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Abstract: In an attempt to prepare sustainable epoxy thermosets, this study introduces for the first
time the idea to use antagonist structures (aromatic/aliphatic) or functionalities (acid/amine) as
hardeners to produce reprocessable resins based on epoxidized camelina oil (ECMO). Two kinds
of mixtures were tested: one combines aromatic/aliphatic dicarboxylic acids: 2,2′-dithiodibenzoic
acid (DTBA) and 3,3′-dithiodipropionic acid (DTDA); another is the combination of two aromatic
structures with acid/amine functionality: DTBA and 4-aminophenyl disulfide (4-AFD). DSC and
FT-IR analyses were used as methods to analyze the curing reaction of ECMO with the hardeners.
It was found that the thermosets obtained with the dual crosslinked mechanism needed reduced
curing temperatures and reprocessing protocols compared to the individual crosslinked thermosets.
Thanks to the contribution of disulfide bonds in the network topology, the obtained thermosets
showed recycling ability. The final thermomechanical properties of the virgin and mechanical
reprocessed materials were analyzed by DMA and TGA. The obtained thermosets range from
elastomeric to rigid materials. As an example, the ECMO/DTBA704-AFD30 virgin or reprocessed
thermosets have tan δ values reaching 82–83 ◦C. The study also investigates the chemical recycling
and the solvent resistance of these vitrimer-like materials.

Keywords: dual-crosslinked networks; dual-dynamic hardeners; recyclability; epoxidized camelina
oil; mechanical recycling; chemical recycling

1. Introduction

The interest in and development of dynamic covalent chemistry (DCvD) [1] and
reactions that use dynamic covalent bonds have grown exponentially in recent years.
The introduction of interchangeable and reversible bonds in polymer networks, due to the
sensitivity to external stimuli, is playing a fundamental role in the emerging technologies of
self-repairing or recycling systems. The opportunity of reconnecting chemical bonds allows
the reduction in waste in landfills and prolonging the life cycle of products according to
the circular economy and global warming.

The transesterification reaction, in which an ester and an alcohol are in equilibrium
with a different ester/alcohol pair, is an example of a direct exchange reaction. This re-
action has long been described by Leibler et al. [2,3], preparing vitrimers starting from
DGEBA and a mix of di- and tricarboxylic acids, for which the exchange reactions are
thermally activated.

There are several potentially dynamic covalent functions, including acetals, bo-
razaromatic anhydrides, borate esters, disulfides, hydrazones, imines and olefins [1,4,5].
Among the first reactions used in DCvC, the disulfide exchange reaction was one of the
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foremost studied reactions. The metathesis of aromatic disulfides and the exchange ca-
pacity are known to occur at room temperature [6,7]. Rekondo et al. [8] synthesized a
polyurethane elastomer using an aromatic diamine disulfide crosslinker, 4-aminophenyl
disulfide (4-AFD), and showed that self-healing occurred at room temperature with a re-
pairing efficiency of more than 95%. Zeng et al. [9] obtained a reprocessable castor oil-based
polyurethane by incorporating 4-AFD and reported [10–14] that the mechanical proper-
ties were completely recovered after reprocessing. For the first time, our team produced
reprocessable, repairable and recyclable epoxidized vegetable oil (EVO) thermosets by
using 2,2′-dithiodibenzoic acid (DTBA) as a crosslinker. The synthesized networks showed
reprocessable and repairable abilities for up to 10 cycles. However, diamine hardeners
have also been used in the literature to produce epoxy thermosets starting from bio-based
monomers [15–17].

Recently, Chen et al. [18] synthetized a poly (esteramide) vitrimer from castor oil via
melt condensation with sebacic acid, polyamide 1010 monomer salt and 4-AFD, obtaining
a reprocessable material, several times, without the erosion of network structures or of
mechanical properties. Liu et al. [19] reported a catalyst-free epoxy vitrimer based on
epoxidized soybean oil (ESO)/4-AFD that showed comparable mechanical properties,
gel fraction and chemical structure after repeatedly cutting and compression molding it
several times.

