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The mitochondria represent an integration and amplification hub for various death pathways including that mediated by
granzyme B (GB), a granule enzyme expressed by cytotoxic lymphocytes. GB activates the proapoptotic B cell CLL/lymphoma 2
(Bcl-2) family member BH3-interacting domain death agonist (BID) to switch on the intrinsic mitochondrial death pathway,
leading to Bcl-2-associated X protein (Bax)/Bcl-2 homologous antagonist/killer- (Bak-) dependent mitochondrial outer
membrane permeabilization (MOMP), the dissipation of mitochondrial transmembrane potential (ΔΨm), and the production of
reactive oxygen species (ROS). GB can also induce mitochondrial damage in the absence of BID, Bax, and Bak, critical for
MOMP, indicating that GB targets the mitochondria in other ways. Interestingly, granzyme A (GA), GB, and caspase 3 can all
directly target the mitochondrial respiratory chain complex I for ROS-dependent cell death. Studies of ROS biogenesis have
revealed that GB must enter the mitochondria for ROS production, making the mitochondrial entry of cytotoxic proteases
(MECP) an unexpected critical step in the granzyme death pathway. MECP requires an intact ΔΨm and is mediated though
Sam50 and Tim22 channels in a mtHSP70-dependent manner. Preventing MECP severely compromises GB cytotoxicity. In this
review, we provide a brief overview of the canonical mitochondrial death pathway in order to put into perspective this new
insight into the GB action on the mitochondria to trigger ROS-dependent cell death.

1. Introduction

Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells
are essential to the host defense against pathogen-infected
or transformed cells [1–6]. They trigger target cell death
either through the death receptor pathway or through the
cytotoxic granule pathway, which relies on perforin-
dependent delivery of granzyme serine proteases into the
cytosol of the target cell [7–19]. In humans, 5 granzymes
(A, B, H, K, and M) have been identified, whereas mice have
10 orthologs (A, B, C, D, E, F, K, L, M, and N) [20–22]. Gran-
zyme B (GB) and granzyme A (GA) are the most abundantly
expressed and consequently the best characterized [20–22].
GA cleaves its substrates after lysine or arginine residues to
trigger a caspase-independent, B cell CLL/lymphoma 2-
(Bcl2-) insensitive, and mitochondrial outer membrane per-
meabilization- (MOMP-) independent cell death pathway
with the morphological feature of apoptosis [23–27]. GB

cleaves its substrates after aspartic acid residues to induce
cell death either in a caspase-dependent or caspase-
independent manner [22, 28–31]. Human GB can also
directly cleave key effector caspase substrates, such as the
inhibitor of caspase-activated DNAses (ICAD), the DNA
damage sensor poly(ADP-ribose) polymerase (PARP-1),
the nuclear structural protein lamin, the nuclear mitotic
apparatus protein (NuMa), the DNA-dependent protein
kinase catalytic subunit (DNA-PKc), and the microtubule
protein tubulin, to activate death similar to that induced
by the caspase pathway [26, 29, 32–36].

The mitochondria represent an integration and ampli-
fication hub for various death pathways including that of
GB. Similarly, to initiator caspases, GB activates the proa-
poptotic Bcl-2 member BID to switch on the intrinsic
mitochondrial death pathway [34–37]. This leads to dissi-
pation of mitochondrial transmembrane potential (ΔΨm)
and Bax- and Bak-dependent MOMP. MOMP is necessary
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for the release of apoptogenic factor cytochrome c (cyt c),
HtrA2/Omi, endonuclease G (Endo G), Smac/Diablo, and
apoptosis-inducing factor (AIF) from the mitochondrial
intermembrane space to the cytosol [26, 38–42]. Interest-
ingly, human GB can also induce loss of ΔΨm and cyt c
release in the presence of caspase inhibitors, and mice defi-
cient for BID, Bax, and Bak, critical for MOMP, are still sen-
sitive to GB-induced cell death, indicating that human GB
targets the mitochondria in other ways; this will be discussed
in greater detail later [38, 40, 43, 44]. Much emphasis has
been put on MOMP, as it is an important step in the mito-
chondrial death pathway. However, the contribution of other
mitochondrial alterations such as reactive oxygen species
(ROS) production for the GB cell death pathway and apo-
ptosis in general has received less attention. Interestingly,
GA, GB, and caspase 3 are all able to directly target the mito-
chondrial respiratory chain complex I for ROS-dependent
cell death. Research focusing on the ROS biogenesis in this
pathway has revealed that GB must enter the mitochondria
for ROS production, making the mitochondrial entry of cyto-
toxic proteases (MECP) an unexpected critical step in the
granzyme death pathway. For general review on the gran-
zymes, we refer the readers to PMID: 18304003, 12360212,
and 22095283.

