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Over the last several decades, vagus nerve stimulation (VNS) has evolved from a
treatment for select neuropsychiatric disorders to one that holds promise in treating
numerous inflammatory conditions. Growing interest has focused on the use of VNS
for other indications, such as heart failure, rheumatoid arthritis, inflammatory bowel
disease, ischemic stroke, and traumatic brain injury. As pre-clinical research often guides
expansion into new clinical avenues, animal models of VNS have also increased in
recent years. To advance this promising treatment, however, there are a number of
experimental parameters that must be considered when planning a study, such as
physiology of the vagus nerve, electrical stimulation parameters, electrode design,
stimulation equipment, and microsurgical technique. In this review, we discuss these
important considerations and how a combination of clinically relevant stimulation
parameters can be used to achieve beneficial therapeutic results in pre-clinical studies
of sub-acute to chronic VNS, and provide a practical guide for performing this work
in rodent models. Finally, by integrating clinical and pre-clinical research, we present
indeterminate issues as opportunities for future research.
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INTRODUCTION

Vagus nerve stimulation (VNS) is an FDA-approved treatment for select neurological and
psychiatric conditions including epilepsy, treatment-resistant depression, and cluster headache
(Heck et al., 2002; Ruffoli et al., 2011; Conway et al., 2016; Pisapia and Baltuch, 2016; Lainez and
Guillamon, 2017; Kumar et al., 2019). There is also growing interest in using VNS to treat other
conditions, such as heart failure, rheumatoid arthritis, inflammatory bowel disease, ischemic stroke,
and traumatic brain injury (Zhang et al., 2009; Bonaz et al., 2013; Cai et al., 2014; Levine et al.,
2014a,b, Levine et al., 2018a,b; Dawson et al., 2016; Guiraud et al., 2016; Koopman et al., 2016; Pruitt
et al., 2016; Kanashiro et al., 2018), many of which are characterized by inflammation. Extensive
pre-clinical evidence has demonstrated the utility of VNS in treating inflammatory conditions
(Huston et al., 2006, 2007; Rosas-Ballina et al., 2008; Levine et al., 2014a,b; Olofsson et al., 2015),
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and a recent clinical study of rheumatoid arthritis (Koopman
et al., 2016) further supports this treatment for widespread
application. As VNS is applied to a broader range of conditions, it
is important to recognize factors that influence study outcomes,
such as stimulation settings, vagus nerve physiology, anatomical
location of the target nerve branch, and electrode design.
However, in many reports published thus far, these factors are
often either not discussed, or are described as “customized” (i.e.,
as in the case of electrode design). A comprehensive discussion is
therefore needed to inform the scientific design and reproducible
execution of VNS studies.

The current review will provide a stepwise overview to inform
the administration of VNS in rodent models, which often form
the basis for higher-order study models. Key experimental
conditions are discussed, including vagus nerve physiology,
electrode design, stimulation equipment, microsurgical
technique, and electrical stimulation parameters. Each step
includes a detailed rationale to help inform modifications.
Although a recent article outlined the surgical procedure
for acute rodent VNS (Le Maitre et al., 2017), that method
involved only a single stimulation and subsequent removal
of the electrode. The current protocol will extend this work
by outlining all of the steps necessary to conduct a full-scale
sub-acute to chronic VNS study with an implanted cuff
electrode. Here, we offer a practical guide to support pre-clinical
VNS testing, anticipating the application of VNS for new
clinical indications.

TARGETED STIMULATION OF THE
VAGUS NERVE

Vagus Nerve Physiology
The vagus nerve is the tenth and longest cranial nerve and
the primary mediator of the parasympathetic branch of the
autonomic nervous system (Tracey, 2002; Bonaz et al., 2013). It
also regulates immune system homeostasis through an intrinsic
“cholinergic anti-inflammatory pathway” (Tracey, 2002; Bonaz
et al., 2013). The vagus is a mixed nerve, largely composed
of afferent sensory (∼80%) and efferent motor (∼20%) nerve
fibers (George et al., 2003, 2004; Groves and Brown, 2005),
the composition differing depending on the anatomical location
of the nerve (Prechtl and Powley, 1990). The vagus nerve
contains three main fiber types: A-, B-, and C-fibers, which
are distinguished by fiber diameter, myelination, and activation
thresholds (Heck et al., 2002; Groves and Brown, 2005; Ruffoli
et al., 2011). A-fibers are large and myelinated (5–20 µm in
diameter) and are activated by the lowest amount of current
(0.01–0.2 mA) (Schnitzlein et al., 1958; Groves and Brown, 2005;
Vuckovic et al., 2008; Ruffoli et al., 2011). B-fibers are mid-sized
and myelinated (∼1–3 µm in diameter) and are also activated
by low currents (0.04–0.6 mA) (Schnitzlein et al., 1958; Groves
and Brown, 2005; Vuckovic et al., 2008; Ruffoli et al., 2011).
C-fibers, which constitute the majority of vagus nerve fibers
(∼65–80% of afferent fibers), are small and unmyelinated (0.4–
2 µm in diameter) and require the highest activation currents
(greater than 2.0 mA) (Schnitzlein et al., 1958; Heck et al., 2002;

