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Summary 
Costimulatory molecules B7 and B7-2 interact with T cell surface receptors CD28/CTLA4 and 
deliver a costimulatory signal essential for T cell growth. However, the structure basis of this 
interaction is not known. B7 and B7-2 are members of immunoglobulin (Ig) superfamily and 
their extracellular portion consists of an IgV- and IgC-like domain. Here we report that a natu- 
rally occurring, alternatively spliced form of B7 reveals that exon 3-encoded IgC domain is essen- 
tial for CD28/CTLA4 binding. Mutational analysis of B7 demonstrates a critical role of several 
amino acids around loops between strands B and C and D and E, for binding CTLA4/CD28. 
These amino acids are clustered to form a single binding site centered at 201Y. A comparison 
of the effects of mutations on the binding of CD28 and CTLA4 reveals that CD28 and CTLA4 
binds to the same site on B7. These results have important implications on the role of CTLA4 
and CD28 in T cell costimulation. The structure of the CD28/CTLA4-binding site also pro- 
vides valuable information for immune intervention targeted at the B7/B7-2-CD28/CTLA4 
interactions. 

ctivation of T cells requires two types of biological 
signals: signal I is delivered by interaction between the 

TCR and MHC-peptide complex, whereas signal 2 is called 
the costimulatory signal (1-6). Recent studies from various 
laboratories indicate that signal I determines the specificity 
of T cell activation, whereas signal 2 determines the fate of 
T cells. T cells that receive both signals 1 and 2 clonally ex- 
pand and differentiate into effector cells. In contrast, T cells 
that receive signal 1 alone are either functionally inactivated 
(anergized) and/or undergo programmed cell death (7-11). 

Several interactions have been described that are involved 
in T cell costimulation (12-19). Accumulating evidence 
strongly suggests that the interaction between CD28/CTLA4 
on T cells with their ligands B7 and/or B7-2 appears to be 
most important. First, anti-CD28 mAbs can augment T cell 
proliferation and prevent the induction of clonal anergy 
(20-23). Second, blocking B7 and B7-2 inhibits T cell prolifer- 
ation and induces clonal anergy (11-24). APCs from mice 
with a targeted mutation of B7 gene show a significantly 
reduced costimulatory activity (25). Third, transfection of 
B7 or B7-2, the natural ligands for CD28 and CTLA4Ig 
confers costimulatory activity into the recipient cells (12, 15, 
16, 26). In several tumor models tested, transfection with 
B7 increases tumor immunogenicity and leads a T cell-medi- 
ated rejection of tumors (27-30). 

B7 and B7-2 are members of the Ig super family (15-17, 
31). The extracellular portion consists of an IgV-like domain 
and an IgC-like domain. Murine B7 gene contains 5 exons 
encoding, respectively, signal peptide, IgV-like domain, IgC- 
like domain, transmembrane domain, and cytoplasmic do- 
main. B7 and B7-2 bind to CD28 (32) and, with a higher 
affinity, to a less abundant receptor CTLA4 (33). It has been 
suggested that CD28 and CTL4 may transduce qualitatively 
different signals when engaged by B7 and/or B7-2 (34). As 
a first step to understand the mechanism ofT cell costimula- 
lion mediated by B7/B7-2-CD28/CTLA4 interaction, we 
set out to determine the structural basis of these interactions. 
Here we report the B7-binding site for CD28 and CTLA4 
as defined by a naturally occurring, alternatively spliced B7 
and by site-directed mutagenesis. 

Materials and Methods 

Experimental Animals, Cell Lines, and mAbs 
Male CBA/CaJ mice were purchased from the Jackson Labora- 

tory (Bar Harbor, ME) as donors of lymphocytes. B cell lymphoma 
CRCS-2, provided by Dr. Thorbecke (New York University Med- 
ical Center) (35), CH27, and M12 were cultured in KPMI medium 
containing 5% of FCS. Anti-B7 mAb 16.10A (36) was kindly 
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provided by Dr. H. Reiser (Harvard Medical School, Boston, MA), 
mAb 7A5 was described fully (18). 

