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Abstract: Rare cancers are identified as those with an annual incidence of fewer than 6 per 100,000 per-
sons and includes both epithelial and stromal tumors from different anatomical areas. The advance-
ment of analytical methods has produced an accurate molecular characterization of most human
cancers, suggesting a “molecular classification” that has allowed the establishment of increasingly
personalized therapeutic strategies. However, the limited availability of rare cancer samples has
resulted in very few therapeutic options for these tumors, often leading to poor prognosis. Long non
coding RNAs (lncRNAs) are a class of non-coding RNAs mostly involved in tumor progression and
drug response. In particular, the lncRNA HOX transcript antisense RNA (HOTAIR) represents an
emergent diagnostic, prognostic and predictive biomarker in many human cancers. The aim of this
review is to highlight the role of HOTAIR in rare cancers, proposing it as a new biomarker usable in
the management of these tumors.

Keywords: lncRNAs; HOTAIR; rare cancers

1. Introduction

Rare cancers are identified as diseases with an incidence of <15 cases per 100,000 peo-
ple per year, as reported by the National Cancer Institute of the United States, or
<6 per 100,000 people per year, as suggested by Surveillance of Rare Cancers in Europe
(RARECARE) [1]. In Italy, the rare cancers group mainly includes rare epithelial tumors
of the digestive system, followed by epithelial tumors of the head and neck, rare cancers
of the female genital system, endocrine tumors, sarcomas, central nervous system tumors
and rare epithelial tumors of the thoracic cavity [2].

Rare cancers account for approximately 20–25% of all cancer patients diagnosed each
year, overall achieving a much higher incidence rate than any single common cancer.
However, their low prevalence results in a lack of research funding, decreased awareness,
late or misdiagnosis, few treatment options and limited clinical trials due to the small
number of eligible patients.

Recently, new large-scale sequencing technologies have made it possible to molecularly
characterize the majority of human cancers. However, most rare cancer studies have been
limited to a small sample of patients [3,4].
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All these factors result in poor prognosis for rare cancers causing a significant public health
issue. Therefore, there is a need to establish large collections of rare tumor samples, preferably
through the implementation of dedicated biobanks [5,6], and secondly, to define molecular
characterization in order to identify new prognostic markers and therapeutic targets.

Only 2% of the human genome is transcribed and translated into proteins. About 70% of
it is transcribed into ncRNA. LncRNAs represents a new class of RNA molecules, longer than
200 nucleotides, described as crucial biomarkers in cancer. They have secondary and three-
dimensional structures which enable them to have both RNA- and protein-like functions [7].
It has been demonstrated that the majority of lncRNAs are localized in the nucleus [8] and in
cytoplasm [9]. The change in cellular localization is associated with specific cellular functions
in many cases. Nuclear lncRNA are mainly involved in chromatin regulation, transcription
regulation and scaffolding, acting as platforms for the assembly of multiple-component
complexes such as ribonucleoprotein (RNP) complexes. The role of cytoplasmic lncRNAs is
mainly associated with post-transcriptional regulation, for example, sponging microRNAs;
thereby, they reduce miRNA availability to target mRNA [10].

Recent studies have revealed that the deregulation of specific lncRNAs is widely
involved in the development and progression of tumors, affecting molecular mechanisms
associated with cell proliferation, migration, invasion, epithelial-to-mesenchymal transition
(EMT) and apoptosis [11,12].

Between numerous cancer related lncRNAs, HOTAIR plays a main role in contribut-
ing to tumor development, metastatic progression and drug resistance. For its proven
prognostic value, HOTAIR has also been suggested as a potential therapeutic target in
human cancer [13].

Since little is known about the role of lncRNAs in low incidence cancers, and there is
a need to identify new molecular markers and therapeutic targets for these neoplasms, in
this review we will discuss the role of lncRNAs, with the focus on HOTAIR, in head and
neck rare cancers, soft tissue tumors, neuroendocrine tumors, rare digestive system tumors
and central nervous system tumors.

2. LncRNAs in Rare Tumors

An increasing number of ncRNAs, especially lncRNAs, were found to play crucial
roles in the initiation and progression of rare cancers, suggesting that they could function
as novel biomarkers and therapeutic targets [14,15] (Table 1).

Rare cancers of the head and neck are epithelial cancers of the larynx, hypopharynx,
nasal cavity and sinuses, nasopharynx, major salivary glands and salivary-gland type
tumors, oropharynx, oral cavity and lip, eye and adnexa and the middle ear. Apart from
these tumors, other rare malignancies can be located in the head and neck region, such as
soft tissue sarcoma, bone sarcoma and Merkel cell carcinoma [16].

The incidence of laryngeal carcinoma is relatively low, comprising between 2 and
5% of all malignant diseases diagnosed annually worldwide. More than 95% of laryngeal
tumors are squamous cell carcinomas (LSCC) [16]. Different lncRNAs have been described
as prognostic markers in this tumor [17]. Wu et al. [18] reported that the lncRNA H19 is
necessary for the development and progression of LSCC. It is inversely correlated with the
survival rate of LSCC patients, and its knockdown inhibits LSCC cells migration, invasion
and proliferation. Moreover, H19 is able to promote LSCC progression via miR-148a-3p
and DNA methyltransferase enzyme DNMT [18]. The lncRNA UCA1 (Urothelial Cancer
Associated 1) expression in LSCC patients is significantly higher in tumor tissues compared
with adjacent healthy tissues and its serum levels is increased in these patients compared
to healthy controls. In vitro, UCA1 is able to promote cell proliferation, invasion and
migration of LSCC cells by activating the Wnt/β-catenin signaling pathway [19]. Similarly,
lncRNA small NF90-associated RNA (snaR) is upregulated in the plasma of patients with
LSCC compared to healthy controls [20]. In LSCC patients with neck nodal metastasis, the
lncRNA NEAT1 (nuclear paraspeckle assembly transcript1) is overexpressed and its gene
silencing in vitro and in vivo models can inhibit tumor growth [21]. The overexpression of
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lncRNA PCAT19 (protocadherin 19) is strongly associated with decreased overall survival
of LSCC patients and its silencing in cell lines decreases tumor growth in vivo by regulating
the miR-182/PDK4 axis [22]. Many other lncRNAs are aberrantly expressed in LSCC tissues
and are correlated with poor prognosis, such as LINC00668 [23], lncRNA TUG1 (taurine-
upregulated gene 1) [24], HOXA11 antisense RNA (HOXA11-AS) [25], ATB [26], LINC02154
and MNX1 (motor neuron and pancreas homeobox 1)-AS1 [27].