Groves and Brown, 2005; Vuckovic et al., 2008; Ruffoli et al.,
2011; Yoo et al., 2013). Although the distribution of the vagus
nerve has been shown to be comparable in some species (Mackay
and Andrews, 1983; Asala and Bower, 1986), the morphology
of the nerve changes depending on the anatomical location
(Agostoni et al., 1957; Hoffman and Schnitzlein, 1961; McAllen
and Spyer, 1978; Mei et al., 1980; Jammes et al., 1982; Powley
et al., 1983; Prechtl and Powley, 1990; Henry, 2002; Ruffoli et al.,
2011; Clancy et al., 2013; Hammer et al., 2015, 2018; Verlinden
et al., 2015; Bonaz et al., 2016; Yuan and Silberstein, 2016;
Planitzer et al., 2017).

Anatomical Considerations
Choosing an appropriate anatomical location to deliver
stimulation is important when designing a VNS study. In most
cases, VNS is delivered to the cervical vagus nerve (George et al.,
2004; Howland, 2014) using an implanted electrode. Clinically,
this anatomical location is the most common site for immune-
modulation and treating epilepsy and depression (Lomarev
et al., 2002; Nemeroff et al., 2006; Ben-Menachem et al., 2015;
Koopman et al., 2016; Giordano et al., 2017). The left and right
cervical branches differentially innervate the heart (O’Toole
et al., 1986; Berthoud and Neuhuber, 2000; Ruffoli et al., 2011),
where the right vagus nerve has more direct projections to the
cardiac atria (Henry, 2002; Groves and Brown, 2005) and thus
has a greater influence on heart rate. For this reason, left-sided
VNS has been recommended to avoid adverse cardiovascular
effects in humans (Henry, 2002; Groves and Brown, 2005; Van
Leusden et al., 2015), even though equivalent anti-seizure effects
are observed with either left, or right cervical VNS (Krahl et al.,
2003; Navas et al., 2010). In rodent models, this lateral difference
is not as clear and may differ depending on the stimulation
parameters used (Stauss, 2017).

Anatomical differences in vagus innervation may be useful to
help researchers adjust stimulation parameters to achieve specific,
clinically relevant outcomes. Although most clinical applications
target the left cervical vagus nerve, certain conditions may benefit
from targeting different anatomical branches. For example, VNS
applied to the right cervical vagus nerve is currently being
explored to treat heart failure, where direct cardiac effects
are desired (Li et al., 2004; Howland, 2014). Morphological
differences in the right and left cervical vagus nerve branches
(Verlinden et al., 2015) may also explain different clinical
effects. Specifically, it was recently reported that both cervical
nerve branches contain tyrosine hydroxylase- and dopamine
β-hydroxylase-positive nerve fibers, but that the right cervical
branch has a larger surface area and double the number of
tyrosine hydroxylase-positive nerve fibers (Verlinden et al.,
2015). These findings may inform the use of VNS for select
cholinergic or adrenergic effects (Onkka et al., 2013; Seki et al.,
2014; Verlinden et al., 2015).

Anatomical differences between the cervical vagus nerves may
be less important in the treatment of other conditions, likely due
to the abundant crossover of fibers between branches of the vagus
nerve (Berthoud and Neuhuber, 2000). For example, in a recent
study, no significant differences in inflammatory cytokines were
found in animals receiving unilateral VNS to the left cervical
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FIGURE 1 | Different sized (0.3 and 0.5 mm) cuff electrodes with connectors. Embedded sutures on the electrode can facilitate the surgical implant (inset). Other
important electrode elements described in the text are identified. Cuff image reproduced with permission from MicroProbes for Life Science (Gaithersburg, MD).