Construction of the Fusion Proteins CD28Ig and CTLA4Ig 
Fusion proteins CTLA4Ig and CD28Ig, comprised, respectively, 

the extracellular domains of murine either CTLA4 or CD28 and 
Fc portion of murine IgG2a, were generated according to a de- 
scribed procedure (33). Briefly, DNA encoding the extracellular 
region of murine CTLA-4 was amplified by PCR using the syn- 
thetic oligonucleotide CACAAGCTTGCCATGGCTTGTCTT- 
GGACTC as forward primer, ~ T C C T G A T C A A G G T C A G A -  
ATCCGGGCATGGTTC as reverse primer, and cDNA from Con 
A-activated murine spleen T cells as template. The product of this 
PCR reaction was digested with HindlII and BclI and ligated to- 
gether with a BdI/XbaI cleaved DNA fragment encoding the hinge, 
CH2 and CH3 domains of murine Ig Cy2a. The latter fragment 
was amplified from cDNA prepared from a murine IgG2a hybrid- 
oma using the oligonucleotide GACCTGATCAGCGAGCCCAGA- 
GGGCCCACA as forward primer, and GACCAGTCTAGATTT- 
ACCCGGAGTCCGGGAGAA as reverse primer. Ligation products 
were cloned into the CDM8 mammalian expression plasmid (In- 
vitrogen, San Diego, CA) and the construction was verified by DNA 
sequence analysis. The encoded molecule comprises residues 1-161 
of murine CTLA-4 fused to the hinge region of murine heavy chain 
C3~2a. Similarly, the extracellular domain of CD28 (AA 1-150) 
was amplified from CD28 cDNA (37) kindly provided by Dr. J. 
Allison (University of California, Berkeley, CA), using CCCAAA- 
GCTTCAATGACACTCAGGCTGCTG as forward primer and 
TTGTGGGCCCTCTGGGCTCGAGCTTAGGAGATGACTG as 
reverse primer. The PCR product was digested with ApaI. The 
IgG2a fragment was prepared by digesting CTLA4Ig construct 
with ApaI and XbaI. The CD28 fragment and the Ig fragment 
were ligated into pCDM8 vector digested with HindlII plus XbaI. 
The final construct was verified by DNA sequencing. The fusion 
proteins were prepared from CHO cells stably transfected with ei- 
ther CD28Ig or CTLA4Ig construct. The CHO cell supernatants 
were concentrated 10 times and used for this study. The superna- 
tant contains 10 times the excess of fusion proteins required for 
saturating binding against wild-type B7 in flow cytometry. 

Construction of B7-HSA, B7IgV-HSA, and B7IgC-HSA 
All fusion proteins were generated by three piece ligation including 
HindIII plus XhoI-digested B7-fragments, XhoI + XbaI-digested 
HSA fragment and HindlII + XbaI-digested pCDM8 vector. The 
B7 and HSA fragments are generated as follows: 

B7. The extracdlular portion orB7, including the signal peptide, 
IgV and IgC domain, were amplified by PCR, using GCTCGA- 
AGCTTATGGCTTGCAATTGTCAG as forward primer, and GTC- 
A G C C ~ G A G T T T T I ~ C C A G G T G A A G T C  as reverse primer. 
pCDM8-B7, which contains the entire reading frame of B7, was 
used as template. The product of this reaction encodes M1-K236 
which is the entire extracellular portion of B7. 

B7IgV. pCDM8-B7 was used as template and the GCTCGA- 
AGCTTATGGCTTGCAATTGTCAG as the forward primer and 
GGGCTCGAGGTCTGCAGATGGGTTTCC as reverse primer. 
The product of this reaction encodes M1-D159, which contains 
the signal peptide, B7IgV domain plus 15 AA from B7IgC domain 
as spacer.  

B7-IgC. First, the signal sequence of B7 (B7SP) was amplified 
with GCTCGAAGCTTATGGCT'[GCAATTGTCAG as a forward 
primer and GAAGTCAGCATCTGAAGACACTTGTGAAAGACG 
as a reverse primer, and exon 3 sequence of B7 (B7E3) was amplified 

with GTGTCTTCAGATGCTGACTTCTCTACCCCCAAC as a 
forward primer and GTCAGCCATCTCGAGTTTTTCCCAGGT- 
GAAGTC as a reverse primer. A mixture of B7SP and B7E3 
fragments were used as template, GCTCGAAGCTTATGGCTT- 
GCAATTGTCAG as a forward primer and GTCAGCCATCTC- 
GAGTTTTTCCCAGGTGAAGTC as a reverse primer. The final 
PCR product encodes the signal peptide and exon 3 encoded B7 
IgC domain (M1-D37 + A143-K236). 

lISA. The HSA fragment that contains all HSA protein se- 
quence except signal peptide was amplified using GAAAAACTC- 
GAGATGAACCAAACATCTGTTGCA as forward primer and 
CACAAGTAAGGTTCCTI~ACAAAG as rewet~ primer, pCDM8- 
HSA (13) was used as template. The final PCR product encodes 
LE as linker ptus extraceUular portion and GPI-signal motif of HSA 
sequence, N27-stop codon. 

All PCR. products were verified by DNA sequencing. 