Table 1. Main lncRNAs described in rare cancers.

LncRNAs Tumor Type Expression References

AOC4P GIST upregulation [28]

ADAMTS9-AS2 SACC upregulation [29]

AFAP1-AS1 NPC upregulation [30]

ATB LSCC upregulation [26]

BCAR4 Osteosarcoma upregulation [31]

CCDC26 GIST upregulation [32,33]

DNM3OS GIST upregulation [34]

EWSAT1 Ewing’s sarcoma upregulation [35]

H19 LSCC upregulation [18]
NPC upregulation [36]
NEN upregulation [37]
GIST upregulation [28]

Glioblastoma upregulation [38,39]

HNF1A-AS NPC upregulation [36]
Osteosarcoma upregulation [40]

HOTTIP Osteosarcoma upregulation [41]

HOXA11-AS LSCC upregulation [25]
NPC upregulation [42,43]

KCNQ1OT1 NPC upregulation [44]

LINC00668 LSCC upregulation [23]

LINC02154 LSCC upregulation [27]

MAGI2-AS3 NPC upregulation [45]

MALAT1 Osteosarcoma upregulation [46]
GEP-NEN upregulation [47]

GIST upregulation [48]
Glioblastoma upregulation [49–53]

MINCR NPC upregulation [54]

MRPL23-AS1 SACC upregulation [55]

NEAT1 LSCC upregulation [21]
Glioblastoma upregulation [56]

NONHSAT154433.1 MEC upregulation [57]

OIP5-AS1 NPC upregulation [58]

PCA3 Pulmonary NEN upregulation [59]

PCAT19 LSCC upregulation [22]

PILRLS Liposarcoma upregulation [60]
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Table 1. Conts.

LncRNAs Tumor Type Expression References

SNHG8 NPC upregulation [61]

SNHG15 NPC upregulation [62]

TP73-AS1 NPC upregulation [63]

TUG1 LSCC upregulation [24]
Osteosarcoma upregulation [64]

TUSC7 Glioblastoma upregulation [65]

UCA1 LSCC upregulation [19]
Osteosarcoma upregulation [66]

LET NPC downregulation [67]

MEG3 Osteosarcoma downregulation [68]
Pulmonary NEN downregulation [59]

TUS7 Osteosarcoma downregulation [68,69]

Nasopharyngeal carcinoma (NPC) is a rare tumor arising from the epithelial cells that
cover the surface and line the nasopharynx, with an annual incidence rate of 1/100,000
in Western countries. Although rare, NPC accounts for about one third of childhood
nasopharyngeal tumors [16].

The lncRNA actin filament-associated protein 1 antisense RNA1 (AFAP1-AS1) is upregu-
lated in NPC and associated with poor survival. Its silencing significantly inhibited NPC cells
migration and invasion [30]. In the same manner, the lncRNA H19 and hepatocyte nuclear
factor 1A-antisense RNA (HNF1A-AS) are overexpressed in NPC tissues and involved in
the modulation of cell cycle progression, tumor cell proliferation, migration and epithelial to
mesenchymal transition (EMT) [36,70]. On the contrary, the downregulation of lncRNA-low
expression in tumor (lncRNA-LET) in NPC tissues is significantly correlated to advanced
clinical stage, tumor size, lymph node metastases and poor survival of patients [67].

More recently, many other lncRNAs have been associated with NPC progression, with
their capacity of sponging different microRNAs [58,61–63,71–74]. Additionally, in NPC pa-
tients, a large number of lncRNAs were also associated with cisplatin resistance [42–45,75–78]
and radioresistance [54,79,80].

Salivary gland cancer (SGC) comprises a heterogeneous group of tumors with approx-
imately 6.5% of the cases among the malignant tumors of the head and neck. They are
considered rare cancers, having an annual incidence of less than 2/100,000 in most coun-
tries [81]. There are very few indications of the role of lncRNAs in salivary gland tumors.

An lncRNA microarray analysis highlighted that lncRNA ADAM metallopeptidase
with thrombospondin type 1 motif, 9 (ADAMTS9) antisense RNA 2 (ADAMTS9-AS2) was
significantly upregulated in salivary adenoid cystic carcinoma (SACC) and it is correlated with
metastasis rate and poor prognosis in SACC patients [29]. Similarly, the long non-coding RNA
(lncRNA) MRPL23 antisense RNA 1 (MRPL23-AS1) was highly expressed and correlated
with lung metastasis and overall survival rate in patients with SACC [55]. More recently, the
upregulation of lncRNA NONHSAT154433.1 and decreased expression of circ012342 have
been closely related to the pathogenesis of mucoepidermoid carcinoma (MEC) [57].

Soft tissue sarcomas are relatively uncommon tumors, accounting for 1% of all malig-
nancies. They are classified in about 80 histologic subtypes according to tissue components
from which they are derived. Approximately 80% of sarcomas originate from soft tissues,
while 20% from bone [82].

Many lncRNAs are involved in osteosarcoma (OS) progression. The lncRNA MALAT1
(metastasis-associated lung adenocarcinoma transcript 1) was closely correlated with
lung metastasis in OS patients, and it is an independent prognostic factor of OS. Its
knockdown affected the PI3K/AT signaling pathway and inhibited invasion and metastasis
in vitro and in vivo [46]. In OS tissues, other lncRNAs are significantly upregulated and
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related with metastatic progression, such as HNF1A (HNF1 homeobox A)-AS1 [40], BCAR4
(breast cancer anti-estrogen resistance 4) [31] and HULC (highly upregulated in liver
cancer RNA) [83]. The latter was strongly correlated with a shorter overall survival in OS
patients [83]. In a same manner, HOTTIP (HOXA distal transcript antisense RNA) [41],
UCA1 [66] and TUG1 [64] expression increased in osteosarcoma tissue and was associated
with poorer overall survival. On the contrary, MEG3 (maternally expressed 3) and TUS7
are downregulated in human osteosarcoma tissue [68,69]. Emerging studies suggest that
lncRNAs contribute to tumor cell growth and proliferation in Ewing’s sarcoma. The
lncRNA EWS-AT1 (EWS RNA binding protein 1) was found to be induced and upregulated
by EWS-FLI1 chimeric protein in primary pediatric human mesenchymal progenitor cells.
EWSAT1 diminished cell viability in human Ewing sarcoma cell lines [35]. LncRNA PILRLS
(Proliferation Interacting LncRNA in Retroperitoneal Liposarcoma) was overexpressed in
retroperitoneal liposarcoma, and its silencing is able to significantly inhibit cell proliferation
and colony formation of liposarcoma cells [60].

