
OPEN ACCESS

iScience ll
Perspective

Bio-inspiration unveiled: Dissecting nature’s
designs through the lens of the female
locust’s oviposition mechanism
Amir Ayali,1,* Shai Sonnenreich,2 and Bat El Pinchasik2,3,*
1School of Zoology, Faculty of Life Sciences and Sagol School for Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
2School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv 6997801, Israel
3Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel

*Correspondence: ayali@tauex.tau.ac.il (A.A.), pinchasik@tauex.tau.ac.il (B.E.P.)
https://doi.org/10.1016/j.isci.2024.111378
SUMMARY
Investigating nature’s ingenious designs and systems has become a cornerstone of innovation, influencing
fields from robotics, biomechanics, and physics tomaterial sciences. Two key questions, however, regarding
bio-inspired innovation are those of how andwhere does one find bio-inspiration? The perspective presented
here is aimed at providing insights into the evolving landscape of bio-inspiration discovery. We present the
unique case of the female locust’s oviposition as a valuable example for researchers and engineers seeking
to pursue multifaceted research, encompassing diverse aspects of biological and bio-inspired systems. The
female locust lays her eggs underground to protect them and provide them with optimal conditions for sur-
vival and hatching. To this end, she uses a dedicated apparatus comprising two pairs of special digging
valves to propagate underground, while remarkably extending her abdomen by 2- to 3-fold its original length.
The unique digging mechanism, the subterranean steering ability, and the extreme elongation of the
abdomen, including the reversible extension of the abdominal central nervous system, all spark a variety
of questions regarding materials, morphology, mechanisms, and their interactions in this complex biological
system. We present the cross-discipline efforts to elucidate these fascinating questions, and provide future
directions for developing bio-inspired technological innovations based on this remarkable biological system.
INTRODUCTION

Nature has evolved over billions of years, resulting in intricate

and efficient mechanisms and designs that have enabled organ-

isms to adapt, survive, and thrive in diverse environments. By

observing and understanding these natural solutions, re-

searchers and engineers can create innovative technologies

that mimic or are inspired by biological systems,1–3 materials,4–7

processes,8–12 and structures.13,14 Furthermore, they can estab-

lish fundamental guidelines and physical laws to explain specific

structures, functions, and form-function relations.15,16

The field of bio-inspiration and biomimicry is a rapidly growing

one.1–3 However, while the potential benefits of this approach

are undeniable, the challenges in finding and deciphering the

distinct relevant biological phenomena and, moreover, trans-

lating these inspiring phenomena into practical solutions, are

substantial and multifaceted.17,18 In other words, biological in-

formation is by and large under-exploited.19 Engineers possess

essential knowledge and expertise in the development of me-

chanical systems, materials, and integrated frameworks that

can bring bio-inspired concepts to realization. Most engineers,

however, do not hold the necessary biological background and

the basic knowledge that enables identifying, filtering, and un-
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derstanding the biological solutions and applying them in tech-

nological innovations.17,20 The crucial questions are, therefore,

those of where to seek bio-inspiration and, once located, how

to take advantage of it.

In the current short perspective, we seek to provide some in-

sights into how to engage with the above challenges by present-

ing an example – a case study – of the journey: from an intriguing

biological observation to bio-inspired innovations. We highlight

the essential collaborative aspects of this endeavor, i.e., the

interdisciplinary joint effort that encompasses the expert biolo-

gist on the one hand and the specialist engineer on the other.

It should be noted that this is by no means a retrospective of

past completed research. Some of the work we describe is on-

going, we present some new data, and we also suggest some

future directions.

In the following, we first depict the biological observation (Sec-

tion 1) – the specialized oviposition behavior of the female locust.

The subsequent sections present different research directions,

aimed at establishing an in-depth understanding of different as-

pects of this initial observation (Figure 1).

Section 2 engages with the investigation of the kinematics and

dynamics of the female locust digging behavior. Section 3 pre-

sents a characterization of the properties of the oviposition
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Figure 1. Finding bioinspiration in the female locust’s oviposition

The female extends her abdomen, digs, propagates and navigates under-

ground using two pairs of valves and various sensory modalities.
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valves in terms of materials and mechanical response; and Sec-

tion 4 presents a study of the ultra-stretchable nervous system of

the female locust, allowing the abdomen to stretch up to 3-fold

during oviposition. These seemingly unrelated aspects of this

successful mechanism demonstrate the complexity of the bio-

logical system and its multi-faceted nature. We then move on

to offer a perspective of the development of a locust-inspired

digging robot with the ability to interact with its environment

(Section 5), and a short summary.

