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Abstract

Background: Access to palliative care is a key quality metric which most healthcare organizations strive to improve.
The primary challenges to increasing palliative care access are a combination of physicians over-estimating patient
prognoses, and a shortage of palliative staff in general. This, in combination with treatment inertia can result in a
mismatch between patient wishes, and their actual care towards the end of life.

Methods: In this work, we address this problem, with Institutional Review Board approval, using machine learning
and Electronic Health Record (EHR) data of patients. We train a Deep Neural Network model on the EHR data of
patients from previous years, to predict mortality of patients within the next 3-12 month period. This prediction is
used as a proxy decision for identifying patients who could benefit from palliative care.

Results: The EHR data of all admitted patients are evaluated every night by this algorithm, and the palliative care team
is automatically notified of the list of patients with a positive prediction. In addition, we present a novel technique
for decision interpretation, using which we provide explanations for the model’s predictions.

Conclusion: The automatic screening and notification saves the palliative care team the burden of time consuming
chart reviews of all patients, and allows them to take a proactive approach in reaching out to such patients rather then
relying on referrals from the treating physicians.
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Background
The gap between the desires of patients of how they wish
to spend their final days, versus how they actually spend,
is well studied and documented. While approximately 80%
of Americans would like to spend their final days at home
if possible, only 20% do [1]. Of all the deaths that hap-
pen in the United States, up to 60% of them happen in an
acute care hospital while the patient was receiving aggres-
sive care. Over the past decade access to palliative care
resources has been on the rise in the United States. In
2008, Of all hospitals with fifty or more beds, 53% of them
reported having palliative care teams; which rose to 67% in
2015 [2]. However, data from the National Palliative Care
registry estimates that, despite increasing access, less than
half of the 7-8% of all hospital admissions that need pal-
liative care actually receive it [3]. A major contributor for
this gap is the shortage of palliative care workforce [4]. Yet,
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technology can still play a crucial role by efficiently identi-
fying patients who may benefit most from palliative care,
but might otherwise slip through the cracks under current
care models.

We address two aspects of this problem in our study.
First, physicians tend to be overoptimistic, work under
extreme time pressures, and as a result may not fail to
refer patients to palliative care even when they may ben-
efit [5]. This leads to patients often failing to have their
wishes carried out at their end of life [6] and overuse of
aggressive care. Second, the shortage of professionals in
palliative care makes it expensive and time-consuming for
them to proactive identify candidate patients via manual
chart review of all admissions.

Another challenge is that the criteria for deciding which
patients benefit from palliative care may be impossible to
state explicitly and accurately. In our approach, we use
deep learning to automatically screen all patients admit-
ted to the hospital, and identify those who are most likely
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to have palliative care needs. Since the criteria for iden-
tifying palliative needs could be fuzzy and hard to define
precisely, the algorithm addresses a proxy problem - to
predict the probability of a given patient passing away
within the next 12 months - and use that probability for
making recommendations to the palliative care team. This
saves the palliative care team from performing manual
and cumbersome chart review of every admission, and
also helps counter the potential biases of treating physi-
cians by providing an objective recommendation based on
the patient’s EHR. Currently existing tools to identify such
patients have limitations, and they are discussed in the
next section.

Related work
Accurate prognostic information is valuable to patients
and caregivers (for setting expectations, planning for care
and end of life), and to clinicians (for planning treat-
ment) [7, 8]. Several studies have shown that clinicians
generally tend to be over optimistic in their estimates
of the prognoses of terminally ill patients [5, 9–11].
It has also been shown that no subset of clinicians are
better at late stage prognostication than others [12, 13].
However, in practice, the most common method of
predictive survival remains to be the clinician’s sub-
jective judgment [12]. Several solutions exist that
attempt to make patient prognosis more objective and
automated. Many of these solutions are models that
produce a score based on the patient’s clinical and
biological parameters, and can be mapped to an expected
survival rate.