vagus nerve compared to those receiving bilateral stimulation
(VNS applied to the right and left nerve branches) (Olofsson
et al., 2015). Laterality concerns may also be less pertinent for
the emergent interest in transcutaneous VNS at the auricular
or cervical branch (Howland, 2014; Ben-Menachem et al., 2015)
and subdiaphragmatic VNS (Greenway and Zheng, 2007; de
Lartigue, 2016). It remains to be determined whether the same
stimulation parameters can be used for different vagus nerve
branches or implanted vs. non-implanted modalities. Further
research is needed to elucidate stimulation parameters for each
clinical indication and comparative efficacy for implanted vs.
non-implanted approaches. Here, the current review will focus
on the most common clinical and pre-clinical stimulation site,
the left cervical vagus nerve (Howland, 2014), using an implanted
electrode. As rodents are commonly used in physiological studies
with clinical relevance and form the basis for higher-order
models, this overview will discuss specifications pertinent to
mouse and rat models in a clinically relevant context, starting
with electrode design and implantation, and concluding with
stimulation parameters.

ELECTRODE DESIGN

The electrode design is an important factor to consider when
planning a VNS study. In the most common clinical deployment
using a can-and-lead system, the cervical vagus nerve is encircled
with bipolar helical electrodes, and a pulse generator is implanted
in the chest wall (Bonaz et al., 2013; Giordano et al., 2017). The
electrode configuration consists of two spiral electrodes placed
around the vagus nerve: the cathode is placed cranial and the
anode caudal. A third helical tethering anchor is also placed
around the nerve, directly caudal to the anode to provide strain
relief (Pisapia and Baltuch, 2016; Giordano et al., 2017).

Electrodes used in rodents may differ, depending on the
research objectives and study length (ranging from acute to

chronic stimulation). The electrode configuration can include
many designs (e.g., cuff or hook, and the inclusion of
recording electrodes). A recent VNS methods paper described
a needle electrode that was placed under the left cervical
vagus nerve during a single stimulation (Le Maitre et al.,
2017). For research involving multiple stimulation treatments,
we implanted a bipolar cuff electrode with embedded sutures
around the nerve (see Figure 1). Cuff electrodes are used
in acute and chronic implantation to prevent current leakage
into the surrounding tissue. We applied a strain-relieving
suture close to the deployment site (detailed below), and
the attached lead and pin connector was then tunneled
under the skin and externalized at the base of the neck.
Figure 2 depicts the externalized connector and an awake
animal receiving stimulation. Stimulation was delivered with
a commercially available external pulse generator and current-
controlled stimulus isolator (see Figure 2), described below.

For control conditions (unstimulated), a sham electrode can
be made by implanting a silicon tube that is the same size
as the electrode. This relatively inexpensive inactive design is
helpful for feasibility testing, as it compensates for the mechanical
stimulation that occurs when the nerve is manipulated (Huston
et al., 2007). However, other variables (e.g., the weight of
the electrode and tension from the connecting wire-embedded
lead) may influence study outcomes, and it is best to have
a control condition that consists of an identical implanted
electrode that does not receive electricity or a cuff and lead
constructed without wires.

In animal experimentation, placement of the cathode and
anode are typically not reported. Animal research often
includes study factors not relevant to clinical practice, such
as stimulation of the distal nerve trunk of a vagotomized
animal (Borovikova et al., 2000; de Jonge et al., 2005). In a
recent rodent study, no significant differences in inflammatory
cytokines were found with either rostral or caudal placement
of the cathodic lead (Olofsson et al., 2015), likely because
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FIGURE 2 | Left panel (top to bottom): Biphasic current-controlled stimulus
isolator and biphasic pulse generator (BSI-1A, BPG-1P, respectively; Bak
Electronics Incorporated, Umatilla, FL, United States). Right panel (top to
bottom): Omnetics mating plug for the externalized connector and awake
animal receiving stimulation. All procedures described and animal
photography was performed with approval by the Institutional Animal Care
and Use Committee (IACUC) at the University of Miami.

action potentials are generated in both directions when
an axon is depolarized. Additional research is needed to
understand how cathodic placement and pulse parameters can
be modified for specific treatment indications, a topic that is
currently being explored (Ardell et al., 2017; Patel et al., 2017;
Stauss, 2017).