Analysis of B7 mRNA by PCR 
mRNA were prepared from 5 x 106 of either CRCS, M12.4.1, 
CH27, or total spleen cells by the fast-tract poly(A)* RNA prep- 
aration kit (Clontech, Palo Alto, CA). First strand cDNA were 
prepared using 50 ng of hexamer random primers, 1 t~g mRNA, 
200 U Maloney murine leukemia virus reverse transcriptase (BRL, 
Gaithersburg, MD). Similar results were obtained when poly dT 
or B7 reverse primer were used to prepared the first strand cDNA. 
The B7 or GAPDH DNA were amplified from the cDNA by PCR 
reaction as has been described. The primers used were: B7 forward 
primer GAAGCTA_TGC~TTGCAATTGTCAG, B7 reverse primer 
AGAAGAACTAAAGGAAGACGGTCT, GAPDH forward primer 
ATGGTGAAGGTCGGTGTGAACGGATTTGGC, and GAPDH 
reverse primer CATCGAAGGTGGAAGAGTGGGAGTTGCTGT. 
The RT-PCR products were detected by Southern blot using 32p_ 
labeled murine B7 or GAPDH cDNA as probe. 

Cloning of the RT-PCR Products 
Two forms of the B7 RT-PCK products were purified from agarose 
gels and cloned into the pCDM8 vector. The DNA inserts were 
sequenced and confirmed to contain the fixll-length B7 open reading 
frame sequence or that of an alternatively spliced B7. 

Site-directed Mutagenesis 
Site-directed mutagenesis was carried out based on PCR. Briefly, 
oligonucleotide primers between 25 and 40 bp tong were synthe- 
sized to contain the desired mutations. These primers were used 
to generate B7-fragments that were then used to replace the wild- 
type fragment to generate the B7 mutants. The DNA sequences 
of the regions that contain the mutation and the junction of liga- 
tions were verified by DNA sequencing. The mutations are listed 
in Table 1. 

T Cell Proliferation 
CD4 T cells were purified from CBA/CaJ mouse spleen cells by 
two rounds of treatment with complement plus an antibody cock- 
tail, that consists of: anti-B220 mAb KA3-3/6.1, anti-HSA mAb 
Jlld (38), anti-CD8 mAb M31(39), anti-Mac-1 mAb M1/70.15: 
11.5H (40), and anti-FcR mAb 2.4G2 (41), all hybridoma superna- 
rants mixed in an equal proportion. 

CD4 T cells were stimulated with anti-CD3 mAb 2Cl1.145 (1:40 
supernatants) (42). COS cells transfected with either Fc'yRIIB2 
(FcR), or FcR plus B7 or B7 mutants were treated with mitomycin 
C (100/zg/ml, 37~ for 1 h), and used as accessory cells. After 
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Table 1. Summary of Amino Acid Substitutions and the Binding Characteristics of the B7 Mutants 

Substitutions 

Mutants Nucleic acid(s) Amino acid* 

Binding (MF)* 

Anti-B7 CD28Ig CTLA4Ig 

Experiment 1 
B7 
C165G 

Loop BC 
P172A 
K173E 
P174A 
K175S 
$177A 
L179V 
E180D 
LE/VD 

Loop DE 
QD/LE 
QDP/LEK 
QDP/LEH 
LY/VD 

Experiment 2 

B7 

Loop DE 
E199A 
L200A 
Y201A 

TTGGAA>CTCGAG No change 
TGC~q3GC Ct65>G 

CCA>GCT P172>A 
AAG>GAG K173>E 

CCT>GCT P174>A 
CGC>AGC RlTs>S 
TCT>GCT St77>A 
T T G ~ 3 T C  Lt79>V 
G A A ~ A C  ElS~ 

TTGGAA>GTCGAC L179EtS~ 

CAGGAT>CTCGAG 
CAGGATCCT>CTCGAGCGT 
CAGGATCCT>CTCGAGCAT 

TTGTAC>GTCGAC 

224 47(100) 649(100) 
109 0(0) 30(10) 

113 2(7) 8(3) 
271 44(77) 772(98) 
191 0(0) 61(11) 
276 15(26) 334(42) 
294 40(63) 476(56) 
234 12(18) 274(40) 
259 38(68) 622(83) 
188 16(40) 281(51) 

Q~94D19S>LE 132 3(11) 103(26) 
Q~94DtgsP196>LEK 102 1(3) 42(15) 
Q194D19spt96>LEH 93 1(3) 36(13) 

L2~176176 105 0(0) 0(0) 

No change No change 134 73(100) 235(100) 

GAA>GCA E199>A 97 16(31) 108(63) 
TTG>GCG L200>A 105 28(53) 142(85) 
TAC>GCC Y201>A 50 1(3) 0(0) 

" The amino acid sequences of murine B7 IgC domain are shown below with the conserved amino acid in bold. Underlined are the locations of 
E-sheet strands based on the Ig superfamily. 