Prognostic tools in palliative care
The Palliative Performance Scale [14] was developed as a
modification of the Karnofsky Performance Status Scale
(KPS) [15] to the Palliative care setting, and is calculated
based on observable factors such as: degree of ambulation,
ability to do activities, ability to do self-care, food and fluid
intake, and state of consciousness. The Palliative Prog-
nostic Score (PPS) was constructed for the Palliative Care
setting as well, focusing on terminally ill cancer patients
[16]. The PPS is calculated with multiple regression anal-
ysis based on the following variables: Clinical Prediction
of Survival (CPS), Karnofsky Performance Status (KPS),
anorexia, dyspnea, total white blood count (WBC) and
lymphocyte percentage. The Palliative Prognostic Index
(PPI), developed around the same time as PPS, also calcu-
lates a multiple regression analysis based score using Per-
formance Status, oral intake, edema, dyspnea at rest, and
delirium. These scores are difficult to implement at scale
since they involve face-to-face clinical assessment and
involve prediction of survival by the clinician. Further-
more, these scores were designed to be used within the
palliative care setting, where the patient is already in an

advanced stage of the disease — as opposed to identifying
them earlier.

Prognostic tools in the intensive care unit
There also are prognosis scoring models that are com-
monly used in the Intensive Care Unit. The APACHE-II
(Acute Physiology, Age, Chronic Health Evaluation) Score
predicts hospital mortality risk for critically ill hospital-
ized adults in the ICU [17]. This model has been more
recently refined with the APACHE-III Score, which uses
factors such as major medical and surgical disease cat-
egories, acute physiologic abnormalities, age, preexisting
functional limitations, major comorbidities, and treat-
ment location immediately prior to ICU admission [18].
Another commonly used scoring system in the ICU is
the Simplified Acute Physiological Score, or SAPS II [19],
which is calculated based on the patient’s physiological
and underlying disease variables. While these score are
useful for the treatment team when the patient is already
in the ICU, they have limited use in terms of identifying
patients who are at risk of longer term mortality, while
they are still capable of having a meaningful discussion
of their goals and values, so that they can be set on an
alternative path of care.

Prognostic tools for early identification
There have been a number of studies and tools developed
that aim to identify terminally ill patients early enough for
an end-of-life plan and care to be meaningful.

CriSTAL (Criteria for Screening and Triaging to Appro-
priate aLternative care) was developed to identify elderly
patients nearing end of life, and quantifies the risk of death
in the hospital or soon after discharge [20]. CriSTAL pro-
vides a check list using eighteen predictors with the goal
of identifying the dying patient.

CARING is a tool that was developed to identify
patients who could benefit from palliative care [21]. The
goal was to use six simple criteria in order to identify
patients who were at risk of death within 1 year. PREDICT
[22] is a screening tool also based on six prognostic indi-
cators, which were refined from CARING. The model was
derived from 976 patients.

The Intermountain Mortality Risk score is an all-causes
mortality prediction based on common laboratory tests
[23]. The model provides score for 30-day, 1-year and
5-year mortality risk. It was trained on a population of
71,921 and tested on 47,458.

Cowen et al. [24] proposed using a twenty-four factor
based prediction rule at the time of hospital admission to
identify patients with high risk of 30-day mortality, and to
organize care activities using this prediction as a context.
One of the their motivation was to have a rule from a sin-
gle set of factors, and not be disease specific. The model
was derived from 56,003 patients.
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Meffert et al. [25] proposed a scoring method based
on logistic regression on six factors to identify hospital-
ized patients in need of palliative care. In this prospective
study, they asked the treating physician at the time of dis-
charge whether the patient had palliative care needs. The
trained model was then used to identify such patients at
the time of admission. The model was derived from 39,849
patients.

Ramachandran et al. [26] developed a 30-day mor-
tality prediction tool for hospitalized cancer patients.
Their model used eight variables that were based on
information from the first 24 h of admission, and lab-
oratory results and vitals. A logistic regression model
was developed from these eight variables and used
as a scoring function. The model was derived from
3062 patients.

Amarasingham et al. [27] built a tool to screen
patients who were admitted with heart failure, and iden-
tify those who are at risk of 30-day readmission or
death. Their regression model uses a combination of
Tabak Morality Score [28], markers of social, behav-
ioral, and utilization activity that could be obtained
electronically, ICD-9 CM codes specific to depression
and anxiety, billing and administrative data. Though
this study was not specifically focused on palliative
care, the methodology of using EHR system data is
relevant to our work. The model was derived from
1372 patients.