The female locust’s oviposition behavior
Egg-laying constitutes a pivotal element in the reproductive

biology of all insects. The strategic deposition of eggs in a metic-

ulously chosen location, on or within a carefully selected

substrate, constitutes a significant decision and a critical action

undertaken by the female insect to secure the survival of her

offspring. Locusts (Orthoptera: Acrididae), notoriously recog-

nized for their capacity to undergo drastic population explosions,

transforming from solitary individuals to formidable swarms,

impose a profound negative impact on crops and ecosystems.21

The oviposition behavior of female locusts assumes a central

role in their population upsurge and outbreak.22 The female

lays her eggs deep underground, in order to protect them from

predators and to provide themwith optimal conditions for hatch-

ing (Figure 2). This behavior involves various physiological adap-

tations and challenges related to negotiating the subterranean

environment.

Accordingly, evolution has developed a highly specialized

structure — the ovipositor: the principal apparatus that enables

burrowing into the ground. It comprises two dedicated pairs of

sclerotized oviposition valves – a ventral and a dorsal pair, ex-

tending beyond the distal end of the female’s abdomen23,24 (Fig-

ure 1: Unique digging; Figure 3). These external structures are
2 iScience 27, 111378, December 20, 2024
aided by a prominent pair of internal apodemes (a ridge-like

ingrowth of the exoskeleton), hinges, and large supporting

muscles.

The oviposition behavior marks the culmination of the egg

maturation cycle, occurring approximately every 7–10 days.

The female carefully chooses the site where her offspring will

develop. This should have optimal conditions in terms of temper-

ature, salinity, and humidity.22,25 Hence the ovipositor is equip-

ped with a sophisticated sensing ability by means of ample sen-

sory hairs and other sensory receptors.26,27 Females possess

the ability to postpone egg-laying for several days when no

appropriate site is available. The female may also decide to

retract her abdomen after initiating the burrowing without laying

the eggs. Thus, the decision-making process, coupled with the

mechanisms governing oviposition behavior, indicates the intri-

cate and dynamic interplay between the female locust’s internal

physiological state and her adaptive responses to the environ-

mental cues that are crucial for an optimal reproductive

outcome.

The kinematics and dynamics of female locust digging
As noted, the initial phase of oviposition behavior in grasshop-

pers and locusts entails digging a deep hole in the ground.

What sets them apart from many other insects is their distinctive

ovipositor valves, which operate through precise opening and

closing motions rather than simply sliding over one another. To

initiate this process, the female generates sweeping movements

of the digging valves, while pressing the tip of her abdomen into

the substrate. Once the ovipositor is firmly embedded in the soil,

the female maintains her position on the surface while the

ovipositor delves beneath her. The cyclical movements of the

valves include opening, closing, retraction, and protraction

movements (Figure 3), which are produced by the contractions

of ten pairs of muscles innervated by a central pattern generator

network in the terminal abdominal ganglion.28–30 While this two-

dimensional analysis has led the investigation and discussion in

many previous studies, we emphasize here that in order to

achieve a thorough understanding of the digging mechanism,

and for the ability to mimic its kinematics using robotic systems,

a detailed three-dimensional analysis is crucial.

In order to monitor the three-dimensional trajectory of the dig-

ging valves, it is useful to induce their rhythmic motion in air (out

of the soil; Figure 3). This can be achived by severing the ventral

neural connectives anterior to the abdomen and releasing the

motor program from descending inhibition.30 Figure 3 shows

the digging valves throughout their movement cycle, including

projections of their three-dimensional tracks from three perspec-

tives. The projections demonstrate several vital points: the dor-

sal valves perform much larger longitudinal motion in compari-

son to the ventral valves, supporting their postulated major role

in the digging (soil shoveling), while the ventral valves mostly

act as anchors. When the valves open, the gap between the

ventral valves expands in order to grip the sides of the tunnel,

while the gap between the dorsal valves contracts in order to

better compress the soil and dig more efficiently. When closing,

the ventral valves draw close together, as there is no longer a

need to grip the ground, and the dorsal valves move apart

from each other to allow the ventral valves to rest between



Figure 2. Time lapse of oviposition process

A female locust extending her abdomen deep into the substrate (snapshots from a video sequence captured through a glass wall). Bars on the left (i) indicate

centimeters. White arrows (i-iv) indicate the ovipositor digging valves and the yellow dashed line in (iv) shows the egg pod left in the burrow as the female retracts

her abdomen.
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them. Finally, the right and the left dorsal and ventral valvesmove

in a coordinated way: namely, each pair of valves operates in

synchrony.