Neuroendocrine neoplasms (NENs) are a relatively rare and heterogeneous tumor
types, accounting for about 0.5% of all newly diagnosed malignancies [84]. The most
frequent primary sites are the gastrointestinal tract (62–67%) the lungs (22–27%), and more
rarely the genitourinary tract [85].

Very little is known about the role of lncRNAs in epigenetic regulation of NENs
development and progression. Expression levels of lncRNAs MALAT1 and HOTAIR
analyzed by chromogenic in situ hybridization (ISH) were associated with tumor stages and
development of metastases in GEP-NEN [47]. H19 was significantly upregulated in NEN
tissues with malignant behaviors, and its upregulation is able to predict poor prognosis.
In vitro and in vivo data showed that H19 overexpression promoted tumor growth and
metastasis and revealed that H19 activated PI3K/AKT/CREB signaling and promoted
pNEN progression by interacting with VGF (VGF nerve growth factor inducible) [37].
LncRNA-p21 is highly expressed in neuroendocrine prostate cancer patients and cells [86]
while MEG3 and prostate cancer antigen 3 (PCA3) were aberrantly expressed in pulmonary
NENs, including typical carcinoid tumors, atypical carcinoid tumors, small cell lung
carcinoma (SCLC/NEC) and large cell neuroendocrine carcinoma (LCNEC/NEC) [59].

Digestive system tumors form in organs involved in digesting food and drinks and some
of them belong to the category of rare tumors, such as cholangiocarcinoma and gastrointestinal
stromal tumors (GISTs) [87]. Badalamenti et al. [48] analyzed the expression of H19 and
MALAT1 in 40 metastatic GIST tissues, showing their upregulation in 50% of GIST patients.
Both H19 and MALAT1 overexpression was significantly higher in patients with time to
progression (TTP) < 6 months as compared to patients with TTP > 6 months. Moreover,
MALAT1 expression levels seem to be correlated with c-KIT mutation status [48]. The
aberrant expression of lncRNA AOC4P has been detected in high-risk GISTs compared with
low- and intermediate-risk GISTs. In addition, its expression appeared closely associated with
upregulation of epithelial–mesenchymal transition (EMT)-related proteins, such as TGF-β
(transforming growth factor-beta), ZEB1 (Zinc finger E-Box binding homeobox 1), Vimentin,
Snail, and E-cadherin. AOC4P silencing led to the decrease in cell proliferative migration
and invasive ability of GIST cells [28]. Next-generation sequencing data of paired GIST
and adjacent tissue samples were analyzed by a web-based lincRNA analysis, showing
the deregulation of lncRNAs MALAT1, H19 and FENDRR (FOXF1 adjacent noncoding
developmental regulatory RNA). Moreover, H19 upregulation appeared strongly related
with different oncogenes, such as ETV1 (ETS variant transcription factor 1) and miR-455-
3p [88]. The deregulation of other lncRNAs has been recently described in GIST. Cao et al. [32]
described the role of the lncRNA coiled-coil domain-containing 26 (CCDC26) in imatinib
resistance of GIST, highlighting that cells with lower CCDC26 expression were less sensitive to
imatinib compared to those with higher CCDC26 expression. In addition, CCDC26 expression
decreased in a time-dependent manner in the presence of imatinib and its silencing can
upregulate c-KIT expression [32]. Recently, an oncomine analysis performed on a large series
of low-risk and high-risk GISTs, revealed that the lncRNA DNM3OS was involved in the
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malignant transformation of GISTs and correlated with a worse prognosis. Finally, DNM3OS
was involved in the Hippo signaling pathway by regulating the expression of GLUT4 (glucose
transporter member 4) and CD36 [34].

Central nervous system (CNS) tumors are relatively rare, and they are associated
with high morbidity and mortality. The most common glial tumors are glioblastoma
multiform and anaplastic glioma, comprising more than 50 and 10%, respectively, of
the total gliomas [89]. Abnormal expression of several lncRNAs have been detected
in glioma/glioblastoma tumors and related cell lines. In particular, MALAT1 has been
noted to be involved in the pathogenesis of glioblastoma. Vassallo et al. revealed that
MALAT1 silencing is able to decrease glioblastoma cells migration, without affecting
proliferation [49]. Most studies report the role of MALAT 1 as an important marker of
chemoresistance to TMZ (temozolomide). It can enhance the resistance of glioma cells to
TMZ by regulating ZEB1 [50]. Different molecular pathways are associated with resistance
mechanism related to MALAT 1 in glioblastoma cells. Chen et al. reported that MALAT1
induces chemoresistance to TMZ through suppressing miR-203 expression and promoting
the expression of thymidylate synthase [51]. Similarly, Cai et al. reported the upregulation
of MALAT1 and its main role in TMZ-resistant glioblastoma cells by inhibiting the miR-101
signaling pathway [52]. More recently, NF-κB and p53 have been identified as regulators
of the MALAT1 expression in induction of TMZ resistance in glioblastoma [53]. The serum
levels of MALAT1 have also been associated with poor response to TMZ and lower survival
rate of patients with glioblastoma [51]. H19 is another oncogenic lncRNA in glioblastoma
whose aberrant expression is inversely correlated with the expression of NKD1 (NKD
inhibitor of WNT signaling pathway 1), an inhibitor of the Wnt pathway [38]. Similar
to MALAT1, H19 silencing is also able to modulate TMZ cytotoxicity in glioma cells by
inhibiting EMT via the Wnt/β-catenin pathway and inactivating NF-κB signaling [39].
Other lncRNAs have been described as involved in TMZ resistance in glioblastoma cells,
such as NEAT1 [56] and TUSC7 (tumor suppressor candidate 7) [65].