Makar et al. [29] used only Medicare claims data on
older population (≥ 65 years) to predict mortality in
six months. By limiting their model to use only admin-
istrative data, they hypothesized an easier deployment
scenario thereby making automated prognostic models
more prevalent. The model was derived separately on four
cohorts (one per disease type) with 20,000 patients per
cohort.

Prognosis in the age of big-data
The rapid rise and proliferation of EHR systems in
healthcare over the past couple of decades, combined
with advances in Machine Learning techniques on high
dimensional data provides a unique opportunity to
make contributions in healthcare, especially in preci-
sion medicine and disease prognosis [30, 31]. All the
tools described above, and those we reviewed [32–36],
have at least one of the following limitations. They
were either derived from small data sets (limited to
specific studies or cohorts), or used too few variables
(intentionally to make the model portable, or avoid
overfitting), or the model was too simple to capture
the complexities and subtleties of human health, or
was limited to certain sub-populations (based on dis-
ease type, age etc.) We address these limitations in
our work.

Methods
We hypothesize, as described earlier, that predicting
mortality is a reasonable approximation to predicting
palliative needs in patients, though palliative care is
applicable more broadly beyond just end of life care,
including patients still undergoing painful curative treat-
ments (such as bone marrow transplants, etc). Our
approach to the problem of mortality prediction is from
the point of view of the palliative care team, by being
largely agnostic to disease type, disease stage, sever-
ity of admission (ICU vs non-ICU), age etc. The scale
of data (in terms of number of patients) allows us to
take a deep learning model that considers every patient
in the EHR (with a sufficiently long history), with-
out limiting our analysis to any specific sub-population
or cohort. We frame a proxy problem statement (in
place of identifying palliative needs) in a tractable way
as follows:

Given a patient and a date, predict the mortality of that
patient within 12 months from that date, using EHR data
of that patient from the prior year.

This framing lends itself to be treated as a binary clas-
sification problem, and we take a supervised learning
approach using deep learning to solve it. Other than build-
ing a model that performs well on the above problem, we
are also separately interested in its performance on a spe-
cific patient sub-population: patients who are currently
admitted. This is because it is much easier for the pallia-
tive care staff to intervene with admitted patients. This
problem formulation and modeling has been previously
described in [37].

Data source
STRIDE (Stanford Translational Research Integrated
Database Environment) [38] is a clinical data warehouse
supporting clinical and translational research at Stan-
ford University. The data is available in the form of a
relational database, from which we extract features and
creating a training dataset using SQL queries. The snap-
shot of STRIDE (version 6) used in our work includes
the EHR data of approximately 2 million adult and pedi-
atric patients cared for at either the Stanford Hospital or
the Lucile Packard Children’s hospital between 1990 and
2014.

Constructing a dataset for supervised learning
In constructing a supervised learning data set, we define
the following concepts:

• Positive cases: Patients who have a recorded date of
death in the EHR are considered positive cases.

• Negative cases: Patients who do not have a recorded
date of death in the EHR are considered negative
cases.
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• Prediction date: The point in time, specific to each
patient, that divides the patient’s health record
timeline into virtual future and past events, is
considered that patient’s prediction date.

Data from each patient’s virtual past is used to cal-
culate the probability of their death 3-12 months in
the future. Note that we must take care when defin-
ing the prediction date to not violate common sense
constraints (described below) that could invalidate the
labels. We only include patients for whom it is pos-
sible to find a prediction date that satisfies these
constraints.

Positive cases
Palliative care is most beneficial when the referral occurs
3-12 months prior to death. The preparatory time
required to start palliative care generally makes it too late
for patients who pass away within three months. On the
other hand, a lead time longer than 12 months is not desir-
able either, because making accurate predictions over such
a long time horizon is difficult, and more importantly, pal-
liative care interventions are a limited resource that are
best focused on more immediate needs. The constraints
that the prediction date should meet for positive cases are
as follows:

• The prediction date must be a recorded date of
encounter.

• The prediction date must be at least 3 months prior
to date of death (otherwise death is too near).