143ADFST•NITESGN•SADTKKITCFASGGFPK•KFsWLENGKELPGINTTIsQDpESELYTISSQLDFNTT•NHTIKCLIKYGDAH 
A B C ~15 E 

VSEDFTWEKPPED 240. 

The data shown are MF of transfected COS cells after being stained with either anti-B7 mAb 10.16A.1 or chimeric molecules CD28Ig or CTLA4Lg, 
with that of controls (staining in the absence of first step-reagents) substracted. Numbers in the parentheses are % wild-type B7 binding after nor- 
malizing the cell surface expression of B7 mutants as described in experimental procedure. Each staining has been repeated for at least three times. 

66 h of culture, the cells were pulsed with 1 #Ci/well of [3I-I]TdR. 
for additional 6 h. T cell proliferation was measured by the cpm 
of the incorporated [3H]TdP,.. The data shown were means of 
duplicates with variation <15%. 

Flow Cytometry 

Mock-transfected COS cells, or COS cells transfected with either 
wild-type or mutant B7 were used between 72 and 96 h after trans- 
fection. The antibodies used were: anti-B7 mAbs 10.16A.1, 3A12, 
7A5 (18), anti-HSA antibody M1/69 (43), fusion protein CD28Ig, 
and CTLA4Ig. The second step reagents used were FITC-labeled, 
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goat anti-mouse IgG, goat anti-hamster IgG, and mouse anti-rat 
IgG. All of these second step reagents give essentially identical 
background staining in the absence of primary antibody, therefore 
only one control is shown in each experiment. Details of flow 
cytometry have been described (44). Data shown in Table 1 are 
mean fluorescence (MF) ~ obtained by flow cytometry with that 
of the controls (in the absence of first step reagents) subtracted. 

1 Abbreviation used in this paper: MF, mean fluorescence. 



The numbers in parentheses are the percent wild-type B7 binding 
after normalizing the cell surface expression of individual mutant 
B7 based on binding of an anti-B7 mAb 10.16A.1, that binds the 
IgV domain regardless of mutation in the IgC domain. Wild-type 
B7 binding percentage was calculated by the following formula: 
% wild-type B7 binding = 100 x x/y, where x = (MFcDzslgo~ 
CTLA41g)/(MFanti-B7 mAbl0.16A.1) when mutant molecules are used, and 
y is the same ratio when the wild-type B7 molecule is used. 

Resul ts  

A Naturally Occurrin,r Alternatively Spliced B7 Reveals a Crit- 
ical Role of BlIgC Domain in Binding CD28 and CTLA4, In 

the process of  analyzing the B7 expression in a number of  
different cell lines by PCR,  we have observed two major forms 
of B7 cDNA:  a longer form of 930 bp and a shorter form 
of '~,650 bp (Fig. 1 a). Cloning and c D N A  sequencing re- 
vealed that the larger band is B7, whereas the shorter band 
is a truncated B7 with a deletion from base 428 to base 699 
(number begins at the start codon), which is the entire se- 
quence of exon 3 (Fig. 1 b). Thus this shorter form of  B7 
is a product from an alternative splicing of B7. As the only 
extracellular portion of the protein encoded by this alterna- 
tively spliced B7 gene is the IgV domain, we call it B7IgV. 
To test whether BIlgV contains CD28/CTLA4-binding sites, 