3. HOTAIR and Its Role in Human Cancers

HOTAIR is a lncRNA located within the intergenic region between HOXC11 and
HOXC12 in the HOXC cluster on chromosome 12q13.13. Its principal transcript is 2364
bp RNA, transcribed from a 6449 bp gene locus and composed of six exons [90]. The
human HOTAIR gene can be transcribed into several variants via alternative splicing
and recently six major HOTAIR splicing variants have been described [91]. HOTAIR
promoter contains binding sites for numerous transcription factors, which include AP1,
Sp1, ERE elements, HRE elements and NF-κB [13]. HOTAIR, as well as many lncRNAs, is
a key modulator of chromatin stability and is mainly involved in transcriptional silencing
mechanisms [91]. Mechanistically, HOTAIR is able to bind the PRC2 (Polycomb repressive
complex) at the 5′ end, and the LSD1 (lysine-specific histone demethylase 1A) at the 3′

end, acting as a molecular scaffold for the conjunction of the two complexes [90–92]. The
HOTAIR-PRC2-LSD1 complex determines epigenetic changes contributing to targeted gene
silencing and repressing their transcription via H3K27 trimethylation (PRC2 activity) and
H3K4 demethylation (LSD1 activity) [91,92]. HOTAIR can also modulate gene expression
at the post-transcriptional level describing that it could serve as a ubiquitination protein
and subsequent degradation platform [93].

Physiologically, HOTAIR can be involved in the regulation of the cell cycle. It pro-
motes the cell cycle that passes through the restriction point during the G1 phase by
regulating CDK4/6-cyclin D and the Rb-E2F pathway [94]. During embryogenesis, HO-
TAIR is involved in the development of the lumbosacral region, through the repression
of HOX D locus genes [90]. Furthermore, it was reported that HOTAIR possesses many
miRNA recognition elements (MREs), and their functional interactions are able to modulate
important cellular processes [95–97].
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Numerous studies have shown that HOTAIR can be directly associated with tumor
diseases being involved in tumor initiation, growth, angiogenesis, progression, recurrence
and drug resistance mechanisms [92,98,99]. In addition, many clinical studies suggested
HOTAIR as a fundamental biomarker associated with poor prognosis [100]. Early studies
highlighted that the aberrant expression of HOTAIR in human tumors have been detected
in breast cancer (BC) patients. HOTAIR appears to be a powerful predictor of BC tu-
mor progression: its upregulation has been described in primary BC tumors with high
metastatic potential and poor survival [101]. The deregulation of HOTAIR expression has
been found in different molecular subtypes of BC often with conflicting data [102–105].
In BC, HOTAIR is also involved in the regulation of many different processes, mainly
related with epithelial mesenchymal transition (EMT) [106]. BC cells are able to promote
the EMT and metastasis processes, when treated with TGF-B1, through the upregulation of
HOTAIR. The downregulation of HOTAIR results in the reduction of the ability to form
colonies [106,107]. Similarly, the promotion of metastatic processes in BC is strongly influ-
enced by the interaction of HOTAIR with a series of microRNAs. In BC, HOTAIR is able to
interact with different miRNAs promoting tumor progression, such as miR-7 [108], miR-
206 [95] and miR34a [96,109]. HOTAIR has been detected in the blood of BC patients, and
its circulating DNA level significantly correlated with the clinical stage of the tumor [110].
Moreover, Tang et al. [111] showed that serum exosomal HOTAIR is a potent predictor
of both poor survival and drug response in BC patients [111]. Different studies showed
the crucial prognostic role of HOTAIR also in gastrointestinal tract tumors, especially
in colorectal cancer [112] and gastric cancer [113]. In the latter, high level of circulating
HOTAIR is associated with sensibility to fluorouracil and platinum-based combination
therapy [113]. In liver cancer, HOTAIR upregulation correlates with clinical-pathological
features and tumor progression [114] and its silencing increases chemotherapy sensitiv-
ity [115]. In urogenital cancers, the role of HOTAIR has been well documented, especially
in prostate [116] and bladder cancer [117–119]. HOTAIR is overexpressed in ovarian cancer,
and it is associated with stage, lymph node metastases and poor survival [120]; similarly,
HOTAIR is overexpressed in cervical cancer [121,122] and in endometrial carcinoma [123]
in which it is also associated with cisplatin resistance acquisition [124]. Finally, HOTAIR
upregulation correlates with advanced stage, lymph nodes metastases, poor prognosis and
drug resistance in non-small cell lung cancer (NSCLC) patients [125,126]

4. The Role of HOTAIR in Rare Tumors

A series of studies carried out with in vitro and in vivo models of rare cancers high-
lighted the fundamental role that HOTAIR has in these tumors and the complex network of
molecular interactions in which it is involved. Its aberrant activity is capable of regulating
the main molecular pathways associated with carcinogenesis, metastatic progression, an-
giogenesis and drug resistance (Figure 1). Furthermore, most of these studies highlighted
the direct correlation between HOTAIR upregulation and the prognosis of patients with
rare tumors. In Table 2, the main groups of rare tumors are summarized on the basis of
their incidence (carcinomas and sarcomas).
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Figure 1. Schematic representation of the main molecular pathways related to HOTAIR deregulation in rare cancers. In
rare tumors of the head and neck rare (green box), HOTAIR promotes cell growth, proliferation, migration and invasion
through the direct interaction and consequent inhibition of different miRNAs: HOTAIR/miR-1 functional interaction
promotes MAGEA2 expression, which is able to suppress p53-dependent apoptosis in response to drugs, decrease cellular
senescence and increase cell proliferation in LSCC cells; HOTAIR inhibits miR-454-3p that target EF2, the principal target
of the tumor suppressor pRB, reducing tumor suppression in LSCC cells; HOTAIR/miR-101 functional interaction in
NPC cells induces COX2 expression, a regulator of tumor metabolism, angiogenesis and tumor microenvironment. In
LSCC cells, HOTAIR interacts with VEGFA promoting angiogenic processes. In soft tissue tumors (orange box), HOTAIR
interacts with different miRNAs leading to their inhibition and promoting cell proliferation, migration and invasion of
tumor cells: HOTAIR/miR-454-3p functional interaction induces (i) ATG12 expression, a positive regulator of autophagic
vesicle formation, and (ii) STAT3, involved in regulation of cancer inflammation and metastasis, in chondrosarcoma cells.
HOTAIR/miR-126 functional interaction promotes (i) SDF-1 expression, the main receptor of the metastasis inducer gene
CXCR4 able to modulate proliferation/survival and EMT of synovial sarcoma cells, and (ii) DNMT1, involved in cancer
stem cell maintenance and tumorigenesis, in osteosarcoma cells. HOTAIR inhibits miR-217 upregulating ZEB1, a potent
inducer of EMT, in osteosarcoma cells. In rare digestive system tumors (yellow box), HOTAIR interacts with miR-204 to
upregulate HMGB1 gene, a crucial regulator of inflammation and cancer progression, in cholangiosarcoma cells, and with
miR-130a to induce ATG2B expression promoting autophagy in GIST cells. In central nervous system tumors (blue box),
HOTAIR is able to induce b-catenin expression, modulating Wnt signal pathways in glioma cells, and establishes functional
interaction with different miRNAs to promote cell proliferation invasion and migration: HOTAIR/miR-141 interaction
induce upregulation of SKA2, a gene involved in cell cycle regulation, in glioma cells; HOTAIR/miR-326 interaction leads
to the upregulation of FGF1, involved in the repairing progress of damaged, in glioma cells; HOTAIR inhibits miR-219
upregulating Cyclin D1, a key regulator of cell cycle progression, in glioma cells; HOTAIR/miR206 functional interaction
induces YY1 expression promoting metastatic progression in medulloblastoma cells. Green arrow connects related pathways
and function; Red arrow indicates induction of expression; T indicates inhibition of expression.
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Table 2. Principal roles of HOTAIR in patients with rare tumors.