The combination of epoxy matrices has long been used, specifically EVOs with
DGEBA, with the advantage of being transparent and better for the environment than 100%
petroleum-based epoxy resins [20–22]. However, very few studies have been published
regarding the mix of hardeners. Ding et al. [23] prepared bio-based thermosets by curing
ELO with adipic acid/glutaric anhydride catalyzed by N, N-4-dimethylaminopyridine
(DMAP), with the properties being modulated depending on the ratio of the two hardeners.
Williams et al. [24] synthesized vitrimers from DGEBA with citric acid (CA)/sebacic acid
(SA) by adding a small amount of n-alkylamine. The authors highlighted that the pres-
ence of tertiary amines catalyzes the transesterification reaction by increasing the physical
crosslinks and promoting the associations of alkyl chains.

In this regard, our team developed reversible double-crosslinking networks by curing
epoxidized linseed oil (ELO) with different amounts of two diacid disulfide hardeners:
DTBA/3,3′-dithiodipropionic acid (DTDA) initiated by imidazole, with the disulfide ex-
change mechanism being proven by high-performance liquid chromatography coupled
with mass spectroscopy [25].

In this study, we obtained a series of thermosets by curing epoxidized camelina oil
(ECMO) with different ratios of aromatic/aliphatic diacids DTBAxDTDAy and in parallel
with an acid/amine DTBAx 4-AFDy mixture of hardeners, to modulate the properties of the
final epoxy resins (Figure 1). The aim of this work was to analyze the structure–property
correlation, i.e., the effect of the chemical structure of the disulfide hardener regarding
its reactivity with the ECMO, but especially the networks’ recyclability. For this reason,
we designed two kinds of hardener systems: (i) one full aromatic (DTBAx 4-AFDy) where
we compared acid vs. amine dynamic hardeners, i.e., the electron-withdrawing group
vs. electron-donating one and (ii) one where the aliphatic vs. aromatic structures were
analyzed regarding their impact on thermosets’ properties and, again, especially their
recycling. Matxain et al. [26] reported theoretical calculations for a series of aliphatic and
aromatic disulfide compounds and so evaluated the electronic conditions related to the
radical-mediated mechanism of self-healing. The authors showed that bond dissociation
energy (BDE) values for dialkyl disulfides are around 65 kcal/mol and only 50 kcal/mol in
diaryl disulfides. Moreover, they showed that phenyl rings substituted with nucleophiles
such as NH2 have reduced BDE by delocalization of the electron of the generated sulfenyl
radical into the aromatic ring. Therefore, starting with these theoretical computations,
we aimed here to investigate how the substitutions of the disulfide hardeners affect not
only the crosslinking kinetics but also the thermosets’ overall properties, especially their
recycling. To the best of our knowledge, this study introduces for the first time the idea to
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use antagonist structures (aromatic/aliphatic) or functionalities (acid/amine) as hardeners
to produce reprocessable EVO resins. Modulating the percentages of one or the other
hardener in the preparation of thermosetting will guarantee targeted properties according
to the specific application required. The reactivity study of these new formulations was
carried out using differential scanning calorimetry (DSC) and Fourier transform infrared
spectroscopy (FT-IR). The thermo-mechanical properties of virgin and recycled materials
were analyzed by thermogravimetric (TGA) and dynamic mechanical analyses (DMA).
Finally, the solvent stability vs. recycling ability were evaluated to predict a potential
recyclability scenario from a chemical point of view.
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2. Materials and Methods
2.1. Materials

Epoxidized camelina oil (ECMO) was purchased from Specific Polymers. The chemi-
cal structure and characteristics are reported in Table S1. The hardeners and the initiator
are commercially available and were purchased from Sigma-Aldrich (Merck): 2,2′-
dithiodibenzoic acid (DTBA), 95%, 4-aminophenyl disulphide (4-AFD), 98%, 3,3′-
dithiodipropionic acid (DTDA), 99%, and imidazole (IM), 99%. All reagents were used
without further purification.

2.2. Preparation of Crosslinked Networks

The epoxy thermosets were prepared using a stoichiometric ratio R 1:1 for epoxy/acid
(e/a) and epoxy/amine functionalities, with the epoxy group considered monofunctional
during the reaction with an acid [27] and bifunctional with an amine [28].