• The prediction date can be at most 12 months prior
to date of death (otherwise death is too far).

• The prediction date must be at least 12 months after
the date of first encounter (otherwise the patient
lacks sufficient history on which to base a prediction).

• In-patient admissions are preferred over other
admission types for the prediction date, as long as
they meet the previous constraints (since it is easier
to start the palliative care conversation with them).

• The prediction date must be the earliest among the
possible candidate dates subject to previous
constraints.

Negative cases
Negative cases (patients without a date of death) are those
patients who were alive for at least 12 months from the
prediction date. Their prediction date is chosen such that
it satisfies the following constraints:

• The prediction date must be a recorded date of
encounter.

• The prediction date must be at least 12 months prior
to date of last encounter (to avoid ambiguity of death
after date of EHR snapshot).

• The prediction date must be at least 12 months after
the date of first encounter (otherwise insufficient
history).

• In-patient admissions are preferred over other
encounter types for the prediction date, as long as
they meet the previous constraints (to serve as
controls for the admitted positive cases).

• The prediction date must be the latest among the
possible candidate dates subject to previous
constraints.

Admitted patients
These are patients whose prediction date chosen based
on the above criteria happens to fall within an in-patient
admission. Remaining patients (i.e, patients whose pre-
diction date does not fall in range during an in-patient
admission) are considered non-admitted. Note that non-
admitted patients could still have other recorded admis-
sions in their history, just their prediction date did not fall
in one of those ranges. Further, we observe that patient
records generally get updated with the latest diagnostic
and physiological data, such as preliminary tests, diagnos-
tics, etc. within the first twenty four hours of admission.
Therefore the second day of admission is generally bet-
ter suited for making a more informed prediction. Based
on this rationale, for admitted patients, we re-adjust their
prediction date by incrementing it to be the second day of
admission.

For both positive and negative cases, we censor all the
data after their corresponding prediction date. The KM-
plot of censor lengths is shown in Fig. 1, highlighting the
separation between the two classes at 365 days.

Data description
The inclusion criteria resulted in selecting a total of
221,284 patients. Table 1 shows the breakdown of these
patients based on inclusion and admission. Note that

Fig. 1 Right-censoring lengths shown as a survival plot
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Table 1 Breakdown of patient counts

Alive Deceased Total

In EHR 1,880,096 131,009 2,011,105

Selected 205,571 15,713 221,284

Admitted 9648 1131 10,779

the admitted patients are kept a subset of the included
patients, and not separated into a disjoint set.

We observe that, unsurprisingly, the distribution of age
at prediction time is not equal between the classes, and
that the positive class (of deceased patients) is skewed
towards older age (Fig. 2).

The included patients are randomly split in approximate
ratio 8:1:1 into training, validation and test sets, as shown
in Table 2.

The prevalence of death among the set of all included
patients is approximately 7%. Of all the included patients,
approximately 5% were admitted patients (i.e., those who
had their prediction date as the second day of an admis-
sion). Among the admitted patients subset, the prevalence
of death is a little higher, at about 11%.

Feature extraction
For each patient, we define their observation window as
the 12 months leading up to their prediction date. Within
the observation window of each patient, we create features
using ICD9 (International Classification of Diseases 9th
rev) diagnostic and billing codes, CPT (Current Proce-
dural Terminology) procedure codes, RXCUI prescription
codes, and encounters found in that period.

Features are created as follows. We split the observa-
tion window of each paitent into four observation slices,
specified relative to the prediction date (PD). This is done
in order to capture the longitudinal nature of the data.

Fig. 2 Age of patients at prediction time

Table 2 Data split for modeling

Training Validation Testing

Alive 164,424 20,619 20,528 205,571

Deceased 12,587 1520 1606 15,713

177,011 22,139 22,134 221,284

The exact split points of each slice within the observation
window is shown in Table 3.

Thus, observation slice 1 is the most recent, and obser-
vation slice 4 is the oldest. In order to give more emphasis
to recent data, the slice widths are intentionally nar-
row in the later slices compared to the earlier ones.
Within each observation slice, we count the the num-
ber of occurrences of each code in each code category
(prescription, billing, etc.) in that range. The count of
every such code within the slice is considered a separate
feature.

