 0.739 5 0.752 4 0.751 5 0.731 5

TLAC 0.786 6 0.734 6 0.743 7 0.741 6 0.726 6

LIPA 0.796 4 0.734 7 0.745 6 0.739 7 0.718 7

Mobility
problem 0.713 8 0.718 8 0.691 8 0.677 8 0.676 8
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Table A2. Cont.

CV-AUC and
Ranking Horizon 1 Horizon 2 Horizon 3 Horizon 4 Horizon 5

AUC Rank AUC Rank AUC Rank AUC Rank AUC Rank

SD on PC 6 0.663 9 0.665 10 0.663 9

SATP 0.700 9 0.663 9 0.652 10 0.669 9 0.662 10

SD on PC 5 0.623 11

Education 0.673 10 0.566 16 0.602 13 0.609 12 0.610 12

Drinking
status 0.607 12 0.604 11 0.618 12 0.619 11 0.598 13

Total
cholesterol 0.474 23 0.619 10 0.622 11 0.602 13 0.593 14

Smoking
status 0.528 20 0.572 14 0.568 17 0.594 14 0.590 15

CHF 0.584 14 0.588 12 0.597 14 0.583 15 0.569 16

Cancer 0.540 16 0.577 13 0.572 15 0.570 17 0.561 17

BMI 0.501 22 0.559 18 0.572 16 0.563 19 0.559 18

Diabetes 0.563 15 0.532 22 0.558 19 0.554 21 0.557 19

Gender 0.535 17 0.523 23 0.544 20 0.573 16 0.556 20

CHD 0.528 19 0.561 17 0.561 18 0.554 20 0.550 21

Systolic blood
pressure 0.584 13 0.534 20 0.523 23 0.548 22 0.549 22

Stroke 0.531 18 0.533 21 0.533 22 0.537 24 0.545 23

HDL
cholesterol 0.620 11 0.568 15 0.539 21 0.543 23 0.535 24

Race 0.512 21 0.555 19 0.517 24 0.528 25 0.523 25

Wear time 0.416 24 0.519 24 0.517 25 0.497 27 0.472 26

Mean on PC 2 0.454 26 0.511 26 0.434 27

Mean on PC 4 0.567 18
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Table A3. t-statistic values of the variables selected in the combined model across years.

Variable Horizon 1 Horizon 2 Horizon 3 Horizon 4 Horizon 5

Age 4.030 3.994 4.950 5.990 7.555

ASTP 3.001 3.118 5.466 4.380 3.497

Cancer: yes 0.334 2.083 1.980 2.109 1.693

CHF: yes 1.563 2.519 4.428 3.344 3.462

Heavy
drinker 1.786 1.632 1.820 2.304 2.822

Missing
alcohol −0.373 −0.187 1.873 2.287 1.865

Non-drinker 1.195 1.484 2.473 3.703 3.685

Gender −1.278 −1.584 −2.418 −3.946 −3.596

Mean on
PC 2 1.726 1.619 0.583 1.865 1.782

Mobility
problem 1.121 2.787 2.072 2.042 2.897

SD on PC 6 −2.120 −1.813 −1.334 −2.552 −3.603

Smoke:
current 0.720 1.765 1.971 3.797 4.395

Smoke:
former −0.617 −0.272 1.248 1.217 1.421
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