Electrode Specifications for Mice and
Rats
Although many research groups construct their own electrodes,
they can also be purchased and customized through commercial
vendors. Nerve cuff electrodes can be made from several
conductive materials, including platinum, platinum-iridium, and
stainless steel. These electrodes are typically designed with
monopolar, bipolar, or tripolar configurations, referring to the
number of independent electrical contacts within the cuff. The
tradeoff is generally increased control over current flow with a
greater number of contacts, but also greater cost and cuff length.
Monopolar electrodes are cheaper but require a return or ground,
and current paths are less controllable. Bipolar electrodes are
more expensive but allow better control over current flow than
monopolar, as most of the current will flow directly between
the two adjacent contacts. Bipolar cuff electrodes may be more
practical and are widely used in pre-clinical research when the
cost is a determining factor, especially in pilot studies. Tripolar
electrodes may be connected in a pseudo-tripolar configuration
(the two external electrodes linked together to form a common
anode), which prevents current from leaking out of the cuff.

The size of the target nerve will determine the size of
the electrode, as the inner diameter of the cuff should be
approximately 1.4 times the outer diameter of the nerve. Use of
a cuff that is too small could damage the nerve, and one that is
too large could lead to insufficient surface contact or excessive
current leakage (Agnew and McCreery, 1990; Yoshida and Riso,
2004). We used nerve cuffs with an inner diameter of 0.3 mm

for both mice and small rats and 0.5 mm for larger rats. These
sizes were informed by our experience and by published reports
(Olofsson et al., 2015).

Besides inner diameter, other modifications include the
number of contacts, the distance between contacts, and distance
from the contacts to the end of the cuff. The number of
contacts is determined by the stimulation paradigm desired. The
distance between contacts (“inter-electrode spacing”) we used
was 0.5 mm for mice and small rats and 1 mm for larger rats. The
distance from the last contact to the end of the cuff is typically
three times the distance between contacts to prevent significant
current leakage outside the cuff. This distance can be much
smaller in pseudo-tripolar electrode configuration. Other custom
modifications can be made to suit the research experiment, for
example, using an angled cuff design, a multichannel omnetics
connector on the externalized cuff lead, embedded suture
material on the cuff for convenient closure, suture rings exiting
from the base of the connector, and protective silicone tubing
around the wiring. A deep review of electrode design is beyond
the scope of the current article, but has been reviewed extensively
elsewhere (Loeb and Peck, 1996; Merrill et al., 2005; Foldes et al.,
2011; Dweiri et al., 2016; Caravaca et al., 2017).

Finally, stimulation conditions in acute vs. chronic studies
may differ, as it has been shown that connective tissue forms
around the cuff within the first 2 months of implantation
(Agnew and McCreery, 1990; Helmers et al., 2012). While this
scar tissue will bind the nerve and cuff together and prevent
movement abrasion, it can also increase the impedance, causing
an increase in the amount of stimulation voltage required to
excite the nerve (Agnew and McCreery, 1990; Helmers et al.,
2012). Furthermore, it was recently shown that chronic cuffing
of the vagus nerve changes the integrity of the nerve fibers,
likely due to the inflammatory response to the foreign material
(Somann et al., 2018). Although the inflammatory response
should resolve upon the formation of fibrous tissue, in some
instances, it can negatively affect the integrity of the nerve,
including demyelination (Tyler and Durand, 2003; Thil et al.,
2007; Somann et al., 2018). It is currently unknown whether this
process affects afferent and efferent vagus nerve fibers equally,
but it is a potential source of study variability that should be
considered when planning a chronic VNS study (Somann et al.,
2018). Recent advancements in cuff design show promise in
addressing some of these concerns (Caravaca et al., 2017).

STIMULATION EQUIPMENT

Commercially available equipment can be used to deliver a
charge-balanced, biphasic square-wave pulse to a bipolar cuff
electrode (Levine et al., 2014b; Olofsson et al., 2015). For
investigators wanting readily available equipment, we have
outlined the specifications related to one vendor, Bak Electronics
Incorporated (Umatilla, FL, United States), but many of these
specifications are also relevant to other vendors. For our studies,
we delivered biphasic (cathodic-leading) stimulation (Levine
et al., 2014b; Olofsson et al., 2015) using an external biphasic
pulse generator and current-controlled biphasic stimulus isolator
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FIGURE 3 | A depiction of the waveform of one charge-balanced, biphasic,
cathodic-leading square pulse cycle, showing pulse width (PW), inter-phase
interval (IPI), and pulse amplitude (PA). These components have been
explained in detail elsewhere (Merrill et al., 2005). Image adapted with
permission (Levine et al., 2014b; Olofsson et al., 2015) under the Creative
Commons Attribution License.