2. Reactive Oxygen Species

Nowadays, it is accepted that ROS production is a determi-
nant of many cell death mechanisms, including apoptosis,
necrosis/necroptosis, ferroptosis, pyroptosis, and autophagic
cell death [45–52]. ROS are also involved in the physiology
and pathophysiology of many processes and conditions such
as signal transduction, ischemia/reperfusion, stroke, neuro-
degenerative disorders, aging, and cancer [53–58]. ROS are
formed by the partial reduction of oxygen. They encompass
both radical species, which have unpaired electrons, e.g.,
superoxide anion (O2-·), hydroxyl radical (·OH), and nitric
oxide (NO), and nonradical products, which do not have
unpaired electrons but are powerful oxidizing agents, e.g.,
hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and
peroxynitrite (ONOO-) [59]. The primary radical species
(O2-·, NO, and H2O2) are produced by specialized enzyme
systems such as the nicotinamide adenine dinucleotide
phosphate hydrogen (NADPH) oxidases, the myeloperoxi-
dases, the nitric oxide synthases (NOS), the monooxygenase
activity of cytochrome P450, the xanthine oxidase, the
monoamine oxidase (MAO), and the mitochondrial respira-
tory chain, with the latter being the most prominent source
of endogenous ROS [59, 60]. Counterintuitively, ROS are
also necessary for physiological functions. Indeed, because
the primary radical species can easily be controlled by enzy-
matic and nonenzymatic antioxidants such as superoxide
dismutase, catalase, and glutathione, and because their reac-
tions with biomolecules are reversible, they are particularly
capable of physiological/pathophysiological intracellular sig-
naling. Actually, primary radical species are continuously
generated through several physiological processes in the cell
and are crucial for inflammation, vasoconstriction, signal

transduction, and cell migration, differentiation, and prolif-
eration [57, 58, 61–68].

Nevertheless, excessive ROS production has deleterious
effects on cells. Although, even at high concentrations, the
primary species (O2-·, NO, and H2O2) are not directly dam-
aging to the cells, they react with themselves or with metal
ions to produce the deleterious highly reactive secondary spe-
cies ·OH, ONOO-, and HOCl [69]. A well-known example is
the Fenton reaction of H2O2 with iron ions to produce ·OH
[69]. These secondary species are highly toxic and poorly
controlled and react irreversibly with almost all classes of
biomolecules, resulting in oxidative damage and cellular dys-
function [70–74]. Overproduction of such secondary species
leads to a state of oxidative stress in which the endogenous
antioxidant machinery of the cell is overwhelmed. Conse-
quently, the cells accumulate damage within macromolecules
like DNA, lipids, and proteins [70–74]. To cope with the del-
eterious potential of the secondary radical species, cells
evolved a robust antioxidant machinery based on both enzy-
matic and nonenzymatic antioxidants, such as superoxide
dismutase (SOD), catalase, glutathione, and thioredoxin sys-
tems. SOD occurs in three isoforms: cytosolic CuZn-SOD
(SOD1), mitochondrial Mn-SOD (SOD2), and extracellular
EC-SOD (SOD3) [56, 75]. SOD, as its name indicates,
dismutes O2- into H2O2 [75]. Catalase is a homotetramer
that converts H2O2 into water in the presence of NADPH
[56, 76]. The glutathione peroxidases (GPx), in association
with glutathione (GHS), reduce H2O2 and lipid hydroperox-
ides [56, 77]. There are eight GPxs, all tetrameric enzymes
with the particularity of using selenocysteine in their active
sites (GPx1-4 and GPx6), while GPx5 and GPx7-8 are nonse-
lenium congeners [77]. Moreover, the removal of H2O2 also
involves thioredoxin (TRX), thioredoxin reductase (TRR),
thioredoxin peroxidase (PRX), and glutaredoxins [56]. Most
of these enzymatic antioxidants use NADPH as a reducing
equivalent. NADPH not only maintains catalase in the active
form but also functions as a cofactor of TRX and glutathione
reductase for the recycling of oxidized glutathione (GSSG) to
its reduced form (GSH), for later use as a cosubstrate by GPx
[56, 76, 77]. The most abundant nonenzymatic antioxidant
in the cell is GSH, which participates in the reduction of
H2O2 into H2O and O2, and is thereby oxidized to form
GSSG. GSSG is then reduced into GSH by glutathione reduc-
tase using NAD(P)H as an electron donor. It maintains
ascorbic acid (vitamin C) and α-tocopherol (vitamin E)
in their active forms. GSH also protects from cell death by
interfering with proapoptotic and antiapoptotic signaling
cascades. Vitamin C and E are, respectively, aqueous and
lipophilic antioxidants that protect the intra- and extracellu-
lar milieu and membranes from oxidants. As stated earlier,
when the cellular antioxidant machinery is overrun, cells
accumulate damage that can be fatal. Initially, ROS were con-
sidered by-products of cell death. However, new evidence
suggests that ROS have a major role in the initiation and
amplification of the death insult by modulating many signal-
ing pathways. Although they are contributing determinants
for various forms of cell death, their biogenesis and their
mode of action during cell death are still not well understood
except for ferroptosis.
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3. Apoptosis