We also include the patient demographics (age, gender,
race and ethnicity), and the following per-patient sum-
mary statistics in the observation window for each code
category:

• Count of unique codes in the category.
• Count of total number of codes in the category.
• Maximum number of codes assigned in any day.
• Minimum number of codes (non-zero) assigned in

any day.
• Range of number of codes assigned in a day.
• Mean of number of codes assigned in a day.
• Variance in number of codes assigned in a day.

All these features (i.e, code counts in each of the four
observation slices, per category summary statistics over
the observation window, and demographics) were con-
catenated to form the candidate feature set. From this
set, we pruned away those features which occur in 100 or
fewer patients. This resulted in the final set of 13,654 fea-
tures. Of the 13,654 features, each patient on average has
74 non-zero values (with a standard deviation of 62), and
up to a maximum of 892 values. The overall feature matrix
is approximately 99.5% sparse.

Table 3 Observation window and slices

Start date End date Duration

Observation window PD - 365 PD 365

Observation slice 1 PD - 30 PD 30

Observation slice 2 PD - 90 PD - 30 60

Observation slice 3 PD - 180 PD - 90 90

Observation slice 4 PD - 365 PD - 180 185
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Algorithm and training
Our model is a Fully Connected Deep Neural Network
(DNN) [39] having an input layer (of 13,654 dimensions),
18 hidden layers (of 512 dimensions each) and a scalar out-
put layer. We employ the logistic function and log loss at
the output layer for binary classification (with 0/1 labels),
and use the Scaled Exponential Linear Unit (SeLU) acti-
vation function [40] at each layer. The model is optimized
using the Adam optimizer [41], with a mini-batch size of
128 examples. The default learning rate was used (0.001).

Intermediate model snapshots of the model weights
were taken every 250 mini-batch iterations, and the snap-
shot that performed best on the validation test was
retroactively selected as the final model. Explicit regular-
ization was not found necessary. The network configu-
ration was reached by extensive hyperparameter search
over various network depths (ranging from 2 to 32) and
activation functions (tanh, ReLU and SeLU).

The software was implemented using the Python pro-
gramming language (version 2.7), PyTorch framework
[42], and the scikit-learn library (version 0.17.1) [43]. The
training was performed on an NVIDIA TitanX (12 GB
RAM) with CUDA version 8.0.

Evaluation metric
Since the data is imbalanced (with 7% prevalence), accu-
racy can be a poor evaluation metric [44]. As an extreme
case, blindly predicting the majority class without even
looking at the data can result in high accuracy, though
as useless such a classifier may be. The ROC curve plots
the trade-off between sensitivity and specificity, and the
Area Under its Curve (AUROC) is generally a more robust
metric compared to accuracy in imbalanced problems,
but it can also be sometimes misleading [45, 46]. In use
cases where the algorithm is used to surface examples
of interest based on a query from a pool of data (e.g
“find me patients who are near death”) and take action
on them, the tradeoff between precision and recall is
more meaningful than the tradeoff between sensitivity
and specificity. This is generally because the action has
a cost associated with it, and precision (or PPV) informs
us of how likely that cost results in utility. Therefore,
we use the Average Precision (AP) score, also known as
Area Under Precision-Recall Curve (AUPRC) for model
selection [47].

Results
In this section we report technical evaluation results
obtained on the test set using the model selected based on
the best AP score on the validation set.

We observe that the model is reasonably calibrated
(Fig. 3) with a Brier score of 0.042. In the high threshold
regime, which is of interest to us, the model is a little con-
servative (under-confident) in its probability estimates.

Fig. 3 Reliability curve (calibration plot) of the model output
probabilities on the test set data

This means, on average we expect the real precision in the
selected candidates to be higher than expected.

The interpolated Precision-Recall curve (with the inter-
polation performed as explained in Chap 8 of [48]) is
shown in Fig. 4. The model achieves an AP score of 0.69
(0.65 on admitted patients). Early recall is desirable, and
therefore Recall at precision 0.9 is a metric of interest.
The model achieves recall of 0.34 at 0.9 precision (0.32
on admitted patients). The Receiver Operating Charac-
teristic curve is shown in Fig. 5. The model achieves an
AUROC of 0.93 (0.87 for admitted patients). Both the
ROC and Precision-Recall plots suggest that the model
demonstrates strong early recall behavior.