The oviposition behavior also involves the hyperextension of

the female’s abdomen, as detailed below. In addition, the

abdomen is able to rotate around its long axis to enable the

valves to compress the displaced granular matter to the sides

of the burrow. Video monitoring of the oviposition digging

(same sequence as shown in Figure 2) revealed a rotation of at

least 90� to the left and to the right (overall rotation of ca. 180�;
Ayali and Pinchasik, unpublished). A further important ability of

the female is that of circumventing obstacles by bending and

steering her abdomen underground. As recently investigated

and well documented by Klechevski et al.,31 upon encountering

an obstacle in their path, the digging valves are steered away

taking a new route (even perpendicular to the original route),

and returning to vertical digging once clear of the obstacle (Fig-

ure 1: Navigation).

The properties of the locust’s oviposition valves
The female locust’s oviposition valves demonstrate very well-

adapted functional, morphological and structural properties.

From a developmental perspective (ontogeny), the transforma-

tion of the female locust ovipositor valves is particularly

intriguing. These valves originate from embryonic, paired, ventral

appendages, which are serially homologous to structures like

legs and wings.32 In newly hatched females, the valves appear

as paired outgrowths at the posterior margins of the last abdom-

inal segments (A8 and A9). They undergo a series of growth and

differentiation steps across five larval stages, achieving the adult

ventral/dorsal orientation by the third instar. During the fourth

and fifth larval stages, the valves continue to grow with each

molt, extending beyond the abdomen’s tip upon reaching adult-

hood. Over the course of two to three weeks, these initially soft

valves undergo further enhancement and become densely scler-

otized as the animal matures sexually.24

While the two pairs of valves are morphologically similar in

principle, their size and shape are specifically adapted to their

respective functions. This was recently reaffirmed using a
geometrical model and finite element methods.33 Interestingly,

it is postulated that the unique geometrical adaptations of the

valves have evolved to enhance their digging capabilities rather

than solely to maximize the mechanical bearing of their digging

forces.

In order to gain insights into the functionality of the specialized

oviposition apparatus and provide mechanical guidelines for the

design of bio-inspired diggingmechanisms,2 it is crucial to quan-

tify various biomechanical factors.24 These include the physio-

logical force range, force-deformation behavior, yield strength,

ultimate strength, flexibility and adaptability to difference sur-

faces,34 and the directional dependence of mechanical re-

sponses to applied forces.

Recently Das et al.24 quantified and analyzed the direction-

dependent biomechanics of the locust female’s dorsal digging

valves under forces within the physiological range and beyond,

considering the hydration level as well as the female’s sexual

maturation state. The responses of the valves to compression

forces in the digging and propagation directions, and the valves’

stiffness were found to change upon sexual maturation. In the

case of insect cuticles, the hydration state is also a key factor

influencing their mechanical properties. Hydration was found

to reduce stiffness, but increase resilience against failure.

Figure 4 presents maximum intensity projection auto-fluores-

cence high-resolution laser scanning confocal micrographs

(LSCM) of the female locust’s dorsal valves at different stages

of life. We used excitation lasers in wavelength of 543 and

633 nm. One week after molting (Figure 4A), the tip of the valve

is sharp, the cuticle is covered with several sensilla and the valve

surface emits photons mostly in the green region of the light

spectrum, indicating cuticle structural materials that are less

densely sclerotized.35 In a four-week-old adult female with

oviposition history, the image appears very different (Figure 4B).

Namely, the tip is worn and rounded with visible abrasion ex-

hibited by grooves in the direction of digging. The sensilla are

less distinct, probably due to the significant mechanical shear

forces during oviposition and digging underground. While a sig-

nificant region is dominated by red color, indicating a higher den-

sity of sclerotized chitinous exoskeleton material, the tip seems
iScience 27, 111378, December 20, 2024 3



Figure 3. Three-dimensional imaging of the digging motion

(A) The valves open and close cyclically.

(B) During this opening and closing, the valves protract or retract from the abdominal cuticle.

(C–E) Graphs demonstarte the 3-D trajectory of the two pairs of valves; projections from three perspectives. Different colores depict the different valves; see insert

in (D).
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green, indicating removal of the exoskeletal layer. Recently, we

have extended this example and conducted a detailed mechan-

ical and nano-mechanical analyses of the locust valves.36 There

remain, however, important open questions regarding the pres-

ence of structural andmaterial gradients in the locust oviposition

valves, and the role of these in the digging mechanism and in

resistance against wear. Our understanding of the effects of fric-

tion forces acting on the locust valves in different granular media

is also very limited to date.