A total of five epoxy/DTBAxDTDAy formulations were prepared, in which the origin
of dicarboxylic acid groups was: 100% DTBA (ECMO/DTBA100), 70% DTBA–30% DTDA
(ECMO/DTBA70DTDA30), 50% DTBA–50% DTDA (ECMO/DTBA50DTDA50), 30% DTBA–
70% DTDA (ECMO/DTBA30DTDA70) and 100% DTDA (ECMO/DTDA100). A second
series of five epoxy/acid/amino formulations was also prepared: 70% DTBA–30% 4-
AFD (ECMO/DTBA704-AFD30), 50% DTBA–50% 4-AFD (ECMO/DTBA504-AFD50), 30%
DTBA–70% 4-AFD (ECMO/DTBA304-AFD70) and 100% 4-AFD (ECMO/4-AFD100).

The composition of the formulations and their acronyms are given in Table S2.
The preparation of resins based on ECMO with DTBA100, DTDA100 and DTBAxDTDAy

was carried out according with a procedure described elsewhere. The ECMO formulations
with the DTBAx4AFDy mixture were prepared by melting the aromatic diamine in the
epoxy monomer and consequently added DTBA and the initiator.

For the DMA analysis, the specimens were prepared in special rectangular molds. The
analyzed cured resins and recycled samples had rectangular dimensions of 30 × 7 × 2 mm3

(length × width × thickness).
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2.3. Mechanical Reprocessing Procedure

For the mechanical reprocessing, a piece of crosslinked thermoset was ground, and the
obtained small pieces were compressed between two Kapton films in a CARVER heating
press. The applied reprocessing conditions (temperature, time and pressure) are reported
in Table S5.

2.4. Chemical Recycling Procedure

The complete dissolution of the thermosets was tested in a solution of 5 wt.% of 1–4
dithiothreitol in DMF, for 24 h at 50 ◦C. A greener recycling of thermosets was performed
by immersing the samples in 1N NaOH for 72 h at 80 ◦C. The tests were conducted on
rectangular 10 × 10 × 2 mm3 specimens.

2.5. Methods

Differential scanning calorimetry (DSC) experiments were carried out on a Mettler-
Toledo DSC 3 apparatus controlled by STAR Software developed by Mettler-Toledo. Freshly
prepared mixtures of about 5–7 mg were placed into 40 µL aluminum crucibles, and the
copolymerization reactions were thermally conducted by heating the crucibles at 10 ◦C/min
in the range 25–250 ◦C. DSC was used also to evaluate the Tg of the cured thermosets
by applying two cycles of heating–cooling (at 10 ◦C·min−1) in the range from −60 ◦C to
180 ◦C.

The FT-IR analyses were recorded using a Thermo Scientific Nicolet iS50 FT-IR spec-
trometer with a deuterated L-alanine-doped triglycine sulfate (DLaTGS) detector in atten-
uated total reflectance (ATR) mode. The absorption bands were recorded in the range of
4000–525 cm−1 by applying 32 scans and a resolution of 4 cm−1. The data were analyzed
using OMNIC software.

Thermogravimetric analysis (TGA) measurements were carried out on a Mettler-
Toledo TGA 2. Samples of about 10 mg were placed into 70 µL alumina pans. The cured
networks were heated at 10 ◦C·min−1 from 25 to 1000 ◦C under 50 mL·min−1 air.

Dynamic mechanical analyses (DMAs) were performed by using a Mettler-Toledo
DMA 1 instrument, equipped with STAR software. The analyzed samples had rectangular
dimensions of 30 × 7 × 2 mm3 (length × width × thickness) and the analyses were carried
out with the tension method. Elastic moduli (E′) and damping factors (tan δ) were collected
at a 3 ◦C·min−1 heating rate from−50 to 150 ◦C and 1.0 Hz frequency. Crosslinking density
was calculated by Flory’s expression, as shown by Equation (1):

ν =
E′

3RT
(1)

where E’ is the storage modulus of the thermoset in the rubbery plateau region at Tg +
50 ◦C, R is the gas constant and T is the absolute temperature in Kelvin.