(BPG-1P and BSI-1A, respectively). Gently restrained rodents
(without anesthesia) were connected to the equipment with a
mating plug for stimulation delivery (De Herdt et al., 2009;
Zhang et al., 2009). See Figure 2 for equipment configuration
and stimulation. Stimulation can be delivered for a specific period
(e.g., 60 s) using the manual trigger or it can be digitally triggered
or gated to a particular stimulus with a laptop configuration.
The waveform design of one charge-balanced, biphasic, cathodic-
leading square pulse cycle is represented in Figure 3.

The delivery specifications of each VNS “treatment” will
depend on the physiological outcome measure to be studied.
For example, in the context of anti-inflammatory effects, it has
been shown that VNS delivered 24–48 h prior to endotoxin
exposure resulted in a significant reduction in tumor necrosis
factor (TNF) cytokine upon exposure (Huston et al., 2007).
This period of therapeutic effects suggests that for certain
indications (e.g., conditions characterized by an exaggerated
inflammatory response to stimuli), VNS may be administered
prophylactically or at specific intervals. As VNS treatment will
likely be tailored to clinical symptoms, additional work is
needed to determine the temporal response of VNS for other
indications. Finally, it is important to include a measurable
variable to determine stimulation effectiveness and rule out
potential sources of study variability, such as incorrect placement
or faulty electrodes, or mechanical damage to the nerve. One
option is to record evoked potentials from the vagus nerve
after VNS, for example, by stimulating the cervical branch and
recording from the subdiaphragmatic branch (Olofsson et al.,
2015). This approach can be taken just prior to euthanasia, or
immediately after implantation; however, recording from the
vagus nerve is technically challenging to perform in rodents
(Silverman et al., 2018). To circumvent some of these challenges,
investigators can record in a smaller cohort of animals, use
electrodes that perform both stimulation and recording, or obtain
electromyography (EMG) recordings of the laryngeal muscles
that are innervated by the vagus. Another common option is to
use heart rate to verify effective cuff placement, where stimulation
is increased until a change in heart rate is observed (Levine
et al., 2019). At a minimum, we recommend to visually inspect

the nerve at euthanasia to ensure that it is still within the cuff
and, when possible, to perform histology on the excised nerve to
verify axon integrity.

MICROSURGICAL TECHNIQUE:
ELECTRODE PLACEMENT

The stepwise surgical procedure detailed below involves the
placement of an electrode on the LEFT cervical vagus nerve.
The lateral configuration will change if implanting on the
RIGHT nerve branch. All survival surgeries should be performed
with aseptic technique while the animal is anesthetized, as
recommended by the local Institutional Animal Care and
Use Committee. Standard post-operative care should also be
administered, including hydration and analgesia. With the
animal lying prone, make a small opening (∼2 mm) in the skin
at the craniovertebral junction, then place the animal in supine
position. Palpate the sternal notch. Using scissors, carefully make
a vertical incision at the neck, 3 mm caudal to the sternal notch.
Dissect the subcutaneous space and extend the midline opening
toward the jaw. Identify the inferior border of the thyroid tissue
(“V” shaped distinct white line at the cervico-sternal junction).
Blunt dissect the thyroid tissue along this line and reflect rostrally.
Using a curved, narrow hemostat, create a subcutaneous tunnel
toward the opening made at the craniovertebral junction. Bring
the electrode through the tunnel and secure to the side of the
incision site with tape or weighted instruments. Using blunt-
tipped surgical hooks or modified needle syringes as hooks, reflect
the thyroid superiorly and the left sternocleidomastoid inferiorly
to expose the carotid fossa. No cutting of subcutaneous tissue
should be done at any time.

Isolate the left carotid sheath from the connective tissue using
pickup forceps and gentle opening-closing movements parallel
to the vessels. Identify the nerve (white in appearance) located
directly behind or adjacent to the carotid artery. Note, gentle
dissection can be accomplished with small, blunt-tipped forceps,
minimizing the risk of vessel puncture; however, sharp forceps
can also be carefully used to separate the nerve from the carotid
artery. Gently dissect the nerve circumferentially taking care not
to damage the vessels or tug on the nerve, and place background
material under the nerve (a small piece of sterile glove will serve
this purpose). Feed the suture strings from the same side of the
electrode cuff under the nerve. Advance the electrode cuff under
the nerve. Open the cuff by pulling on the opposing sutures, allow
the nerve to slide into the open cuff, and secure the cuff by tying
the suture strings (see Figure 4). If the visualized nerve is very
thin, it is also possible to encircle the entire carotid sheath in
mice without isolating the nerve (Olofsson et al., 2015). Attach
the lead body to the subcutaneous tissue with a non-absorbable
suture (e.g., 4–0 Webcryl) placed approximately 5 mm away
from the cuff. This suture will secure the electrode and provide
strain relief. With the animal lying prone, feed the excess encased
wires evenly into the subcutaneous space (if necessary, create
a pocket with forceps by gentle opening-closing movements).
Secure the connector to the skin with non-absorbable suture
(using embedded suture rings or suture carefully placed through
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FIGURE 4 | Surgical preparation of the electrode implant. Close up (inset),
where the white dotted line lies parallel to the nerve lying inside the cuff. All
procedures described and animal photography was performed with approval
by the Institutional Animal Care and Use Committee (IACUC) at the University
of Miami.