Qualitative analysis
It is worth recalling that predicting mortality was only
a proxy problem for the original problem of identify-
ing patients who could benefit from palliative care. In

Fig. 4 Interpolated Precision-Recall curve. The horizontal dotted line
represents precision level of 0.9. The vertical dotted lines indicate the
recall at which the curves achieve 0.9 precision
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Fig. 5 Receiver Operating Characteristic (ROC) of the model
performance on the test set

order to evaluate our performance on the original prob-
lem, we inspected false positives with high probability
scores. Although such patients did not pass away within
12 months from their prediction dates, we noted that
they were often diagnosed with terminal illness and/or
are high utilizers of healthcare services. This can be
seen in the positive and false positive examples shown in
“Discussion” section.

Upon conducting a chart review of 50 randomly cho-
sen patients in the top 0.9 precision bracket of the test

set, the palliative care team found all were appropriate for
a referral on their prediction date, even if they survived
more than a year. This suggests that mortality prediction
was a reasonable (and tractable) choice of a proxy problem
to solve.

Discussion
Supervised machine learning techniques, and in partic-
ular Deep Learning techniques, have recently demon-
strated tremendous success in predictive ability. However,
better performance often requires larger, more complex
models, which comes with an inevitable cost of sacri-
ficing interpretability. It is worth drawing a distinction
between interpreting a model itself, versus interpreting
the predictions from the model [49, 50]. While interpret-
ing complex models (e.g very deep neural networks) may
sometimes be infeasible, it is often the case that users
only want an explanation for the prediction made by the
model for a given example. The utility of such an inter-
pretation is generally a function of the nature of action
taken based on the prediction. If the action is a high-
stake action, such as an automated clinical decision, it is
important to establish the trust of the practitioner in the
model’s decisions for them to feel comfortable with the
actions, and providing explanations along with decisions
help establish that trust. In the context of our work, the
action is not an automated clinical decision, but rather
a tool to make the workflow of a human more efficient

Table 4 Prediction explanation generated on a random positive patient with high probability score

Patient MRN XXXXXXX

Probability score 0.946

Factors Code Value Influence Description

Top Diagnostic factors V10.51 4 0.0051 Personal history of malignant neoplasm of bladder

V10.46 5 0.0019 Personal history of malignant neoplasm of prostate

518.5 1 0.0012 Pulmonary insufficiency following trauma and surgery

518.82 1 0.0008 Other pulmonary insufficiency

88.75 1 0.0006 Diagnostic ultrasound of urinary system

Top Procedural factors 88331 1 0.0017 Pathology consultation during surgery with FS

75984 1 0.0014 Transcatheter Diagnostic Radiology Procedure

72158 1 0.0013 MRI and CT Scans of the Spine

Code_Type_Count 76 0.0011 Summary statistic (count of all ICD/CPT codes)

76005 1 0.0007 Fluroscopic guidance and localization of needle or catheter tip for spine

Top Medication factors

Top Encounter factors Hx Scan 21 0.0012 Number of scan encounters of all types

Inpatient 60 0.0004 Number of days patient was admitted

Var_Codes_per_Day 8 0.0002 Summary statistic (variance in number of codes assigned per day)

Code_Day_Count 88 0.0001 Number of days any encounter code was assigned

Top Demographic factors Age 81 0.0010 Age of patient in years at prediction time

Only factors that contributed to a drop in probability score are reported
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(i.e avoid cumbersome chart reviews), and the human (i.e
palliative care doctor) is always in the loop to make the
decision of whether or not to initiate a consult after hav-
ing a closer look at the patient’s history. In such cases,
the utility of interpretations is to make the human feel
that it’s worth their time to even go by the recommenda-
tions made by the model. Decision interpretation can also
help identify when non-stationarity of the patient data
is reaching a certain threshold. We can get an early feel
for whether the patient population over time has started
drifting away from the data distribution the model was
trained on, when the interpretations no longer meet com-
mon sense expectations. This could suggest it may be
time to either re-tune or retrain the model with more
recent data.