Solvent resistance experiments were carried out by immersing the samples for 72 h
at room temperature in ethanol, acetone, THF and 1 N NaOH solution. The tests were
conducted on rectangular 10 × 10 × 2 mm3 specimens.

3. Results and Discussion
3.1. Reactivity Studies on the Function of the Dual-Dynamic Crosslinker Combination

The reactivity of ECMO/DTBAxDTDAy formulations was studied by dynamic DSC
and the obtained results are displayed in Figure S1 and the data are listed in Table S3. We
can firstly notice that the systems epoxy/DTBA100 and epoxy/DTDA100 show a single
exothermic peak, attributed to the epoxy–acid curing reactions (Figure S1A).
In the thermograms of ECMO/DTBAxDTDAy, we can observe that when decreasing
the DTBA percentage, the Ton of crosslinking reactions decreases from 137 to 126 ◦C for
ECMO/DTBA70DTDA30 and, thereafter, it increases again, to 141 ◦C for ECMO/DTDA100.
The same effect can be observed for the Tpeak that moves from 155 ◦C for the ECMO/DTBA100
curing formulation to 143 ◦C for the ECMO/DTBA30DTDA70 system and increases again



Polymers 2021, 13, 2503 5 of 14

to 147 ◦C for ECMO/DTDA100. A reduction in the reaction enthalpy can be observed in the
presence of the aliphatic hardener. A lower ∆H was measured for ECMO/DTBA50DTDA50
and in the meantime a higher secondary reaction was observed. Ding et al. [23], using ELO
cured with different amounts of glutaric anhydride (GA) and adipic acid (AA), observed
that with the increase in AA content, the ∆H increases, with the mixture GA60AA40 at
~286 J·g−1 and being less reactive than the system 20:80 with an enthalpy of ~302 J·g−1.

All the blends with a mixture of diacid crosslinkers showed a faster α conversion
compared with the blends made with individual DTBA or DTDA (Figure S1B), and
ECMO/DTBA30DTDA70 exhibits a faster conversion, in good correlation with the highest
enthalpy of the system.

When the ECMO was reacted with 4-AFD diamine crosslinker (Figure 2A), the
exotherm was shifted to high temperatures with a Tpeak at ~248 ◦C. When the reaction oc-
curred in the presence of an acid/amine mixture of crosslinkers, all the thermograms were
shifted to lower temperatures. By adding the 4-AFD in the DTBA blends, a subsequent
reduction in reaction enthalpy was observed, from 171 J·g−1 for the ECMO/DTBA100 sys-
tem to 106 J·g−1 for the blend ECMO/DTBA30 4-AFD70. This result can be correlated with
the hydrogen bonds in the networks containing the mixture of hardeners. However, by
blending DTBAx4-AFDy, the shape of the thermograms became more complex with the
appearance of a second broad exothermic peak at high temperatures around 215–230 ◦C.
The second exothermic peak increases in the presence of diamine in the blends. This peak
can be attributed to the epoxy homopolymerization which takes place because of the
stoichiometric imbalance produced by the hindrance and the high functionality in both
hardener acids as well as amine in the mixture. It should be noted that the enthalpy of
ECMO/DTBAx4-AFDy reactions, given in Table 1, can correspond to several processes,
such as epoxy–acid, epoxy–amine and acid–amine reactions.
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Table 1. DSC results for the curing of ECMO/DTBAx4-AFDy systems.

Thermosets Tpeak 1 (◦C) Reaction
Interval 1

∆H1
(J·g−1) Tpeak 2 (◦C) Reaction

Interval 2 ∆H2 (J·g−1)

ECMO/
DTBA100 171 137–187 155 / / /

ECMO/DTBA70
4-AFD30

145 125–175 155 ± 1 212 202–217 28 ± 1

ECMO/DTBA50
4-AFD50

143 118–166 151 ± 1 211 197–221 14 ± 1

ECMO/DTBA30
4-AFD70

141 115–160 106 ± 1 220 214–235 50 ± 1

ECMO/4-AFD100 248 155–/ / / / /

Finally, the full conversion was reached faster when the diamine dynamic crosslinker
was added, with comparable values for ECMO/DTBA504-AFD50 and ECMO/DTBA304-
AFD70 systems (Figure 2B).