Tumor Types Clinical Studies References

Head and Neck
rare cancers

LSCC

HOTAIR overexpression
correlates with poor

differentiation, pathological
grade, metastatic risk and
chemotherapy sensibility.

HOTAIR is a circulating markers
in LSCC patients.

[127,128]

NPC
HOTAIR overexpression

correlates with clinical stage and
poor prognosis.

[129,130]

SACC

HOTAIR overexpression
correlates with clinical stage,

nerve invasion, metastatic risk
and poor survival.

[131]

Neuroendocrine
tumors GEP NEN

HOTAIR overexpression
correlates with tumor grade and

tumor stage.
[47]

Rare digestive
system tumors

Cholangiocarcinoma
HOTAIR overexpression

correlates with tumor size, TNM
stage and metastatic risk.

[132]

GIST

HOTAIR overexpression
correlates with tumor grade,

recurrence and metastatic risk,
poor survival and
drug resistance.

[133]

Central Nervous
System tumors Glioma/Glioblastoma

HOTAIR overexpression
correlates with tumor grade,
molecular subtype and poor

prognosis. HOTAIR is a
circulating markers in

glioma patients.

[134,135]

Soft tissue tumors

Osteosarcoma

HOTAIR overexpression
correlates with advanced tumor

stage, high histological grade
and shorter overall survival.

[136]

Chondrosarcoma
HOTAIR overexpression

correlates with tumor grade and
shorter overall survival.

[137]

Synovial sarcoma

HOTAIR overexpression
correlates with histological

grade, advanced tumor stage
and metastatic risk.

[138]

4.1. Head and Neck Cancers

The aberrant expression of lncRNA HOTAIR has been abundantly described in head
and neck tumors, especially in rare epithelial cancers such as laryngeal squamous cell
carcinoma, nasopharyngeal carcinoma and salivary gland tumors.

HOTAIR was upregulated in primary LSCC, compared with adjacent noncancerous
tissues and its overexpression was correlated with poor differentiation, lymph node metas-
tasis and advanced clinical stages. HOTAIR silencing in LSCC cells leads to a significant
decrease in invasive ability and promotes apoptosis. Furthermore, HOTAIR knockdown
can effectively suppress the progression of LSCC in vivo xenografts mice [139]. The com-
bined expression of HOTAIR and its interactor, which is an enhancer of zeste homolog 2
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(EZH2, a regulator of epigenetic modification), were overexpressed in LSCC tissue. HO-
TAIR overexpression is significantly related to T phase, pathological grading and metastatic
risk. Its silencing promoted cell proliferation and increased sensitivity to cis-platinum in
the LSCC cells [127]. Moreover, a large case series of LSCC has been selected to evaluate
the influences of cisplatin and paclitaxel on lncRNAs expression. HOTAIR was dramat-
ically reduced with the increasing concentration of cisplatin and paclitaxel suggesting
their target function on specific lncRNASs in LSCC patients [128]. Recently, a bioinfor-
matics analysis to examine miRNAs, lncRNAs and mRNAs differentially expressed was
performed on recurrent and non-recurrent LSCC sample datasets. Analysis showed that
HOTAIR, HCG4 (HLA complex group 4) and EMX2OS (EMX2 opposite strand/antisense
RNA) can represent a non-coding RNA signature in recurrent LSCC. Furthermore, the
HOTAIR-miR-1-MAGEA2 (melanoma antigen A2 gene) interaction may be fundamental
for the identification of recurrent LSCC [140].

HOTAIR’s role as a circulating marker has been extensively documented in the ma-
jority of solid cancers and a series of studies validated this role in rare tumors. A large
study conducted on 52 LSCC patients and 49 patients with benign polyps of the vocal cords
showed that the expression of exosomal HOTAIR was significantly higher only in patients
with LSCC. In addition, patients with lymph node metastasis had higher serum exosomal
HOTAIR expressions than those with no metastases, suggesting that circulating HOTAIR
could be a valuable biomarker to screen and predict progression for LSCC patient [141].
Finally, exosome-mediated HOTAIR is able to act as ceRNA of miR-454-3p to regulate the
tumor suppressor gene E2F2 (Eukaryotic elongation factor 2), negatively regulating the
radiosensitivity of laryngeal cancer cells [142].

In nasopharyngeal carcinoma patients, HOTAIR expression levels increased with clin-
ical stage progression, and it is associated with poor prognosis. The functional analysis in
in vitro models showed that HOTAIR is able to modulate migration, invasion and prolifer-
ation of NPC cells [129]. Subsequent studies have validated the prognostic role of HOTAIR
in NPC and highlighted a strong relationship with angiogenic pathways. Functional studies
exhibited that silencing of HOTAIR by siHotair directly inactivated VEGFA transcriptional
activity and suppressed the expression of glucose regulated protein 78 (GRP78); this sug-
gests its main role in mediating tumorigenesis and angiogenesis in NPC [130]. Some other
molecular pathways are related with aberrant expression of HOTAIR in NPC patients.
The expression of fatty acid synthase (FASN) is positively correlated to HOTAIR and de
novo synthesis of cellular free fatty acid in NPC cells is inhibited when HOTAIR was
silenced [143]. HOTAIR is able to induce COX-2 (Cyclooxygenase-2) upregulation and pro-
motes proliferation, migration and invasion in NPC cells. Moreover, miR-101 directly binds
to the 3’-UTR of COX-2 and downregulates COX-2 expression, suggesting the importance
of HOTAIR/miR-101/COX-2 axis in progression of nasopharyngeal carcinoma cells [144].
More recently, Yang et al. demonstrated that HOTAIR inhibits E-cadherin by stimulating
the trimethylation of H3K27 to promote NPC cell progression through recruiting histone
methylase EZH2 [145].