We make the following observations to motivate our
explanation technique.

• We can view the EHR data as a strictly growing log of
events, and that new data is only added (nothing is
modified or removed in general). This results in all
our features being positive valued (as counts, means
and variance of counts, etc).

• We are most interested in explaining why a model
assigns high probability to a patient. We are less
interested in getting an explanation for why a healthy
person was given a low probability (the reasons are
also much less clear: the patient did not have brain
cancer, did not have pneumonia, and so on).

• Directly perturbing feature vectors (e.g sensitivity
analysis or for techniques described in [49]) does not
work well in our case . For example, perturbing the
feature representing the ICD count for brain cancer
from zero to non zero can increase the probability of
death significantly, implying that it is an important
factor in general. However, that is not a very useful
observation for a specific patient who does not have
brain cancer.

These observations motivate the following technique.
For each ICD-9, CPT, RXCUI and Encounter type, we
ablate all occurrences of that code from the patient’s EHR,
create a new feature vector, and measure the drop in
log-probability compared to the original probability. This
corresponds to asking the counter-factual: all else being
equal, how would the probability change if this patient

Table 5 Prediction explanation generated on a random false positive patient with high probability score

Patient MRN YYYYYYY

Probability score 0.909

Factors Code Value Influence Description

Top Diagnostic factors 197.7 16 0.1299 Malignant neoplasm of liver, secondary

154.1 3 0.1254 Malignant neoplasm of rectum

287.5 1 0.0194 Thrombocytopenia, unspecified

780.6 1 0.0171 Fever and other physiologic disturbances of temperature regulation

733.90 1 0.0113 Other and unspecified disorders of bone and cartilage

Top Procedural factors 73560 1 0.0502 Diagnostic Radiology (Diagnostic Imaging) Procedures of the Lower Extremities

Code_Type_Count 20 0.0491 Summary statistic (Number of unique ICD-9/CPT codes)

74160 1 0.0381 Diagnostic Radiology (Diagnostic Imaging) Procedures of the Abdomen

Max_Codes_per_Day 6 0.0234 Summary statistic (Maximum number of codes in any day)

Range_Codes_per_Day 6 0.0233 Summary statistic (Range of codes across days)

Top Medication factors 283838 1 0.0619 Darbepoetin Alfa

28889 1 0.0247 Loratadine

Range_Codes_per_Day 5 0.0023 Summary statistic (Ranges of codes across days)

Max_Codes_per_Day 5 0.0023 Summary statistic (Maximum number of codes in any day)

Code_Type_Count 6 0.0015 Summary statistic (Number of unique medication codes)

Top Encounter factors Hx Scan 19 0.2239 Number of scan encounters of all types

Code_Day_Count 97 0.0284 Number of days any encounter code was assigned

Outpatient 22 0.0228 Number of Outpatient encounters

Var_Codes_per_Day 1 0.0074 Summary statistic (variance in number of codes assigned per day)

Top Demographic factors

Only factors that contributed to a drop in probability score are reported
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was not diagnosed with XYZ, prescribed drug ABC, etc?
This drop in log-probability is considered the influence
the code has on the model’s decision for that patient.
Demographic features are handled as follows. We zero
out the age and swap the gender to the opposite sex,
and measure the respective drops in probability. Finally
we sort the codes in descending order by influence, and
pick the top 5 in each code category. A random exam-
ple of such a positive and false positive case are shown in
Tables 4 and 5.

Conclusion
We demonstrate that routinely collected EHR data can be
used to create a system that prioritizes patients for fol-
low up for palliative care. In our preliminary analysis we
find that it is possible to create a model for all-cause mor-
tality prediction and use that outcome as a proxy for the
need of a palliative care consultation. The resulting model
is currently being piloted for daily, proactive outreach to
newly admitted patients. We will collect objective out-
come data (such as rates of palliative care consults, and
rates of goals of care documentation) resulting from the
use of our model. We also demonstrate a novel method
of generating explanations from complex deep learning
models that helps build confidence of practitioners to act
on the recommendations of the system.
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