the rubber encasement) and close the skin opening. Before
closing the neck incision, place the animal back in a supine
position to inspect the electrode and ensure the cuff is encircling
the nerve without twisting or pulling. Close the incision on the
neck. During surgery, care should be taken to avoid excessive
manipulation of the nerve to prevent axonal damage, and, as has
been reported, mechanical activation of neuroimmune reflexes
(Huston et al., 2007).

ELECTRICAL STIMULATION
PARAMETERS

Current FDA-Approved Clinical VNS
Guidelines
Many of the lessons learned in the application of VNS to treat
epilepsy are generalizable to other VNS applications, although
stimulation should be optimized to the specific treatment
condition. Several important parameters can be adjusted when
delivering stimulation to the vagus nerve: output current,
pulse width, pulse frequency, and duty cycle (i.e., “ON” and
“OFF” time) (Heck et al., 2002; Groves and Brown, 2005;
Wheless et al., 2018). Collectively, these parameters determine
the total amount of electrical energy delivered to the vagus
nerve during treatment (Heck et al., 2002). Current guidelines
in epilepsy include output currents between 0.25 and 3.5 mA
and pulse frequencies ranging between 20 and 30 Hz (Heck
et al., 2002; Groves and Brown, 2005; Ruffoli et al., 2011).
Continuously applied, high-frequency (50–100 Hz) current leads
to irreversible axonal injury, which can be avoided by reducing
the frequency to 20 Hz (Agnew and McCreery, 1990). These
findings and others showing optimal pulse frequencies for
seizure reduction ranging from 10 to 30 Hz (Woodbury and
Woodbury, 1990; Zabara, 1992) led to current FDA-approved
guidelines (Groves and Brown, 2005). These settings also
correspond with stimulation parameters reported in clinical trials
of depression (Rush et al., 2000, 2005a,b) and a recent clinical
study of rheumatoid arthritis (Koopman et al., 2016). Once a

target fiber type is identified, stimulation can be adjusted within
approved limits.

The output current is the stimulation parameter typically
adjusted first (Heck et al., 2002). A tolerable range of current
can be used to target specific nerve fibers and achieve clinical
efficacy. Initially, VNS treatment for clinical epilepsy was thought
to activate C-fibers, an approach that coincided with observations
of progressive anti-epileptic effects with increasing current (Heck
et al., 2002). This approach was not without consequence, as
elevated currents are less tolerable and increase adverse effects,
such as bradycardia, dyspnea, and throat tightness (Heck et al.,
2002). The need to increase output current to achieve clinical
efficacy (DeGiorgio et al., 2000, 2001) has been questioned
and may have been influenced by the high currents used for
non-responders (Heck et al., 2002). It has since been shown
that C-fiber activation is not required for anticonvulsant effects
(Krahl et al., 2001; Henry, 2002; Ruffoli et al., 2011) and that
currents above 2 mA may be unnecessary for most patients
(Heck et al., 2002).

The second parameter to consider is the pulse width, the
duration of a single stimulation pulse (Labiner and Ahern, 2007),
which can be adjusted to avoid the neural damage associated with
continuous stimulation (Agnew and McCreery, 1990). Rodent
seizure models report optimal pulse widths as high as 1,000 µs;
however, the pulse width is inversely related to tolerance in people
(Heck et al., 2002). Fortunately, this parameter can be adjusted
to improve tolerance without loss of efficacy, for example, by
shortening the pulse width from 500 µs to 250 µs (Heck et al.,
2002). Pulse width is inversely related to the current required to
stimulate a nerve (Heck et al., 2002; Labiner and Ahern, 2007;
Levine et al., 2019), and together these two parameters determine
the total charge per pulse (Labiner and Ahern, 2007; Levine
et al., 2019). Although shorter and longer pulse durations may be
preferred in different clinical applications (Agnew and McCreery,
1990), this is an area of active investigation (Mu et al., 2004;
Kong et al., 2012; Aaronson et al., 2013; Loerwald et al., 2018).
Thus, adjusting pulse width in concert with output current can
meet stimulation requirements and reduce the risks of excessive
stimulation current, while achieving a balance of clinical efficacy
and tolerability.