3.2. Structural Evolution by FT-IR Studies

The FT-IR spectral absorbances as a function of the formulations of the crosslinking
ECMO/DTBAxDTDAy and ECMO/DTBAx4-AFDy mixtures are illustrated in Figure 3.
Increasing the percentage of DTDA, the peak due to the C=Oester is shifted from 1737 cm−1

in ECMO/DTBA100 to 1729 cm−1 in ECMO/DTBA30DTDA70, up to the formation of a
single band at 1728 cm−1 in the fully DTDA blend (Figure S2).
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AFDy (B).

Similarly, Figures 3B and S3 show the characteristic bands for ECMO/DTBAx4-AFDy
uncured mixtures. The comparison of FT-IR spectra of the uncured mixture and cured
ECMO/4-AFD100 resin is given in Figure S4; we can observe the stretching of the oxirane
ring at 3030 cm−1 (located from 3050 and 2990 cm−1) and the disappearance of the epoxy
groups (~1000 cm−1) in the cured sample. The stretching of the primary amine in the
uncured mixture is located at 3460 and 3364 cm−1 with an additional combination band
at ~3213 cm−1 in the cured resin attributed to the stretching vibration of the formed
amide groups. The end of the curing protocol was also confirmed by the formation of
the secondary amine (in the region 3450–3300 cm−1), the formation of stretching and the
combination band of –N+–H at ~3000 cm−1 and the absence of the epoxy group absorbance.
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Figure 4 illustrates the FT-IR comparison of the reactive ECMO/DTBA50 4-AFD50
mixture and of the final ECMO/4-AFD50 and ECMO/DTBA100 thermosets. Due to exces-
sive overlapping of the 4-AFD signal with the epoxy peak in the region from 850 cm−1 to
800 cm−1, it was not possible to study its conversion over time for ECMO/DTBAx4-AFDy
systems. However, the FT-IR spectra allowed us to follow the evolution of the most relevant
reactive groups and the formation of crosslinked networks during the isothermal curing at
130 ◦C taking, as an example, the formulation ECMO/DTBA504-AFD50.
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times (t = 0, 50, 90, 120 min) in comparison with cured resin of ECMO/DTBA100 and ECMO/4-AFD100: (A) zoomed in view
of the region from 4000-1800 cm−1; (B) zoomed in view of the region from 1800–1500 cm−1; (C) zoomed in view from 1500
to 1000 cm−1 and (D) zoomed in view from 1000 to 600 cm−1.

During the first hour of the reaction, the decrease in the broad peaks at 1678 cm−1 and
895 cm−1, assigned to free carboxylic groups, together with the simultaneous appearance of
a new ester “C=O” absorption band at about ~1740 cm−1 and 1710 cm−1, are noticed. It in-
dicates the occurrence of an esterification addition reaction between acid–epoxy, confirmed
by the presence of the same peak in the cured ECMO/DTBA100 resin (Figure 4).

Concerning the evolution of amine signals of 4-AFD, the quantification of primary and
secondary amines in the epoxy/amine reactive system is limited because of their positions
in the FT-IR spectra. The band of N-H stretching of primary amines is very close to the
strong O-H as well as to the secondary amine absorption bands in the 3600–3300 cm−1

region. However, regarding the FT-IR spectrum of the cured ECMO/4-AFD resin and
comparing it with that of ECMO/DTBA50 4-AFD50 after 2 h of curing at 130 ◦C, it seems
that the epoxy–amine reaction also occurred. We can notice in these systems the presence
of –OH stretching vibration at 3463 cm−1 (Figure 4 and Figure S4) and a new peak also
appearing at 3354 cm−1, corresponding to –NH stretching vibration. These bands are proof
of hydrogen non-covalent interactions in ECMO/DTBAx 4-AFDy systems.