Apoptosis is orchestrated via a genetically encoded molec-
ular machinery dedicated to cell death. This programmed
cell death is necessary for the normal development and
homeostasis of multicellular organisms. Therefore, any dys-
regulation of this sophisticated machinery contributes to
the etiology of a vast spectrum of pathologies, including can-
cer and neurodegenerative disorders [39, 51, 78]. We refer
the readers to PMID: 20683470, 25236395, and 17237344
for reviews on cell death. Morphologically, cells undergoing
apoptosis shrink and assume a round shape as a result of
the caspases protease-mediated degradation of cytoskeleton
proteins. This is followed by condensation of the chromatin
into compact patches against the nuclear envelope (pykno-
sis), disruption of the nuclear envelope, and fragmentation
of DNA (karyorrhexis). The cell membrane shows irregular
buds known as blebs [51, 78–80]. Ultimately, the cells break
apart into several vesicles called apoptotic bodies, which are
then phagocytized. In vivo cells committed to apoptosis are
phagocytized before the end of this process, avoiding collat-
eral damage and inflammation. Consequently, apoptosis is
in general seen as nonimmunogenic [51, 78–80]. However,
in certain conditions, this process can become immunogenic
[81]. Two pathways lead to apoptosis: the extrinsic pathway,
which is initiated by the engagement of death receptors at the
cell surface [80, 82–85], and the intrinsic pathway, which is
triggered downstream of cellular stress such as DNA damage,
endoplasmic reticulum (ER) stress, or growth factor with-
drawal [80, 82, 86]. In both pathways, the mitochondria play
a critical role either by amplifying or by engaging the death
insult, respectively. These two pathways crosstalk with the
activation of the executioner caspase.

4. The Extrinsic Pathway

The extrinsic pathway is engaged after stimulation of the
death receptors, tumor necrosis factor receptor (TNFR),
FAS, and TNF-related apoptosis-inducing ligand receptor
(TRAILR) at the cell surface by their respective ligands
TNF, FASL, and TRAIL [80, 82–84]. The ligand binding
results in trimerization of the receptors and recruitment
of adaptor molecules such as FAS-associated death domain
protein (FADD) and then procaspase 8 to form the death
induction signaling complex (DISC) through homotypic
interaction of their death domain (DD) or death effector
domain (DED). As a consequence, dimerization occurs along
with proximity induced activation of the initiator caspase 8,
which can then directly cleave and activate caspase 3 and cas-
pase 7 for the execution of apoptosis [85, 87]. Interestingly,
caspase 8 can also proteolytically activate BID, connecting
the extrinsic pathway with the intrinsic pathway. Caspase 8
cleaves and activates BID into its truncated form (tBID),
which activates BAX and BAK for MOMP [80, 82–84].

5. The Intrinsic Pathway

As stated earlier, mitochondria are central to the execution
of apoptosis. MOMP is considered the point of no return.