There is some evidence of the role of HOTAIR in salivary gland cancers. A recent study
conducted on 86 patients with salivary adenoid cystic carcinoma (SACC) showed that
HOTAIR expression in SACC tissue was higher than that in normal salivary gland tissue.
Additionally, its expression in tissues of patients with TNM stages III or IV, nerve invasion,
lymph node metastasis and poor survival rate is increased, suggesting that HOTAIR is a
potential marker for prognostic assessment of patients with SACC [131].

4.2. Neuroendocrine Tumors

Numerous lncRNAs have been associated with neuroendocrine tumors pathogenesis
especially in gastroenteropancreatic neuroendocrine tumors (GEP-NET); however, the role
of HOTAIR is still poorly investigated.
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Upregulation of HOTAIR has been described in GEP-NET and it is significantly
associated with grade and aggressive phenotype [47]. More recently, this data has been
confirmed. In fact, HOTAIR showed weak expression in low-grade GEP NENs and aberrant
expression in NET G3 and NEC G3 categories. Furthermore, HOTAIR appeared inversely
correlated with posterior HOX genes expression, highlighting that the combined expression
can be useful in molecular stratification of GEP-NENs [146].

Regarding prostate cancer, Chang et al. [136] described that HOTAIR is upregulated in
castration-resistant PCa (CRPC) with neuroendocrine differentiation (NEPC). Specifically,
HOTAIR overexpression is sufficient to induce NED, whereas knockdown of HOTAIR
suppressed it in PCa cells. In fact, HOTAIR upregulation induced the expression of
some NEPC markers in prostate cancer cells. HOTAIR expression can be inhibited by
the transcriptional repressor REST (RE1 silencing transcription factor), which is a master
transcriptional repressor that restricts neuronal gene expression in stem cells and non-
neuronal cell [136]. However, HOTAIR’s role in this process has recently been downsized.
Mather et al. [147] found that, while REST is consistently downregulated in NEPC ver-
sus CRPC/adenocarcinoma samples, HOTAIR is expressed at very similar levels in the
two groups, suggesting that the protein REST plays a pivotal role in inhibiting NEPC
transdifferentiation, and that this effect is not mediated by HOTAIR [147].

Finally, a recent study analyzed HOTAIR expression in typical carcinoid tumors, atypi-
cal carcinoid tumors, small cell lung carcinoma (SCLC/NEC) and large cell neuroendocrine
carcinoma (LCNEC/NEC), highlighting its upregulation only in SCLC/NEC patients [59].

4.3. Rare Digestive System Tumors

Among rare digestive system tumors, cholangiocarcinoma represents a heteroge-
neous group of highly aggressive malignancies originating from the biliary ducts with
poor prognosis [148].

HOTAIR was highly expressed both in cholangiocarcinoma tissues and cell lines
compared with corresponding normal bile duct tissues and intrahepatic biliary epithelial
cells. Its overexpression is strongly correlated with tumor size, TNM stage and recurrence in
cholangiocarcinoma patients. HOTAIR silencing significantly decreased the migration and
invasion and increased apoptosis of cholangiocarcinoma cell models [149]. More recently,
Lu et al. demonstrated that HOTAIR is able to promote cholangiocarcinoma progression
by regulating HMGB1 to suppress cell apoptosis, autophagy and induce cell proliferation
by sponging miR-204-5p [150]. The analysis of polymorphisms in the gene sequence of
HOTAIR to evaluate the susceptibility to the development of cholangiocarcinoma has
recently been evaluated. In a Greek cohort of patients, HOTAIR rs4759314 AG and GG
genotypes were associated with a significantly increased cholangiocarcinoma risk [137].

GISTs are rare, making up less than 1% of all gastrointestinal tumors. HOTAIR ap-
peared overexpressed in GISTs and the combined overexpression of miR-196a are strongly
associated with high-risk grade, metastasis and poorer patient survival. Knockdown of
HOTAIR altered the expression of GIST repressed cells invasiveness [138]. Lee et al. [151]
described the upregulation of HOTAIR in surgically resected high-risk GISTs compared
with low- and intermediate-risk GISTs. In GIST cell models, HOTAIR is able to repress
apoptosis and to promote cell invasion and migration. Furthermore, HOTAIR induces
methylation of PCDH10 (Protocadherin 10), a tumor suppressor gene, in GIST cells [151].
Several other studies confirmed the upregulation of HOTAIR in GISTs with a high risk
of recurrence. Bure et al. highlighted that HOTAIR knockdown in GIST cells modulates
the expression of genes involved in the organization and disassembly of the extracellular
matrix and induces locus-specific alterations of DNA methylation patterns, especially in
DPP4 (dipeptidyl peptidase 4), RASSF1 (Ras association domain family member 1) and
ALDH1A3 (aldehyde dehydrogenase 1 family member A3) genes [152]. Furthermore,
HOTAIR is described as a drug resistance-related lncRNA in GIST which is involved in
imatinib resistance [153]. More recently, Zhang et al. [132] analyzed HOTAIR expression in
GIST cells after imatinib treatments showed that HOTAIR is able to shift from nucleus to
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cytoplasm thereby modulating drug sensitivity via autophagy. In addition, HOTAIR, down-
regulating miRNA-130a and thereby activating the downstream target autophagy-related
protein 2 homolog B (ATG2B), is able to modulate autophagy and imatinib sensitivity in
GIST cells [132].