3.3. Thermoset and Recycled Material Characterization

The combination of DTDA and 4-AFD with the DTBA allowed us to obtain hardeners
that reacted with ECMO at lower temperatures compared with the individual hardeners.
Therefore, these combinations permitted us to decrease the curing and post-curing temper-
atures. Once the curing process was optimized by the help of several DSC investigations
to check the full completion of the crosslinking reaction, the thermoset samples were
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characterized (their thermal and chemical stability, mechanical and dynamic mechanical
properties). Table S4 displays the characteristics of the cured thermosets and the curing
and post-curing protocol for the selected systems.

The presence of exchangeable S-S bonds combined with transesterification reactions
gives the materials excellent reprocessing properties. The recycling conditions and char-
acteristics of the reprocessed thermosets are displayed in Table S5. The synergy of the
reversible mechanisms combined the hardeners association gave lower recyclable condi-
tions than those of thermosets obtained with individual crosslinker.

3.3.1. Glass Transition Evaluation by DSC and DMA Analyses

The glass transitions of virgin and reprocessed thermosets were determined by DSC.
The effects of the hardeners’ combination and their proportions are shown in Figure 5.
The ECMO/DTBA100 thermoset presents a higher Tg (~65 ◦C) due to the aromatic contri-
bution to the network’s rigidity. Interestingly, the Tg of ECMO/4-AFD100 is three times
lower, ~22 ◦C, probably because the lower reactivity of this system produces a deficient
crosslink density. Increasing the aliphatic contribution by DTDA percentage, the glass
transitions values move to a lower value, reaching −3 ◦C for ECMO/DTDA100, a sign of a
very soft and elastic thermoset. A slow decrease in the Tg range was observed after the
recycling process.
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Figure 5. Tg for the virgin and recycled ECMO/DTBAxDTDAy (A) and ECMO/DTBAx4-AFDy (B) thermosets.

The dynamic mechanical properties of both ECMO/DTBAxDTDAy and ECMO/
DTBAx4-AFDy virgin and reprocessed samples were studied by DMA. Figure 6 shows the
variation in storage moduli (E’) and tan δ values as a function of the temperature. The
corresponding data are summarized in Table 2. The loss moduli variations for the different
compositions vs. temperature are displayed in Figure S5.
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Table 2. Thermomechanical properties of the virgin and reprocessed resins.

Thermosets
Tan δ,

Virgin/Recycled
(◦C)

Tan δmax,
Virgin/Recycled

E’glassy plateau,
Virgin/Recycled

(MPa)

E’rubbery plateau,
Virgin/Recycled

(MPa)

Crosslink Density,
Virgin/Recycled

(mmol/cm3)

ECMO/DTBA100 85/75 ± 1 0.9/1.2 400/2290 2.78/0.83 0.71/0.24
ECMO/

DTBA70DTDA30
50/50 ± 1 0.9/1.0 1000/1820 2.47/3.32 0.25/0.34

ECMO/
DTBA50DTDA50

39/35 ± 1 1.0/1.1 1100/2030 2.60/3.10 0.27/0.38

ECMO/
DTBA30DTDA70

22/22 ± 1 1.0/1.1 1500/1970 2.56/4.57 0.27/0.53

ECMO/DTDA100 3/2 ± 1 1.2/1.3 2280/2000 2.82/2.87 0.35/0.33
ECMO/DTBA70

4-AFD30
82/83 ± 1 0.79/1.1 400/900 1.70/0.87 0.48/0.18

ECMO/DTBA50
4-AFD50

74/81 ± 1 1.3/1.53 800/720 0.74/0.66 0.35/0.28

ECMO/DTBA30
4-AFD70

65/70 ± 1 1.2/1.07 400/1460 0.91/1.35 0.23/0.25

ECMO/4-AFD100 36/41 ± 1 0.86/1.1 1110/1780 0.53/0.51 0.21/0.17
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The maximum value of the tan δ peak was taken as the α-transition temperature.
As already observed in the DSC results, the tan δ increases gradually with the DTBA
content in the hardener mixtures due to the improved stiffness of the network structure:
from 3 ◦C for ECMO/DTDA100 to 85 ◦C for ECMO/DTBA100, while the thermoset made
with 4-AFD has a value of ~52 ◦C for ECMO/4-AFD100.