Indeed, in stressed conditions, proteins of the Bcl2 fam-
ily member with only the BH3 domain (the BH3-only
proteins) [Bcl2-interacting mediator of cell death/Bcl-2-
like protein 11 (BIM/Bcl2-L-11), Bcl2-associated agonist of
cell death (BAD), Bcl-2-interacting killer (BIK), Bcl-2-
modifying factor (BMF), BCL2/adenovirus E1B 19 kDa
protein-interacting protein 3 (BNIP3), activator of apoptosis
harakiri (HRK), phorbol-12-myristate-13-acetate-induced
protein 1 (PMAIP1/NOXA), and Bcl-2-binding component
3/p53 upregulated modulator of apoptosis (PUMA)] trans-
duce the death signals that originate from stressed conditions
for activation of the proapoptotic BAX and BAK [51, 88–90].
This results in conformational changes, leading to BAX and
BAK oligomerization at the mitochondrial outer membrane
(MOM) for MOMP. This succession of events has drastic
consequences for cell fate, as it leads to the release of
the apoptogenic factor cyt c from the mitochondrial inter-
membrane space to the cytosol. Cytosolic cyt c is required
for the oligomerization of the adaptor protein apoptotic
protease-activating factor 1 (APAF1) and the formation of
the apoptosome, a scaffold dedicated to the proteolytic con-
version of the initiator procaspase 9 into active caspase 9.
Active caspase 9 processes and activates the executioner
and effector caspase 3 and 7 necessary for the orchestration
of cellular dismantling that causes cell death. Other apopto-
genic factors, such as second mitochondrion-derived activa-
tor of caspase/Diablo (Smac/Diablo) and high-temperature
requirement protein A2 (HtrA2), are also released from the
mitochondrial intermembrane space in order to unleash
effector caspases from the inhibitory action of the inhibitors
of apoptosis (IAPs) such as XIAP [91]. Endo G and AIF are
also released from the mitochondria to further nucleosomal
DNA fragmentation [41, 42].

6. Regulation of Apoptosis

In both the extrinsic and intrinsic pathways, MOMP is
tightly regulated by the interplay of the Bcl2 proteins, as the
antiapoptotic members, Bcl2, Bcl-XL, andMCL1, counterbal-
ance the proapoptotic function of BAX and BAK [92, 93].
Upon death stimuli, activation of the BH3-only proteins will
unleash the proapoptotic action of BAX and BAK by antago-
nizing the antiapoptotic members [92, 93]. Post MOMP, cas-
pase activation is also regulated by the IAP proteins IAP1/2
and XIAP, a set of cytosolic factors containing one or more
baculovirus IAP repeat motifs necessary for interaction
with the caspase. The IAP also contains a RING domain
for the recruitment of E2 ubiquitin-conjugating enzymes.
Upon caspase binding, the IAP mediates their ubiquitination
and proteasome-dependent degradation [91–96]. The for-
mation of the apoptosome is dependent on dATP and cyt
c, although ATP at a physiological level and transfer RNA
inhibit cyt c [97, 98]. This suggests that enough cyt c must
be available to overcome this inhibition. Likewise, physiolog-
ical concentrations of calcium and potassium ions inhibit
apoptosome formation in a cyt c-sensitive manner [99,
100]. Lastly, chaperone proteins PHAP/pp32, Hsp70, and
Hsp90 favor apoptosome activation by preventing APAF1
aggregation [101–103].
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7. The Caspases

The caspases are divided into two subfamilies. Caspases 2,
3, 6, 7, 8, 9, and 10 are involved in cell death initiation
and execution, while caspases 1, 4, 5, 13, and 14 are ded-
icated to cytokine processing during inflammatory responses
[104–106]. The initiator caspases 2, 8, 9, and 10 have a long
prodomain, while the executioner caspases 3, 6, and 7 have
a small one. Initiator caspase activation depends on its prox-
imity dimerization after binding to the adaptor protein with
the death domain motif. Once activated, they proteolytically
activate the executioner caspases. Active caspases are hetero-
tetramers composed of two large and two small subunits
[104–106]. The active executioner caspases orchestrate the
cleavage of a discrete set of proteins to induce the morpho-
logical and biochemical features associated with apoptosis.

8. The Mitochondria

It is now accepted that the mitochondria originated from the
Rickettsia group of alpha-proteobacteria, eubacteria-like
endosymbionts [107, 108]. However, a recent metagenomics
analysis suggests that the mitochondria ancestors originated
most likely from a proteobacterial lineage that branched off
before the divergence of all sampled alpha-proteobacteria
[109]. Structurally speaking, the mitochondria are double-
membrane organelles made of an outer membrane (MOM)
surrounding a highly folded inner membrane (MIM), which
protrudes into an inner compartment consisting of the mito-
chondrial matrix. Although the MIM is separated from the
MOM by an intermembrane space (IMS), both mitochon-
drial membranes remain connected at areas of contact sites,
which are involved in the organization of the MIM invagina-
tion called cristae [110–113]. In eukaryotic cells, mitochon-
dria have an undisputed role in cellular energy production
and metabolism [114–116]. Simply said, the mitochondria
are the cellular power house because they are proficient at
producing ATP via oxidative phosphorylation (OXPHOS)
[117]. The OXPHOS system embedded in the MIM receives
reduced electrons from NADH and FADH2 at the level of
complex I and complex II, respectively. These electrons tun-
nel to complex III via coenzyme Q10 and then to complex IV
via cyt c and to the final acceptor oxygen to produce water
(H2O). This electron flow provides energy, which is tran-
siently stored in the form of a proton gradient as it is coupled
with the efflux of protons from the matrix to the IMS. The
resulting proton-motive force is used to fuel complex V for
ATP synthesis [60]. Even in physiological conditions, this
electron transport is associated with mitochondrial ROS pro-
duction at the level of complexes I and III [60]. Furthermore,
recent evidence also indicates that dimers of complex V are
likely the molecular determinants of the permeability transi-
tion pore involved in Ca2+-dependent cell death [118–120].
Mitochondria are also crucial for Ca2+ homeostasis, cell cycle
regulation, differentiation, cell death, and aging [49, 51, 121–
127]. This plethora of functions is matched by their morpho-
logical and structural versatility. In fact, mitochondria are
extremely dynamic interconnected tubular networks con-
stantly undergoing remodeling through fusion and fission