Figure 1. A naturally occurring, 
alternatively spliced B7 maps the 
CD28/CTLA4-binding site into 
the exon 3-encoded region. (a) 
Amplification of various forms of 
B7 mRNA by RT-PCR. First 
strand cDNA prepared with ran- 
dom hexamer primers from RNA 
of either spleen or B leukemic cell 
lines CH27, CRCS, or M12 were 
amplified using B7 of GAPDH for- 
ward and reverse primers that should 
amplify the open reading frame of 
the full-length B7 (12). The PCR 
products were analyzed using either 
a full-length B7 open reading frame 
probe or a GAPDH probe (12). (b) 
The short B7 cDNA is an alterna- 
tively spliced form of B7. (lbp) The 
junctional sequence of the full- 
length B7 that is identical to the se- 
quence of the DNA in the higher 
molecular weight band; (bottom) a 
predicted junctional sequence of an 
alternatively spliced B7, BIlgV, that 
is identical to the sequence of the 
DNA in the lower molecular weight 
band. (c) Analysis oftbe binding of 
B7IgV, B7 to anti-B7 mAb 7A5, and 
fusion proteins CD28Ig and CTLA- 
41g. Comparable expression of 
BIlgV is detected with two other 
anti-B7 mAbs 3A12 and 10.16A.1 
(data not shown). (d) Mutation 
165C>G eliminates CD28 binding 
and reduces CTLA4Ig binding by 
-,10-fold. 
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we generated fusion proteins that consist of murine IgG2a 
Fc portion and extraceUular domains of either murine CD28 
(CD28Ig) or routine CTLA4 (CTLA4Ig). We then used these 
fusion proteins and a panel of anti-B7 mAbs to monitor the 
cell surface expression of B7 and B7IgV on COS cells tran- 
siently transfected with these genes. Whereas the B7 binds 
anti-B7 mAbs (Fig. 1 c and data not shown) CD28Ig and 
CTLA4Ig, B7IgV binds anti-B7 mAbs but not CTLA4Ig 
and CD28Ig (Fig. I c). The lack of binding to CTLA4 was 
not due to poor cell surface expression of the B7IgV, because 
CTLA4Ig binding to wild-type B7 is better than the anti-B7 
mAbs used. Thus the structure encoded by exon 3, which 
is the B7IgC domain, is involved in binding CD28/CTLA4. 
Consistent with this notion, a mutation of 165C>G that de- 
stroys the disulfate chain in the IgC domain, eliminates B7 
binding to CD28Ig and reduces its binding to CTLA4Ig by 
10-fold (Fig. 1 d, Table 1). 

Site-directed Mutagenesis Defines the Roles of the Conserved 
Residues within the B7IgC Domains for CD28/CTLA 4 Binding. 
So far, four molecules that bind CD28/CTLA4 have been 
identified, namely human B7, human B7-2, murine B7, and 
murine B7-2 (15-17, 26, 31). As these four molecules cross- 
react with both human and murine CD28/CTLA4, we rea- 
soned that the structure involved in binding CD28/CTLA4 
should be conserved among these four molecules. Previous 
analysis of B7 sequence homology (15-17, 26, 31) revealed 
that 17 of the 98 amino acids in the IgC domain are con- 
served. Among them, two are cysteines at positions 165 and 
219. All I1 conserved amino acids between two cysteines are 
clustered at or near two loops, if we use the structure of 
IgC-domain as a reference (Table 1 legend). One is the loop 
between strands B and C (loop B-C), and the other between 
strand D and E (loop D-E). This analysis suggests that these 
two regions are involved in binding to CD28/CTLA4. To 
further define the CD28/CTLA4-binding sites, we gener- 
ated a series of B7 mutants by site-directed mutagenesis and 
tested their binding to CD28Ig and CTLA4Ig. Binding to 

anti-B7 mAbs was used as an indicator for cell surface ex- 
pression of B7 mutants. As shown in Table I and Fig. 2, mu- 
tants 172P>A and 174P>A fail to bind CD28Ig, and their 
binding to CTLA4Ig is reduced by 10-fold. In contrast, mu- 
tations of 173K>E, 177S>[L, and 180E>D have little effect 
on B7 binding to CD28Ig/CTLA4Ig. Mutations 175IL>S, 
179L>V reduced CD28Ig binding by four- to fivefold, and 
CTLA4Ig binding by twofold. These results indicate that amino 
acids at the B-C loop are involved in binding CTLA4/CD28. 

Similarly, amino acids in the D-E loop are critical for 
CD28/CTLA4 binding. As shown in Fig. 3 and Table 1, mu- 
tation 194Q>L195D>E reduces CD28 binding by 10-fold 
and CTLA4Ig binding by fivefold. An additional mutation 
in this region 194Q>L195D>E196P>H, or 194Q>L195D> 
E196P>K eliminates CD28-binding site and reduces CTLA- 
4Ig binding by 10-fold. The most drastic effect is caused 
by mutation 200L>V201Y>D, that leads to elimination of 
binding to both CTLA4Ig and CD28Ig. This result demon- 
strates that one or both of these amino acids is essential for 
binding CD28/CTLA4Ig. To test this, we replaced, one by 
one, three amino acids 199E, 200L, and 201Y with A and 
tested the effect of these mutations on B7 binding to CD28 
and CTLA4. As shown in Fig. 4, replacement of either 199E 
or 200L by A does not significantly reduce the binding of 
B7 to CD28 and CTLA4, suggesting that these two amino 
acids are not critical for CD28/CTLA4Ig binding. In con- 
trast, mutation 201Y>A eliminated the binding of both 
CD28 and CTLA4, suggesting that the 201Y plays a critical 
role in binding CD28 and CTLA4. 