A third parameter, pulse frequency (number of pulses per
second), is less often varied in studies compared to other
stimulation settings. Pulse frequencies that are generally used in
rodent seizure models are similar to those used clinically, ranging
from 10 to 30 Hz (Heck et al., 2002). For treatment indications
besides epilepsy, the utility of specific pulse frequencies remains
under investigation. In clinical practice, it may be helpful to
use the natural firing rates of specific fiber types to guide pulse
frequency (Bonaz et al., 2013). For example, it has been reported
that the physiological firing frequency of A- and C-fibers is above
and below 10 Hz, respectively (Binks et al., 2001). It is currently
unclear whether pulse frequency can be used to preferentially
stimulate afferent vs. efferent fibers without the use of chemical
or electrical nerve block (Osharina et al., 2006; Bonaz et al., 2013;
Olofsson et al., 2015; Patel et al., 2017; Patel and Butera, 2018),
as generally, when an axon is depolarized beneath a cathodic
electrode, action potentials travel in both directions.
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To date, pulse frequencies that are responsible for specific
clinical effects remain to be determined; however, as more studies
are performed, we will better understand whether a combination
of stimulation settings will be useful in targeting specific nerve
fibers within efferent and afferent pathways [e.g., motor A-type
or sensory group I, II, and III fibers (Yoo et al., 2013)]. The use
of different stimulation paradigms to selectively target different
fiber types remains an area of active investigation (Vuckovic
et al., 2004, 2008; Howland, 2014; Peclin and Rozman, 2014;
Guiraud et al., 2016; Patel et al., 2017; Nuntaphum et al., 2018;
Patel and Butera, 2018).

A final parameter that affects stimulation is the duty cycle
(ON/OFF cycle) (Heck et al., 2002; Labiner and Ahern, 2007).
The standard duty cycle to treat persons with epilepsy is 30 s
ON/5 min OFF (Heck et al., 2002). Although shorter OFF times
can improve clinical efficacy, rapid cycling (i.e., very short duty
cycles) is much more energy intensive and may not be necessary
for effective treatment (Heck et al., 2002), at least for anti-seizure
use. A more in-depth discussion on considerations regarding
electrical stimulation can be found in previous reviews (Merrill
et al., 2005; Mortimer and Bhadra, 2009; Cogan et al., 2018; Grill,
2018). As an example using our equipment setup (Figure 2),
a stimulation “treatment” consisting of symmetrical biphasic
square pulses with current intensity of 500 µA, 250 µs pulse
width, and 50 µs inter-phase interval at 10 Hz for 60 s (Olofsson
et al., 2015) can be delivered with the following settings. Stimulus
isolator: 100 µA of constant current, AC coupling, continuous
stimulation, and an input gain of 1. Pulse generator: 5.0 amplitude
(5 × 100 µA × gain of 1), 250 µs pulse width, 100 ms period.
It should be noted that the pulse period is the inverse of the
desired frequency (i.e., 100 ms = 1/10 Hz × 1000 ms/s). To
summarize, the stimulation “treatment” using the parameters
from our previous example will consist of a 550 µs pulse (250 µs
for each phase of the pulse, plus 50 µs inter-phase interval), and
a 99,450 µs inter-pulse interval (total of 100,000 µs period).

Adverse Effects Associated With VNS
Commonly reported VNS adverse effects include cough, throat
tightening or discomfort, shortness of breath, voice alterations,
and cardiovascular symptoms, such as bradycardia (Ben-
Menachem, 2001; Heck et al., 2002; Ben-Menachem et al., 2015;
Jacobs et al., 2015). These transient effects are limited to when the
device is actively stimulating and are proportional to increases
in output current, pulse width, frequency, and duty cycle (Heck
et al., 2002; Jacobs et al., 2015; Olofsson et al., 2015). Pulmonary
effects are mainly associated with C-fiber activation (Banzett
et al., 1999; Heck et al., 2002; Henry, 2002), which were previously
associated with cardiovascular effects. However, it has been
shown that cardioinhibitory effects can be attributed to activation
of B-fibers (Jones et al., 1995; Banzett et al., 1999; Yoo et al.,
2016; McAllen et al., 2018; Qing et al., 2018). Importantly, no
evidence of “clinically relevant” bradycardia has been reported for
stimulation within FDA-approved guidelines (Heck et al., 2002).
It is also notable that anti-inflammatory and cardioinhibitory
effects are separable (Huston et al., 2007), further indicating
that stimulation parameters can be tailored for precise, clinically
relevant outcomes.