events [128, 129]. The mitochondrial shaping proteins, a
family of dynamin-related GTPases, and their adaptor pro-
teins orchestrate the balance between fusion and fission.
Mitofusin (MFN) 1 and 2 inserted in the MOM and optic
atrophy 1 (OPA1) anchored in the MIM control the fusion
of the MOM and MIM, respectively [124, 130–135]. Mito-
chondrial fission requires the translocation of dynamin-
related protein (DRP) 1 from the cytosol to the mitochon-
dria where it docks on the MOM to its adaptor human fis-
sion protein 1 (hFis1), mitochondrial fission factor (MFF),
and mitochondrial dynamics 51 kDa and 49 kDa proteins
(MiD51 and MiD49) [124, 130–139]. Interestingly, mito-
chondria share contact sites with the endoplasmic reticulum
(ER) [124, 130–135, 140, 141]. These mitochondrial ER
contact sites (MERCs) regulate mitochondrial Ca2+ homeo-
stasis, lipid transfer, the initiation of autophagosome for-
mation, and determination of the mitochondrial fission
site [142–149]. At the MERCs, defined by the ER tubules
wrapping the mitochondria, the mitochondria are con-
stricted [142, 150]. In fact, the MERCs provide a platform
for the recruitment of motor force-generating cytoskeletal
proteins [150]. ER-bound inverted formin 2 (INF2) con-
centrates between the two organelles where the ER wraps
the mitochondria [146, 150, 151]. INF2 triggers the assem-
bly of the actomyosin motor, which provides the force for
the initial constriction of the mitochondria [142, 146, 150,
151]. Once assembled, the ER-associated constricted mito-
chondria enable polymerized DRP1 to spiral around the
mitochondria to mediate their fission [142, 146, 150–154].
Mitochondria can respond to many cellular cues. For exam-
ple, during starvation, the pool of cellular AMP rises, leading
to the activation of protein kinase A (PKA) that phosphory-
lates DRP1 on serine 637, preventing its translocation to the
mitochondria and therefore blocking its profission activity.
Consequently, mitochondria elongate because unopposed
fusion likely serves as a mechanism to spare these organelles
from autophagic degradation in order to optimize energy
production in response to starvation conditions [130, 131,
133, 134]. During stress, mitochondrial depolarization trig-
gers an intracellular Ca2+ rise that activates the phosphatase
calcineurin, which dephosphorylates DRP1 at serine 637,
leading to its activation and consequently mitochondrial
fragmentation in order to induce cell death [130, 131, 133,
134]. Furthermore, OPA1 also regulates cyt c release by con-
trolling the mitochondrial cristae junctions [133, 155–157].
Accumulating evidence also suggests a direct relationship
between mitochondrial fragmentation and apoptosis. During
apoptosis, Bax colocalizes with DRP1 and MFN2 at the
fission site. Formation of the BID/Bax/Bak complex reduces
mitochondrial fusion, probably due to the inhibition of
MFN2, while it stabilizes the docking of sumoylated DRP1
on the MOM, leading to mitochondrial fragmentation
[158–161]. In this context, mitochondrial fragmentation is
caspase independent. During oxidative stress, protein kinase
C triggers phosphorylation of human DRP1 isoforms 1 and 3
at residues S616 and S579, respectively, resulting in mito-
chondrial fragmentation [162]. On the other hand, the loss
of the OPA1 long isoforms that results in mitochondrial frag-
mentation is also observed during cell death [163, 164].