The results of the site-directed mutagenesis reveal that all 
mutations that affect CD28Ig binding affect CTLA4Ig 
binding. Interestingly, the effects of mutations on CD28 and 
CTLA4 binding follow a grossly similar hierarchy (Table 1), 
although CTLA4Ig binding is generally more resistant to 
mutations. These results strongly suggest that CTLA4 and 
CD28 have the same binding site on B7. 

An important issue is whether IgC domain contains all 

174P>A 177S>A 137 

i I1 1 
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Figure 2. Effects of two repre- 
L} sentative mutations in BC loop on 
rO the CD281g/CTLA4Ig binding. As 

described in the Fig. 1 legend, 
mock-transfected COS cells or COS 

o cells transfected with either wild- 
type B7 or two B7 mutants as indi- 
cated, were incubated with either 
anti-B7 mAb 7A5 or fusion protein 
CD28Ig/CTLA4Ig. The binding of 
the first step reagents were detected 
by FITC-labded second step re- 
agents. Data shown were FACS 
profiles. 
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Figure 3. Effects of two repre- 
sentative mutations in DE loop on 
CD28/CTLA4Ig binding. See Fig. 
2 legend for details. 

the necessary information for binding CD28/CTLA4. To ad- 
dress this issue, we deleted the IgV domain and transfected 
the B7IgC into COS cells. No binding is detected in COS 
cells transfected with the B7IgC (data not shown)�9 How- 
ever, as no antibody against this domain is available, it is equally 
possible that this domain is not stable enough to give cell 
surface expression. We therefore constructed a chimeric mol- 
ecule that consists of the B7IgC domain and the heat-stable 
antigen extracellular domain. As shown in Fig. 5, whereas 
the chimeric molecules are expressed on the cell surface as 
demonstrated by its binding to anti-HSA mAb, they do not 
bind CD28Ig and CTLA4Ig. These results can be inter- 
preted as evidence that B7IgV domain may play a role in 
the CTLA4/CD28 binding. However, it should be stressed 
that as the overall structure of the IgC domain cannot be 
ascertained at this stage, it is equally possible that the role 

199E>A 200L>A 201Y>A B7 

Control i ~ .  ~. , _ 

Anti-B7 i ~  Z 

Control i !  ' " 

CO281g IIBICPZ~ ~-<" " 

~  

,!J 

Figure 4. The central role of 201Y in CD28/CTLA4 binding. COS 
cells transfected with either wild-type B7 or B7-201Y>A mutant were 
compared for their binding to anti-B7 mAb 7A5 or fusion proteins. 

of B7IgV is to allow correct folding of the CD28/CTLA4 
binding sites. 

Binding to CD28/CTLA4 Is Essential for tke Costimulatory 
Activity of BT. To determine whether binding to CD28/ 
CTLA4 was necessary for the costimulatory activity of B7, 
we compared the costimulatory activity of wild-type B7 that 
binds CD28/CTLA4 with the B7 mutants that have lost the 
ability to bind CD28/CTLA4. As shown in Fig. 6 a, wild- 
type B7 costimulates T cell proliferative responses to anti-CD3 
mAb, whereas the alternatively spliced form of B7 (B7IgV) 
fails to do so. Because anti-B7 mAb 7A5 binds B7IgV rather 

B7-HSA B71gC-HSA Mock 

O 

m 
O 

,O 

4.~6 

i 4. 4 .42  

3.78 

Control 

anti-B7 

anti-HSA 

CTLA4Ig 

CD28Ig 

log Fluorescence 

Figure 5. B7IgC-HSA fails to bind CTLA41g and CD281g. B71gC- 
HSA were constructed as described in Materials and Methods. COS cells 
were transiently transfected with either BT-HSA of BTIgC-HSA. 3 d after 
transfection, the transfected COS cells were analyzed for the expression 
of the HSA (M1/69), B7 (7A5) epitopes or CD28/CTLA4Ig-binding sites. 
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Figure 6. B7IgV cannot costimulate proliferation of CD4 T cells. COS cells were transfected with either FcR or with FcR plus either wild-type 
or mutant B7 molecules and used to stimulate proliferation of CD4 T cells in the presence of anti-CD3 for 72 h. (a) Proliferation of CD4 T cells 
using COS cells transfected with FcR or FcR plus either wild-type B7 or B7IgV. (b) Costimulatory activity of B7-HSA and B7IgV-HSA for CD4 
T cells. COS cells transfected with either FcR or FcR in conjunction with either B7-HSA or B7IgV-HSA were treated with mitomycin C and used 
as accessory cells. T cell proliferation has been repeated for at least three times. (c) Expression and binding characteristics of the B7-HSA or B7IgV-HSA. 