Tailoring VNS for Specific Conditions
Early anti-epileptic work targeted C-fibers under the assumption
that these abundant afferent fibers mediate the clinical effects
of VNS (George et al., 2003, 2004; Groves and Brown, 2005;
Yoo et al., 2013). As such, early VNS treatment utilized the high
output currents needed to stimulate C-fibers (Heck et al., 2002).
As A-, B-, and C-fibers are successively recruited with increased
electrical current (Woodbury and Woodbury, 1990; Yoo et al.,
2013), subsequent research demonstrated anticonvulsant effects
without specifically targeting C-fibers, thus allowing for smaller
amounts of current (Krahl et al., 2001; Henry, 2002; Ruffoli et al.,
2011). The activation thresholds of A- and B-fibers overlap, but
both require substantially less current than C-fibers (Groves and
Brown, 2005; Castoro et al., 2011), which, when activated, are
associated with most of the reported adverse effects (Heck et al.,
2002; Henry, 2002).

As the field has progressed, this iterative process of associating
specific fiber types with therapeutic effects has occurred in
the use of VNS for other indications, where anti-inflammatory
effects have been attributed to A-fibers (Huston et al., 2007)
and B-fibers (Olofsson et al., 2015). Importantly, recent
research shows that minimal stimulation can achieve beneficial
therapeutic outcomes. A seminal pre-clinical study demonstrated
that a minimal amount of current (0.5 mA) activated the
inflammatory reflex in both mice and rats (Olofsson et al.,
2015), effects of which were observed up to 2.5 mA. These
output currents remain below FDA-approved levels (Heck
et al., 2002) and are similar to currents used clinically for
rheumatoid arthritis (Koopman et al., 2016). Thus, minimized
stimulation may provide therapeutic benefits while avoiding
the adverse effects associated with higher output currents
(Heck et al., 2002).

CONCLUSION

Decades of research has brought extensive progress to the
field of neuromodulation, and specifically to the clinical use
of techniques such as VNS. Although VNS is a promising
neuromodulation tool, it has been challenging to incorporate
study findings from clinical and pre-clinical research. Pre-
clinical VNS work often involves mechanistic study aspects
not employed in clinical settings, such as the use of lidocaine
to block efferent or afferent signaling or electrical stimulation
of nerve stumps after vagotomy (Borovikova et al., 2000;
de Jonge et al., 2005; Niederbichler et al., 2009; Olofsson
et al., 2015). In clinical VNS application, decisions regarding
stimulation parameters may not be explicitly defined, such
as the number of treatment sessions; similarly, a clear
rationale for pulse-design modifications are often not
addressed. In addition to pulse frequencies, several other
key stimulation parameters can influence study outcomes
and reproducibility; however, selection of specific treatment
parameters are often not detailed or are simply reported as
“customized.” Furthermore, as activation thresholds may
differ depending on conditions of stimulation, it is critical
that study conditions are outlined in ongoing research efforts.
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These issues highlight the challenge of translating
rodent work to clinical application. The inflammatory
reflex appears to be conserved across species; where anti-
inflammatory effects are observed with similar stimulation
parameters in rodents with endotoxemia (Olofsson et al.,
2015), rodents with collagen-induced arthritis (Levine et al.,
2014b), and persons with rheumatoid arthritis (Koopman
et al., 2016). However, it is unknown whether specific
fiber types that mediate the reflex are similarly conserved.
Additionally, as disease-related factors may influence VNS
pathways, stimulation may be most effective if delivered
at specific time points of disease progression. These and
other questions remain to be determined and highlight the
importance of translating pre-clinical findings to heterogeneous
clinical populations.

The current review aims to advance VNS research by
providing a comprehensive discussion on performing pre-
clinical VNS studies in rodent models. We have provided
a microsurgical technique, discussed stimulation equipment,
and provided a rationale for choosing electrode design
and electrical stimulation settings. We outlined how a
combination of clinically relevant stimulation parameters
can be adjusted to achieve selected therapeutic effects.

Indeterminate issues are discussed and presented as avenues for
future research.
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