4 Oxidative Medicine and Cellular Longevity



Taken together, these findings indicate that the contribution
of mitochondria to cell death is far more complex than orig-
inally appreciated.

9. Complexity of Cytochrome c Release

The MOMP is necessary for apoptogenic factor release. This
permeabilization can result from Bax Bak oligomerization
and translocation at the MOM or from membrane rupture
due to mitochondrial swelling after a lasting episode of per-
meability transition pore (PTP) opening [88, 165]. The mito-
chondrial respiratory chain complexes reside in the cristae
membrane along with ATP synthase dimers, with the latter
found at the tip of the cristae to maintain their curvature
[166], whereas cyt c is found in the cristae space. Interest-
ingly, the narrow cristae junction is maintained by oligomers
of a mixture of long and short isoforms of OPA1 [157].
This indicates that in order for the release of cyt c following
Bax/Bak-dependent MOMP, this cristae junction must be
disrupted. In fact, it was demonstrated that tBID disrupts
OPA1 oligomers in order to trigger the cristae junction
remodeling necessary for the proper release of cyt c [157].
Moreover, cyt c and Endo G are engaged in electrostatic
and hydrophobic interactions with cardiolipins, suggesting
that they must be untethered from the membrane for optimal
release. Interestingly, ROS disrupt these weak bonds to pro-
mote their release upon MOMP [167–169]. In the absence
of caspase activity, cells still die following MOMP induction
although with a slower pace. This is most likely due to the
dissipation of the mitochondrial membrane potential and
the release of endonuclease G and AIF. Interestingly, caspase
3 contributes to the loss of mitochondrial potential following
the cleavage of NDUFS1, leading to the loss of the respira-
tory complex I function, which results in a decrease in
ATP production and increase in ROS production [50]. How-
ever, although the resulting mitochondrial ROS suppress the
immunogenicity of HMGB1 by oxidation, they promote cell
death by oxidizing the released cyt c. In fact, highly glyco-
lytic cells such as neurons and cancer cells have increased
stores of GSH due to the exacerbation of the pentose phos-
phate pathway (PPP). In such cells, following MOMP, cyto-
solic cyt c tends to be reduced, rising the threshold for full
caspase activation [51, 170].

10. New Insight into the Granzyme B
Mitochondrial Pathway

As stated earlier, human GB can directly cleave key cas-
pase substrates, such as BID, ICAD, PARP-1, lamin, NuMa,
DNA-PKc, and tubulin, to activate the mitochondrial and
DNA damage pathways similar to the caspase pathway
[20, 32, 33]. The GB mitochondrial pathway leads to ROS
production and dissipation of the ΔΨm and MOMP,
together with the release of apoptogenic factors such as cyt
c, HtrA2/Omi, endonuclease G, Smac/Diablo, and AIF from
the mitochondrial IMS to the cytosol [29–31, 35, 36, 38–40].
Human GB also induces loss of ΔΨm and release of cyt c in
the presence of caspase inhibitors, and mice deficient for
BID, Bax, and Bak, which are critical for MOMP, are still

sensitive to GB-induced cell death [38, 40, 43, 44], indicating
that human GB can also attack the mitochondria via a differ-
ent mechanism. Although they activate distinct death path-
ways, GA and GB have in common the ability to induce cell
death in a ROS-dependent manner. In fact, we showed that
both GA and GB target the NADH:ubiquinone oxidoreduc-
tase complex I of the electron transport chain by cleaving
the subunits NDUFS3, NDUFV1, and NDUFS2 [25, 171–
173]. Cleavage of complex I subunits leads to a rapid and
robust mitocentric ROS production, loss in complex I, II,
and III activity, disorganization of the respiratory chain,
impaired mitochondrial respiration, and loss of mitochon-
drial cristae junction [25, 171–174]. Interestingly, caspase 3
acts similarly on complex I by cleaving NDUFS1 to induce
ROS-dependent death [50]. Overall, it appears that three dif-
ferent death pathways (GA, GB, and caspase 3) crosstalk at
the level of the mitochondrial respiratory chain complex I
to induce ROS-dependent death. Although GA, GB, and cas-
pase 3 do not have a mitochondrial targeting sequence, they
still penetrate this double-membrane organelle indepen-
dently of the translocase of the outer membrane (TOM40)
and of the inner membrane (TIM23) complexes, which rep-
resent the canonical mitochondrial protein import pathway
to the matrix. Instead, we found that GA, GB, and caspase
3 cross the MOM through the Tob55/Sam50 channels and
the MIM though Tim22 in a mtHSP70-dependent manner
[174]. This mitochondrial entry requires an intact mitochon-
drial membrane potential (Figure 1) [174]. We found that GB
lysine 243 (K243) and arginine 244 (R244) were necessary for
its mitochondrial translocation. Substitution of these two res-
idues to alanine did not alter GB catalytic activity but was
enough to prevent entry of GB into target cell mitochondria
upon delivery by killer cells. Interestingly, preventing GB
entry into the mitochondria, either by K243A/R244A substi-
tution or by silencing Sam50, severely alters the cytotoxicity
of GB [174]. These results clearly indicate that GB must
enter the mitochondria in a process we have coined mito-
chondrial entry of cytotoxic proteases (MECP) for efficient
cell death.