poorly (Fig. 1), this lack of costimulation could be attrib- 
uted to poor cell surface expression of B7IgV. To overcome 
this problem, we generated two fusion proteins. One con- 
sists of the extracellular domain of B7 and that of the HSA, 
the other is made of HSA and B7 fragments AA 1-159 (that 
consists of B7IgV domain plus 15 amino acids from IgC do- 
main as spacer between B7IgV and the HSA). This truncated 
molecule does not contain the structures necessary for CD28/ 
CTLA4 binding. Again, B7-HSA but not B7IgV-HSA costim- 
ulates T cell proliferation (Fig. 6 b). These results demon- 
strate that the B7IgV domain does not costimulate T cell 
proliferation. COS cells transfected with HSA failed to co- 
stimulate T cell proliferation as opposed to HSA-transfected 
CHO cells (13, 45), presumably because of differential glycosy- 
lation of HSA (6). As measured by anti-HSA antibody M1/69, 
the amount of fusion proteins expressed on the cell surface 
is comparable to B7-HSA and B7IgV transfected COS cells, 
although the anti-B7 mAb 7A5 binds B7-HSA fusion pro- 
tein *10-fold better than the B7IgV-HSA (Fig. 6 c). The 
HSA portion does not interfere with the conformation of 
wild-type B7 and B7IgV as their binding to a panel of three 
anti-B7 mAbs as well as CTLA4/CD28 is similar to that 
of B7 and B7IgV (Fig. 1 and Fig. 6 c, and data not shown). 
More importantly, mutation 201Y>A, which eliminates 
CD28/CTLA4 binding, also eliminates the costimulatory ac- 
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tivity of B7; whereas B7 mutants 199E>A and 200L>A, 
which retain the CTLA4/CD28-binding site, have costimula- 
tory activity (Fig. 7). Thus binding to CD28/CTLA4 is critical 
for the costimulatory activity of B7, consistent with a previous 
study that showed that the Fab fragment of anti-CD28 blocks 
the costimulatory activity of B7 (26). 

Discussion 

We have reported here that a naturally occurring, alterna- 
tively spliced B7 that lacks IgC domain has lost the 
CD28/CTLA4Ig-binding sites. Site-directed mutagenesis 
based on homology analysis revealed several conserved amino 
acids within the IgC-like domains are involved in binding 
CD28 and CTLA4. To determine whether these amino acids 
can be clustered in the three-dimensional structure, we have 
mapped the residues of our mutagenesis study to an available 
Fab C-domain structure (3FAB, reference 46). There are a 
few x-ray protein structures available from the Brookhaven 
Protein Data Bank that contain IgC-like domains. Supposi- 
tion of these structures shows that the loops B-C and D-E 
and these four strands from all known Fab IgC domains align 
very well structurally (data not shown). Residues which upon 
mutation significantly reduce CD28/CTLA4 binding around 
loops B-C and D-E form a localized region towards one end 
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Figure 7. Costimulatory activity of B7 requires CD28/CTLA4-binding 
site. COS cells were transfected with either FcR alone or F'cIk plus wild- 
type B7 or B7 mutants. The costimulatory activity of the COS calls were 
determined by proliferation of CD4 T cells to anti-CD3 mAb. Data shown 
are representative of two independent experiments. 

of the molecule even though they come from different loca- 
tions of the sequence. This indicates that B7 has a localized 
CD28/CTLA4-binding site (Fig. 8). Although the backbone 
of 201Y is on the other side of the molecule from this re- 
gion, its side chain is located approximately at the center of 
this region, sandwiched between loop B-C and loop D-E, 
consistent with our results that mutation of this residue has 
the most drastic effect on CD28/CTLA4 binding. This tyro- 
sine is conserved among human B7, B7-2, and murine B7, 
and in murine B7-2, it has been conservatively replaced by 
phenylalanine. 

Whereas it is formally possible that mutations of the amino 
acids in B-C and D-E loops affect the CD28/CTLA4 binding 
by causing a general distortion of the three-dimensional struc- 
ture of B7, the fact that several mutations in such a localized 
area selectively affect CD28/CTLA4 binding indicates that 
this is highly unlikely. Using three anti-B7 mAbs (7A5, 3A12, 
and 10.16A.1, which bind three independent epitopes in B7IgV 
domain as determined by cross-blocking studies, data not 
shown) we found that the conformation of B7 is not 
significantly affected by the mutations we generated, although 
some mutations have a minor effect on the strength of 7A5 
binding (data not shown). It is of interest to note that 172P 
and 174P are conserved among a large number of IgC-like 
domains, thus raising a possibility that these two amino acids 
are important for the overall structure of Ig. However, it is 
equally possible that the CD28/CTLA4-binding site evolves 
from a conserved structure of IgC-like domain. 