Liu et al. [19] reported, for ESO/4-AFD thermosets, a damping factor from 26 to 34 ◦C
as a function of the applied curing protocol, while the crosslink density varies from 0.095
to 0.190 mmol·cm−3.

The reprocessed ECMO/DTBA50DTDA50 thermosets exhibit a smaller decrease in
tan δ than that of recycled ECMO/DTBA100; in contrast, an increase in the damping factor
was observed for DTBAx4-AFDy.

Figure 6C,D show the variation in the storage moduli with the temperature for the
systems with acid-type hardeners, DTBAxDTDAy (Figure 6C) or combined acid/amine
ones, DTBAx4-AFDy (Figure 6D). In Figure 6C, there are four domains: the glassy re-
gion, the transition region, the rubbery plateau and the terminal or viscoelastic region.
Therefore, reaching T >> Tg, it is possible to observe the passage from the amorphous
solid rubbery state to the viscous liquid state in some recycled ECMO/DTBAxDTDAy
thermosets (Figure 6C), associated with an increased chain mobility. Especially in the
recycled ECMO/DTDA100 and ECMO/DTBA100 thermosets, we can notice the presence
of liquid–liquid transitions, with Tll reported as being correlated with a disintegration, a
“quasi-melting”, on heating, of long-lived and stable segments—segments associated with
neighboring segments in amorphous polymers, depending on the thermal history and
the formation of stable associations of the segments during material cooling [29]. The Tll
transition corresponds therefore to a short-range order–disorder transition, i.e., a loss of
intramolecular ordering. We can hypothesize that in the ECMO/DTBAxDTDAy recycled
systems, the dual-dynamic mechanism of transesterification and S-S cleavage activated
by the heating at T >> Tg favors the occurrence of this Tll transition. Moreover, this loss
of order appears to be exacerbated in the recycled ECMO/DTDA100 aliphatic thermoset,
while for the recycled ECMO/DTBA100 aliphatic–aromatic thermoset, the E’ drop at this
transition is lower. This behavior can be correlated with the fact that the aromatic disulfides
metathesis is more efficient in terms of exchange of the disulfide bonds. In contrast, this Tll
transition is not present in the recycled ECMO/DTBAx4-AFDy thermosets (Figure 6D). We
can attribute this result to the structural contribution of non-covalent interactions, such as
as the hydrogen bonds (highlighted by FT-IR spectra from Figure 4 and Figure S4) and π–π
stacking (both DTBA and 4-AFD are aromatics), that keep the disulfide bonds closer and
allow the constant reconstruction and rearrangement of the network during the heating.
In these systems, the non-covalent interactions seem to favor the conformationally regular
intramolecular regions.

From the E’ plots (Figure 6C,D), it can be observed that the virgin or recycled
DTBAxDTDAy and DTBAx4-AFDy thermosets show higher storage moduli in the glassy
state than that of the virgin ECMO/DTBA100 and that the recycled thermosets have higher
E’ values in the glassy region. As can be seen, the epoxy resins cured by DTBAxDTDAy
show higher storage moduli in the glassy region or in the rubbery plateau, compared with
the resins cured by DTBAx4-AFDy. Moreover, in these latter systems, the recycled samples
show increased values of tan δ.

3.3.2. Materials’ Thermal Stabilities

Thermogravimetric analyses of ECMO/DTBAxDTDAy thermosets show a 5% weight
loss (T5%) range from 245 ◦C for ECMO/DTDA100 to 270 ◦C for ECMO/DTBA100 (Figure 7,
and Table 3). The reduced thermal stability of thermosets with a higher ratio of aliphatic
crosslinkers can be attributed to the ease of breaking the aliphatic chains with respect to
aromatic DTBA and could also be associated with the lower crosslinking density of the
network based on DTDA crosslinkers, as shown in Table 2. No significant thermal stability
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reduction was observed after the recycling protocol, the T5% decreasing with ~5–10 ◦C,
excepting the recycled ECMO/DTDA100 resin, with a higher decrease of T5% with ~20 ◦C.
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Figure 7. TGA and zoomed-in view of the T5% area (from 25–300 ◦C) for the virgin and recycled ECMO thermosets: DTBA
and DTDA combination (A) and DTBA and 4-AFD and mixtures (B).