The TOM40-TIM23 complexes are involved in mito-
chondrial biogenesis through their essential role in mito-
chondrial protein import [175–177]. Conceptually, if we
think at the TOM40-TIM23 complexes not only as trans-
locases but also as safe keepers of the mitochondrial
integrity because of their selectivity of the imported pro-
teins, the fact that cytotoxic molecules aimed at destroy-
ing the mitochondria use Tob55/Sam50-Tim22 as a side
door to enter these organelles makes sense (Figure 1).
Notably, both Tob55/Sam50 and Tim22 are dedicated to
the insertion of proteins in the mitochondrial membrane
and were not intended to be used as “translocases”
[178]. It is therefore possible that some mechanistic aspect
of this common function could be hijacked by cytotoxic
molecules. Granzyme mitochondrial entry breaks all the
codes of mitochondrial import, something that could be
expected from proteins aimed at destroying the mitochon-
drial functions for irrevocable cell death. Moreover, block-
ing access of granzyme and caspase 3 to the mitochondria
compromises their ability to induce cell death, suggesting
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that MECP is an unanticipated critical step in ROS-
dependent cell death.

In the case of GB, we have clearly shown that MECP is
independent of MOMP, since it occurs in Bax and Bak
double-knockout cells [88, 171, 174]. Moreover, granzyme
and caspase 3 mitochondrial entry is dependent on the mito-
chondrial membrane potential [171, 174]. The fact that
MOMP depolarizes the mitochondria indicates that MECP
must take place before MOMP or in mitochondria where
MOMP does not occur. Yet we have shown that GB-
mediated ROS potentiates apoptogenic factor release. Our
results suggest that MOMP, although required, could in fact
be the tip of the iceberg. Our data indicate that granzymes
A and B and caspase 3 use SAM50 as a channel translocase

for MECP, and this translocase activity seems sensitive to
SAM50 phosphorylation status, raising the question of how
MECP is regulated. Moreover, GA and GB trigger extensive
mitochondrial fragmentation that could also be ROS-
dependent. We also observed that GB triggers loss of cristae
junction in isolated mitochondria [171]. This interesting
observation fits well with the rout of GB mitochondrial entry.
Indeed, Sam50 interacts with the MICOS complex to main-
tain the architecture of the mitochondrial cristae [112, 113,
179–181]. It is reported that loss of Mic60 or Mic10 results
in a complete loss of cristae junction [112]. Whether upon
exiting the Sam50 channel, GB can alter some of the MICOS
component for the observed loss of cristae junction needs to
be investigated. Moreover, considering the mitochondrial
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membrane disruption and cristae opening, BID/Bax/Bak-
dependent MOMP [35, 36, 88, 133] and its consequence,
the actual release of apoptogenic factors as two dependent
steps, the hierarchy of molecular events between MECP,
ROS production, mitochondrial fragmentation, MOMP,
and apoptogenic factor release must be clearly established
for GB. In future studies, this hierarchy of events should
be investigated in order to understand their
interdependence.

The core subunits of mammalian complex I are similar to
those of the elementary bacterial complex I [182]. Therefore,
it is not surprising that granzyme can also cleave bacterial
complex I. As a matter of fact, it was demonstrated that
CTL kill intracellular bacteria following bacterial complex I
disruption. This requires perforin-mediated granulysin and
granzyme delivery into the infected target cell cytosol where
granulysin allows granzyme to cross the bacterial cell wall.
Once in the bacteria, GA and GB disrupt bacterial complex
I subunits and oxidative stress response enzymes such as
SOD and catalase [183]. Interestingly, it was also recently
reported that CTL eradicate protozoan parasites (Trypano-
soma cruzi, Toxoplasma gondii, and Leishmania major)
through perforin-mediated granulysin and granzyme deliv-
ery into parasites for the cleavage of proteins involved in oxi-
dative defense or oxidoreduction reactions (these parasites
do not express a conserved respiratory chain complex I)
[184]. These results further underline the significance of
ROS production and of targeting complex I or ROS-
generating oxidoreductive enzymes for cell death induction,
as it has been clearly showed that these two processes are
conserved across phylum from bacterial to protozoan and
to mammals [171, 173, 183, 184]. GB also induces the death
of nonoxidative bacteria by targeting highly conserved sets of
proteins involved in the biosynthetic and metabolic pathways
that are critical for bacterial survival under diverse environ-
mental conditions [185]. Because mitochondria have a bacte-
rial origin, one can expect granzyme to target similar sets of
the biosynthetic and metabolic mitochondrial pathways, as
it does in bacteria.