4.4. Central Nervous System Tumors

HOTAIR aberrant expression has been abundantly described in glioma tumors and
closely associated with glioma grade and poor prognosis [154]. HOTAIR expression corre-
lated with glioma molecular subtype and was preferentially expressed in the classical and
mesenchymal subtypes compared with the neural and proneural subtypes. HOTAIR silenc-
ing induced colony formation suppression, cell cycle G0/G1 arrest and orthotopic tumor
growth inhibition, acting as a crucial regulator of cell cycle progression in glioma cells [154].
The same authors described that EZH2 inhibition blocked cell cycle progression in glioma
cells, consistent with the effects elicited by HOTAIR siRNA, suggesting that HOTAIR might
regulate cell cycle progression through EZH2 [155]. Several molecular pathways have
been regulated by HOTAIR in glioma. NLK (Nemo-like kinase), a negative regulator of
the β-catenin pathway, was negatively correlated with HOTAIR expression. When the
β-catenin pathway was inhibited, glioma cells became susceptible to cell cycle arrest and in-
hibition of invasion. HOTAIR expression induction in in vivo model of glioma upregulated
β-catenin, while its silencing inhibited glioma cell migration/invasion [156]. Bromod-
omain and extraterminal (BET) proteins are important therapeutic targets in glioblastoma.
Treatment of glioblastoma cells with the BET bromodomain inhibitor I-BET151 reduced
levels of HOTAIR and restored the expression of several other glioblastoma downregulated
lncRNAs. Moreover, bromodomain containing 4 (BRD4) is able to bind to HOTAIR, directly
regulating its expression [133].

Different miRNAs can interact with HOTAIR during glioma progression. HOTAIR
is the target of miR-326 and its silencing promotes their tumor-suppressive effects on
glioma cell lines. Moreover, overexpressed miR-326 reduced the FGF1 expression, which
played an oncogenic role in glioma by activating PI3K/AKT and MEK 1/2 pathways [157].
Bian et al. [158] showed that HOTAIR might act as an endogenous ‘sponge’ of miR-141,
thereby regulating the de-repression of SKA2 (spindle and kinetochore associated complex
subunit 2), a gene involved in cell cycle regulation. Both overexpression of miR-141
and knockdown of HOTAIR in a mouse model of human glioma resulted in significant
reduction of tumor growth in vivo [158]. More recently, the interaction of HOTAIR and
miR-219 has been described in glioma cells. HOTAIR silencing strongly induced the
expression of miR-219 reducing cell proliferation and promoting apoptosis. Concomitantly,
the protein expression level of Cyclin D1 declined significantly suggesting that HOTAIR
can repress the proliferation and promote the apoptosis of glioblastoma cells by targeting
miR-219 [33]. Circulating levels of HOTAIR have also been described in glioma patients
and are associated with a poor prognosis [159]. Tan et al. detected high HOTAIR levels in
serum samples from GBM patients and the serum-derived exosomes containing HOTAIR
were significantly correlated with high grade brain tumors [134]. Regarding the analysis
of polymorphisms in the HOTAIR sequence related with glioma susceptibility, Xavier-
Magalhães et al. [160] reported a case-control study consisting of 177 Portuguese glioma
patients and 199 cancer-free controls. HOTAIR SNPs rs920778 and rs12826786 do not
play a significant role in glioma susceptibility but may be important prognostic factors in
anaplastic oligodendroglioma [160].

Transcriptome analysis was carried out to evaluate the expression of the HOX genes
and HOTAIR in several pediatric tumors such as teratoid rhabdoid tumors (ATRT), ependy-
momas, medulloblastomas, glioblastoma multiforme and juvenile pilocytic astrocytomas
(JPAs). HOTAIR appeared overexpressed in ATRTs, medulloblastomas and JPAs, and down-
regulated in ependymomas [161]. Nevertheless, a more recent study analyzed HOTAIR
expression in adult myxopapillary ependymoma (MPE), highlighting its overexpression
compared with non-ependymoma spinal tumors [162].
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HOTAIR upregulation has also been detected in medulloblastoma tissues and cell
lines. In medulloblastoma cells, HOTAIR is able to negatively regulate miR-1 and miR-206
expression which can directly target YY1, a transcription factor described as a metastasis
inducer. Finally, HOTAIR knockdown suppressed medulloblastoma cell proliferation,
tumor growth, migration and invasion, and promoted cell apoptosis via the modulation of
the miR-1/miR-206-YY1 axis, as well as EMT [163].

4.5. Soft Tissue Tumors

The role of HOTAIR in soft tissue sarcomas is mainly related to specific tumor types.
Milhem et al. [164] selected primary and metastatic tumor samples from myxofibrosarcoma,
synovial sarcoma, leiomyosarcoma and malignant fibrous histiocytoma sarcoma subtypes
to analyze HOTAIR expression. In these tumor types, high levels of HOTAIR are corre-
lated with a high probability of metastatic progression. In contrast, reduced expression of
HOTAIR is correlated with a good response to treatment in terms of necrosis, suggesting
that HOTAIR can be considered a useful predictor for metastatic risk and outcome of
therapeutic treatments [164]. Many studies are focused on osteosarcoma (OS), highlighting
the main role of HOTAIR as prognostic biomarker. HOTAIR is highly expressed in OS
tumor samples and cells and its upregulation was closely correlated with advanced tumor
stage along with highly histological grade. Furthermore, a high level of HOTAIR was
significantly associated with shorter overall survival [165]. HOTAIR silencing leads to the
downregulation of DNA methyltransferase 1 (DNMT1), promoting the decrease in global
DNA methylation level. HOTAIR is able to induce the expression of DNMT1 through
repressing miR-126, which is the negative regulator of DNMT1. Furthermore, HOTAIR
silencing increases the sensibility of OS cells to DNMT1 inhibitor through regulating the
viability and apoptosis of OS cells via HOTAIR-miR126-DNMT1-CDKN2A axis [135].
Wang et al. [166], using bioinformatics analysis, showed that HOTAIR can be targeted
by the tumor suppressive gene miR-217. In addition, HOTAIR siRNA increased miR-217
expression and significantly repressed osteosarcoma cell growth, migration, invasion and
induced cell apoptosis capacity. ZEB1 was identified as a downstream gene of miR-217,
suggesting that HOTAIR can mediate osteosarcoma progression by upregulating ZEB1 ex-
pression via acting as a competitive endogenous RNA (ceRNA) via miR-217 [166]. Recently
Wang et al. [167] described that LPS (a major component of Gram-negative bacteria) pro-
motes tumor invasion, metastasis and EMT in osteosarcoma. HOTAIR expression markedly
increases in LPS-induced EMT in osteosarcoma cells, such as TLR4 (Toll Like Receptor 4),
which is the LPS receptor, suggesting that the effects of LPS on EMT in osteosarcoma cells
is mediated via the TLR4/HOTAIR pathway [167]. Several studies reported that different
polymorphisms, especially in intronic sequences as well as in promoter regions of HOTAIR,
are often associated with its aberrant expression, patient prognosis and cancer suscepti-
bility in different tumor types [99]. Zhou et al. [168] identified a SNP located in HOTAIR
gene (rs7958904) that was significantly associated with decreased risk of OS. Furthermore,
subjects with the rs7958904 CC genotype had significantly lower HOTAIR RNA levels than
other genotypes [168].