An unresolved question is the contribution of the B7IgV 
domain in CD28/CTLA4 binding. Several lines of evidence 
can be interpreted in light of the possibility that B7IgV may 
be involved in binding CTLA4/CD28. First, our present study 
reveals that several anti-B7 mAbs (18, 36) that blocked 
CTLA4Ig binding and B7-mediated T cell costimulation bind 
to the IgV domain. It should be emphasized that because 
the amino acids involved in binding CD28/CTLA4 defined 
by the site-directed mutagenesis are located in an area close 
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Figure 8. Three-dimensional 
modal of B71gC domain based 
on the x-ray structure of lg Fab 
fragment. Only the 201Y side 
chain is shown explicitly, the rest 
of the molecule is represented by 
Coe trace. Residues that upon mu- 
tation significantly reduce CD28/ 
CTLA4 are labeled ( ~ ) ,  all of 
them are within 7A of 201Y. 



to the IgV domains, the effect of several anti-IgV antibodies 
can be explained by steric hindrance. Second, the IgC do- 
mains have not been shown to bind CD28/CTLA4 in the 
absence of IgV domain. Third, Inobe et al. (47) reported that 
a stable cell line thought to be transfected with the B7IgV 
domain can bind CD28 and CTLA4. However, as no charac- 
terization of the stable transfectant has been done to verify 
the gene product, it is hard to reconcile the results with our 
study. 

An important conclusion that can be derived from the results 
of our mutational analysis is that CD28 and CTLA4 bind 
to the same site on the B7IgC domain. Thus, all mutations 
that affect CD28 binding affect CTLA4 binding. More strik- 
ingly, the effects of mutations on CD28 and CTLA4 binding 
follow a grossly similar hierarchy (Table 1), although CTLA4Ig 
binding is generally more resistant to mutations, consistent 
with an earlier finding that CTLA4 has a ~17-fold higher 
affinity for B7 (33). This conclusion has an important impli- 
cation on the mechanism of costimulation by B7. As CD28 
and CTLA4 have different cytoplasmic domains, they may 
transduce qualitatively different signals (34). As CD28 and 
CTLA4 do not form heterodimers (33), and because they 
are located at distinct patches on the T cell surface as de- 
tected by confocal microscopy (34), the simplest mechanism 
that allows direct interaction of CD28omediated signaling 
machinery with that mediated by CTLA4 would be a cross- 
linking of the two molecules by B7 or B7-2. By necessity, 
this model implies that CTLA4 and CD28 have distinct 
binding sites on B7 to allow cross-linking by a single B7 mol- 
ecule. Our results that CTLA4 and CD28 bind B7 at the 

same sites do not support this model. We favor an alternative 
hypothesis that CTLA4 and CD28 bind different B7 mole- 
cules and transduce distinct biological signals. The facts that 
CTLA4 is expressed after T cell activation and that CTLA4 
has a higher affinity for B7 or B7-2 suggests that CD28-B7/ 
B7-2 interaction is likely to dominate at the induction phase 
of immune responses, whereas CTLA4-B7/B7-2 interaction 
is likely to dominate effector phase of immune responses. Our 
previous study (30) demonstrated that B7 can play an impor- 
tant role at both the induction and effector phases of T cell 
responses, thus raising an interesting possibility that CD28-B7 
interaction may deliver a signal necessary for induction of 
T cell responses, whereas CTLA4-B7 interaction may de- 
liver a signal for effector phase of T cell responses. Experi- 
ments are underway to test this hypothesis. 

Whereas it is known that antibody stimulation through 
CD28 transduces the costimulatory signal for T cells, and 
that B7 binds CD28 and delivers the costimulatory activity, 
it is still formally possible that B7 costimulate T cells via 
other yet unidentified receptors on T cells. Our results dem- 
onstrate that B7 mutants that lose their binding to CD28 
and CTLA4 also lose their costimulatory activity. These re- 
sults demonstrate that B7 costimulate T cells by binding 
CD28/CTLA4. 

Finally, recent studies have demonstrated that immune in- 
tervention targeted at the CD28/CTLA4-B7/B7-2 interac- 
tion have a vast potential in transplantation (48, 49) and tumor 
therapy (27-30). The structure of B7-binding sites for 
CD28/CTLA4 defined in this study provides valuable infor- 
mation for immunotherapy. 
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