The biomechanics of the ultra-stretchable nervous
system of the female locust
To enable the abdominal elongation during digging, the soft

cuticle between several abdominal segments and the interseg-

mental muscles are modified, permitting about a 10-fold length

change without damage.23,37 It was, however, unclear until

recently whether the nervous system stretches during oviposi-

tion or simply comprises undulated nerves that unfold revers-
4 iScience 27, 111378, December 20, 2024
ibly, as known in other animals in which the nerves can

extremely elongate.38,39 In our recent study, we showed that

the abdominal nervous system (ANS) of mature female locusts

exhibits a remarkable ability to elongate, stretching to approx-

imately 250% of its original length (Figure 5).40 This excep-

tional hyper-extension ability is exclusive to sexually mature

females, as pre-mature females and males show significantly

smaller elongation capacity. Moreover, this extraordinary

stretchiness is fully reversible within the physiological range

of extension rates and can be repeated multiple times

throughout the lifetime of mature female locusts. Specifically,

sexually mature females display only minimal nerve fiber undu-

lation, which cannot account for the ANS tissue’s remarkable

hyper-extension.

Based on the afore-mentioned discoveries, it is crucial to

delve deeper into characterizing the biomechanics of the distinc-

tive hyperextension observed in the ANS of sexually mature fe-

male locusts. Understanding and emulating the reversible



Figure 4. Material gradients in the female lo-

cust’s digging valves

(A) A laser scanning confocal microscopy image of a

dorsal digging valve of a female one week after adult

emergence, showing mostly green region fluores-

cence, indicating less densely sclerotized cuticle

structural materials.

(B) A similar image of the dorsal valve of a one-

month-old adult female with oviposition history.

The digging surface is dominated by red colors,

indicating higher density of sclerotized chitinous

exoskeleton material. Note the worn tip (see text for

details, and see36).
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stretching mechanism of locust nerves may pave the way for

producing new models of tissue regeneration and repair.

Furthermore, this insight can contribute to the structural design

and development of soft robotic systems characterized by sig-

nificant stretchability and multiple degrees of freedom.

Concluding remarks and outlook: A digging robotic
device inspired by the female locust oviposition
In the above short perspective, we have presented several

recent research projects, focusing on different, yet related as-

pects of the female locust oviposition; from behavior and phys-

iology, to biomechanics andmaterial science. Theseweremeant

to exemplify a principal research approach, or even a way of

thinking that we consider essential for any successful attempt

of harnessing nature’s ingenuity to technological innovation.

Namely, the constant interdisciplinary exchange of data, insights

and ideas. Including engineers in the early, basic-research

phases of the research, as well as having the biologists accom-

pany the later, applied engineering phases of the process, will

mitigate and facilitate the successful transfer of the biological

knowledge to the engineering solution. A joint, cross-disciplinary

effort is required to decipher and fully appreciate bio-inspired

innovation.
Given the above-noted aspects of the female locust oviposi-

tion, we have highlighted some of the different characteristics

that need to be addressed when approaching the development

of a female locust-inspired digging robot: namely, the shape

of the valves and their mechanical stability, the dynamics of

digging, stretchable materials (alternatively, soft robotics),

sensing, energy consumption and, finally, control and decision

making in response to external cues. Maybe even more impor-

tant, however, we have identified some general principles,

fundamental to the (evolutionary) processes that shape natural

mechanisms and designs, that must be considered. These

include (but are not limited to) nature’s ‘‘good enough’’ princi-

ple,36 and to the multiple and interacting facets of biological

systems.

Nature’s ‘‘good enough’’ principle suggests that natural ma-

terials and mechanisms answer specific needs without the un-

necessary improvements and enhancements known as ‘‘over-

engineering’’ in man-made systems. Robotic systems, in

conjunction with additive manufacturing, offer the possibility

to determine whether the natural solution is indeed the optimal

one (e.g., in terms of digging efficiency and energy consump-

tion), or can it be further improved using alternative designs,41

motion planning,42–44 and reinforcement learning.45,46 For
Figure 5. The biomechanics of the female lo-

cust nervous system
(A) The abdominal nervous system of a sexually

mature female locust before and after manual

stretching, demonstrating a ca. 220% extension.

Error bars correspond to the data range.

(B) The nervous system was clamped and stretched

in a controlled manner while its length and the ex-

erted forces were monitored. Bullets and dashed

red lines denote the location of the five abdominal

ganglia along the nerve cord. Figure modified from

Das et al. 2022.40.
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these reasons, brushless motors are used in many robots,

which offer efficiency, reliability and high energy density.47–49

In addition, the mechanical design can be engineered and

modified in order to adjust the robots to different environments,

including granular matter of varying densities, mechanical

properties, and dispersity.