GB-induced mitochondrial ROS are necessary for opti-
mal apoptogenic factor release, rapid DNA fragmentation,
and rupture of lysosomal membranes [171, 172]. However,
the mechanisms by which ROS contribute to these hallmarks
of cell death remain incompletely understood. As stated
earlier, cyt c is bound to cardiolipins by both electrostatic
and hydrophobic interactions that are destabilized by ROS
to enable its optimal release from the mitochondria upon
MOMP induction [167, 168]. Similarly, ROS are impli-
cated in the proper release of Endo G from the mitochon-
dria [169]. We found that GB-induced ROS enhanced
apoptogenic factor release. The antioxidant NAC inhibited
P and GB-mediated cyt c, Endo G, and Smac release from
the mitochondria [171]. Overexpression of GB-uncleavable
NDUFV1, NDUFS1, and NDUFS2, which reduced GB-
mediated ROS production, also inhibited GB-induced apop-
togenic factor release; thus, GB induction of mitocentric ROS
promotes apoptogenic factor release upon MOMP. Our
results indicated that the release of apoptogenic factors
requires at least two independent steps—MOMP, which is

BID/Bax/Bak-dependent, and MECP, which is essential for
the increase in ROS necessary to untether the apoptogenic
factors from the cardiolipin to facilitate their release. Another
hallmark of GB-mediated cell death is caspase-activated
DNAse- (CAD-) mediated oligonucleosomal DNA fragmen-
tation [41, 186]. This oligonucleosomal DNA fragmentation
was also reduced by NAC antioxidant treatment and overex-
pression of GB-uncleavable NDUFV1, NDUFS1, and
NDUFS2; thus, ROS production is necessary for GB-
mediated apoptotic DNA damage. This could partly be
explained by the fact that Endo G, the release of which is
ROS-dependent, cooperates with CAD for optimal apoptotic
DNA fragmentation. ROS oxidize DNA to form abasic sites
[70]. It is possible that such oxidative DNA damage facilitates
CAD and Endo G-mediated oligonucleosomal DNA frag-
mentation. It is also possible that the direct effect of the
ROS on the nucleocytoplasmic transport could modulate
the subcellular localization of these apoptotic DNAses in
order to favor karyorrhexis. However, additional studies are
required to test these hypotheses.

We are beginning to understand how ROS contribute to
cell death, and a full understanding of the molecular mecha-
nism(s) by which ROS regulate cell death will require charac-
terization of the molecular targets of ROS. Whether ROS-
dependent death requires nonspecific oxidation of various
macromolecules or of a discrete subset of ROS targets still
needs to be established. Moreover, characterization of the
most effective radical species requires further investigation.
It is likely that secondary radical species play critical roles.
Furthermore, the amounts of ROS needed for irrevocable cell
death induction remain unknown. Lastly, whether ROS from
dying cells can signal to neighboring cells and the role of such
putative paracrine signaling also need to be investigated.

11. Conclusion

The mitochondria serve as a hub for the integration and
amplification of multiple death pathways including that of
GB. We found that, in addition to the canonical BID/Bax/-
Bak-dependent MOMP, GB must enter the mitochondria to
be fully cytotoxic. Mitochondrial entry of GB requires resi-
dues K243 and R244 and is mediated though the Sam50
channel. This new discovery suggests that MECP is an unan-
ticipated novel step in the mitochondrial death pathway.
Our results also suggest that the five human granzymes
accumulate in the mitochondria, and this was clearly dem-
onstrated to be Sam50-dependent for at least GA, GB, and
GM. Finally, our findings indicate that MECP is also neces-
sary for some actions of caspase 3 in mitochondria. In the
future, it will be interesting to test whether other cytotoxic
proteases follow the same path to the heart of the mitochon-
dria to determine the extent to which MECP is conserved
among other cell death pathways.
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