Sporadic information on the role of HOTAIR has been associated with other types of
sarcomas. In chondrosarcoma patients, the expression of HOTAIR is correlated with tumor
stage and poor prognosis. HOTAIR knockdown led to growth inhibition via G0/G1 arrest
and apoptosis in vitro and in vivo models of chondrosarcoma [169]. HOTAIR expression
was increased in chondrosarcoma tissues compared with normal cartilage tissues and its
aberrant expression was elevated in high-grade compared with low-grade chondrosarcoma
tissues. In addition, overall survival time of patients with high expression of HOTAIR was
significantly shorter than that of patients with low expression of HOTAIR [169]. HOTAIR
is able to induce DNA methylation of miR-454-3p by recruiting EZH2 and DNMT1 in
chondrosarcoma cells. Furthermore, signal transducer and activator of transcription 3
(STAT3) and autophagy-related gene 12 (ATG12) are targets of miR-454-3p, initiate HOTAIR
deficiency-induced apoptosis and reduce autophagy [169]. More recently, Feng et al. [138]
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described the aberrant expression of HOTAIR also in synovial sarcoma (SS). Overexpression
of HOTAIR correlates with histological grade, AJCC staging and distant metastasis [138].
In SS cells, HOTAIR silencing inhibited cellular proliferation, invasion and migration,
promoting the G1/G0 phase of the cell cycle, and inhibiting the G2/S phase. Finally,
HOTAIR knockdown increased miR-126 expression level and decreased the expression
level of stromal cell-derived factor-1 (SDF-1) [170].

5. Conclusions

The understanding of the emerging role of lncRNAs in the main cell processes related
with cancer development and progression represents a significant advance in oncology.
LncRNAs are implicated in numerous biological processes such as cell cycle control, apopto-
sis, differentiation and epigenetic regulation of gene expression, becoming valid diagnostic
and prognostic markers of human cancers [171,172]. Furthermore, the lncRNAs appear
to be optimal biomarkers which are more stable in body fluids (urine, blood, saliva) and
can be detected by using simple in situ (ISH) and molecular techniques [173]. The crucial
role of lncRNAs, and in particular HOTAIR, is well documented in common human cancer
such as breast, lung, urogenital and gastrointestinal cancer [172]. To date, the molecular
characterization of the rarest cancers in the population has provided little information on
potential new biomarkers and therapeutic molecular targets. However, much experimental
evidence highlights the crucial role that HOTAIR plays in these tumors. The implementa-
tion of targeted functional studies could help to better understand how to interfere/block
the aberrant activity of this biomarker, providing a new tool for the management of rare
tumors. More recently, the design of small molecules able to specifically interfere with
conserved RNA structures and to block HOTAIR protein complexes have proved more
useful [174,175]. The direct or indirect block/inhibition of HOTAIR may represent a new
and effective therapeutic strategy for rare cancer and tumors.
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Abbreviations

HOTAIR HOX transcript antisense RNA
EMT Epithelial-to-mesenchymal transition
LSCC Laryngeal tumors are squamous cell carcinomas
DNMT DNA methyltransferase enzyme
UCA1 Urothelial Cancer Associated 1
NEAT1 Nuclear paraspeckle assembly transcript1
PCAT19 Protocadherin 19
TUG1 Taurine-upregulated gene 1
HOXA11-AS HOXA11 antisense RNA
MNX1 Motor Neuron And Pancreas Homeobox 1)-AS1
NPC Nasopharyngeal carcinoma
AFAP1-AS1 Actin filament-associated protein 1 antisense RNA1 ()
LET Low Expression in Tumor
SGC Salivary gland cancer
ADAMTS9AS2 ADAM metallopeptidase thrombospondin type 1, 9 antisense RNA 2
SACC Salivary adenoid cystic carcinoma
MRPL23-AS1 MRPL23 antisense RNA 1
MEC Mucoepidermoid carcinoma
OS osteosarcoma
MALAT1 Metastasis Associated Lung Adenocarcinoma Transcript 1
HNF1A HNF1 Homeobox A-AS1
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BCAR4 Breast Cancer Anti-Estrogen Resistance 4
HULC Highly upregulated in liver cancer RNA
HOTTIP HOXA Distal Transcript Antisense RNA
MEG3 Maternally expressed 3
EWS-AT1 EWS RNA Binding Protein 1
PILRLS Proliferation Interacting LncRNA in Retroperitoneal Liposarcoma
NEN Neuroendocrine neoplasm
ISH In situ hybridization
VGF VGF Nerve Growth Factor Inducible
PCA3 Prostate cancer antigen 3
GISTs Gastrointestinal stromal tumors
TGF-β Transforming growth factor-beta
ZEB1 Zinc Finger E-Box Binding Homeobox 1
FENDRR FOXF1 Adjacent Non-Coding Developmental Regulatory RNA
CCDC26 Coiled-coil domain-containing 26
GLUT4 Glucose transporter member 4
TMZ Temozolomide
NKD1 NKD Inhibitor of WNT Signaling Pathway 1
TUSC7 Tumor Suppressor Candidate 7
PRC2 Polycomb repressive complex
LSD1 Lysine-specific histone demethylase 1A
MRE miRNA recognition element
EZH2 Zeste homolog 2
HCG4 HLA Complex Group 4
EMX2OS EMX2 Opposite Strand/Antisense RNA
MAGEA2 Melanoma Antigen A2 gene
E2F2 Eukaryotic elongation factor 2
GRP78 Glucose regulated protein 78
FASN Fatty acid synthase
COX-2 Cyclooxygenase-2
TLR4 Toll Like Receptor 4
STAT3 Signal transducer and activator of transcription 3
ATG12 Autophagy-related gene 12
SDF-1 Stromal cell-derived factor-1
GEP-NET Gastroenteropancreatic Neuroendocrine Tumors
REST RE1 Silencing Transcription Factor
PCDH10 Protocadherin 10
DPP4 Dipeptidyl peptidase 4
RASSF1 Ras Association Domain Family Member 1
ALDH1A3 Aldehyde Dehydrogenase 1 Family Member A3
ATG2B Autophagy-related protein 2 homolog B
BRD4 Bromodomain Containing 4
SKA2 Spindle And Kinetochore Associated Complex Subunit 2
ATRT Teratoid rhabdoid tumors
MPE Myxopapillary ependymoma
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