Somewhat related to the above, it is important to look at bio-

logical systems as a whole and acknowledge the multiple, paral-

lel mechanisms that allow each function to exist. In the case of

the female locust oviposition, this is reflected, among others, in

her ability to dig in a specific area using a unique digging appa-

ratus, to develop the strengthened materials that can bear the

mechanical loads during digging, extensively stretch the

abdomen and nervous system to enable it to reach the proper

depth, and more. It is crucial to realize that all these aspects

have evolved in conjunction. An effort to understand a particular

biological solution to a specific technical challenge should al-

ways take into account the wider natural context. Understanding

the large assembly and interaction between the systems allows

us to focus on the required functionality and accordingly simplify

the mechanisms. We do not have the ability to produce every-

thing on any scale; therefore, part of the simplification of the

mechanisms contributes to reducing the degrees of freedom

and reducing the volume and complexity of the system.2,50–52

A female locust oviposition-inspired robotic device should be

able to demonstrate some, if not all the capabilities that allow the

locust to successfully negotiate granular substrate and deliver

substance to (or alternatively sample substance from) the sub-

terranean environment at varying depths. These abilities

comprise (but should not necessarily be limited to): digging ca-

pacity by way of shifting and compressing granular matter;

swiveling and rotation to allow the burrow construction and

maintenance; extension and bending to achieve the under-

ground progress and also steering capacity (including obstacle

negotiation). The leading digging mechanism can follow that of

the locust digging valves but can also be improved by changing

its overall size, macro and microstructure and materials compo-

sition. Energy efficiency comparable (in order of magnitude) to

the biological system should be desired, though it is most prob-

ably a non-realistic goal. In contrast, resistance to wear and life

expectancy of the artificial device should exceed that of the bio-

logical system. The rest of the system (beyond the leadingmech-

anism) will probablymuch divert from the biological model due to

our current largely insufficient ability to construct artificial mus-

cles and connective tissues with characteristics comparable to

natural ones.

Here may be a good point to stress the foremost important

principle of bio-inspired technological innovation – namely, the

fact that it is not merely biomimicry that we are pursuing, but

rather bio-inspiration. The locust oviposition-inspired robot

may and probably should look very different from the female lo-

cust, in every aspect – size, materials, and even mechanisms. It

is the principles and ideas that we seek in a bio-inspired design

process. Those that were developed and repeatedly tested over

millions of years of evolution. It is for us to then selectively adopt,

adapt and improve these to suite the specific technological chal-

lenge on hand. The animal kingdom exhibits immense biological

diversity, ranging from microorganisms to giant whales. Bio-
6 iScience 27, 111378, December 20, 2024
inspiration can be drawn from life forms of all sizes, where scale

plays a critical role. Physical phenomena vary across different

scales, meaning that in some cases, scaling the mechanisms

under investigation is feasible, but not always straightfor-

ward.48,53–56 As these systems interact with their environment,

altering the system’s scale requires adjusting the environmental

context as well. However, this scaling is often imprecise, intro-

ducing complexities inherent to real-world environments.2,57–60

Developing and constructing a digging robot inspired by the

locust oviposition will be applicative to a variety of different

fields, from subterranean exploration all the way to a model sys-

tem for brain surgery.61–63 These different tentative applications

have some major common demands. First, the need for the in-

duction of minimal interference and damage to the substrate.

Unlike traditional digging technologies that are primarily based

on removing and transferring excavated material, the envisioned

bio-inspired device rather ‘‘pushes its way’’ through the sub-

strate, implicating relatively minimal damage. A second and

much related point is that of minimalizing the ‘‘external or future

signature’’ of the digging procedure. This is most easily demon-

strated by or contrasted with the huge pile of dirt left behind after

any common digging-for-construction endeavor. These aspects

are relevant both on Earth and in extraterrestrial environments,

such asMars.64–66 Adopting or following basic features and prin-

ciples of the digging mechanism of the locust will ensure the

above demands are addressed.

Last, recent years have witnessed the emergence of robotics-

assisted biology, which utilizes robots as a way to create

dynamically-controlled conditions, enabling the testing of

various biology hypotheses that could otherwise not be tested

(e.g.,67–70). While we develop the bioinspired device, it will also

facilitate an in-depth understanding of the biological nature,

function, and evolution of the biological digging organs, offering

answers to questions such as whether the shape of the ovipos-

itor valves is indeed the most efficient for soil removal, and what

are the relations between the digging kinematics, soil removal,

and the consequent energy consumption? These and other

questions can be directly investigated and quantified in a lo-

cust-inspired digging robot, whereas they are practically impos-

sible to study in the locust itself. Hence, bio-inspired robotics

goes hand-in-hand with robotics-assisted biology.
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