Table 3. T5% for virgin and recycled thermosets.

Thermosets T5% Virgin/Recycled (◦C) Thermosets T5% Virgin/Recycled (◦C)

ECMO/DTBA100 270/265 ± 1
ECMO/DTBA70DTDA30 255/245 ± 1 ECMO/DTBA70 4-AFD30 260/255 ± 1
ECMO/DTBA50DTDA50 250/240 ± 1 ECMO/DTBA50 4-AFD50 260/260 ± 1
ECMO/DTBA30DTDA70 250/245 ± 1 ECMO/DTBA30 4-AFD70 265/260 ± 1

ECMO/DTDA100 245/225 ± 1 ECMO/4-AFD100 260/260 ± 1

The ECMO/DTBAx4-AFDy thermosets exhibit closer values of T5% (Figure 7), centered
at 260 ◦C, whatever the ratio of the hardeners, showing a strong influence of the diamine
crosslinker as obtained for other thermoset resins made with 4-AFD [30,31]. Comparable
results were reported by Liu et al. [19] for epoxidized soybean oil cured with 4-AFD;
the authors observed excellent thermal stability with an onset decomposition temperature
of around 270 ◦C. Zhou et al. [30] for a vitrimer based on bis (4-glycidyloxyphenyl) disulfide
cured with 4-AFD obtained 5% weight loss at 275 ◦C.

Two well-separated decomposition processes can be observed in the TGA and DTG
curves (Figure S6) for the thermosets obtained with DTBAxDTDAy. The first degradation
stage involves pyrolysis with the breakdown of the ester–methylene linkages and of hy-
droxyls, and the second involves the thermo-oxidative degradation of the products formed
in the first step. Concerning the DTBAx4-AFDy thermosets, complex DTG thermograms
with three-step degradations can be observed in Figure 7. Similar results were found and
reported by Liu et al. [19], who attributed the first stage to the thermal decomposition of
disulfide bonds, the second to the ESO moieties and the last to the thermo-oxidation of the
benzene rings and π–π conjugations.

3.4. Solvent Resistance and Chemical Recyclability

The epoxy resins based on disulfide bonds can be recycled in DMF solution of dithio-
threitol [14,28,30]. Figure 8A and Figure S8A present the full degradation and chemical
recycling ability after 24 h at 50 ◦C of the thermosets based on ECMO/DTBAxDTDAy and
ECMO/DTBAx 4-AFDy.
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The solvent resistance of the thermosetting resins was tested in ethanol, acetone, THF
and 1N NaOH for 72 h at room temperature. Figure S8 displays the good resistance of
the ECMO/DTBAx 4-AFDy thermosets in ethanol and acetone. However, the solvent
resistances of ECMO/DTBAxDTDAy resins in 1 N NaOH (Figure S7B) show differences,
exhibiting higher solubility than those based on DTBAx4-AFDy (Figure 8B) and with an
increased ratio of the diamine crosslinker, the thermosets became completely insoluble.
Odriozola et al. [32] showed comparable results in 1 N NaOH solution for fiber-reinforced
polymer composites based on DGEBA/4-AFD epoxy resin. The same team reported that
epoxy composites were insoluble in different chemicals, such as THF, toluene, acetone,
ethanol and 1 N HCl. As for ELO/DTBA100 thermosets, all the ECMO/DTBAxDTDAy
resins show full and sustainable recyclability after 3 days at 80 ◦C (Figure S7B).

Finally, in contrast with the degradation behavior of the reprocessable resins based on
ELO and ESO with DTBA, Figure S9 displays the progressive resistance of ECMO/DTBAx4-
AFDy resins in THF. As vitrimers, these thermosets swell without degradation in “a good
solvent” [3,32–34].

4. Conclusions

This study reveals the proof of concept of mixing hardeners with opposite properties,
aliphatic–aromatic and acid–amine, and the use of these combinations to cure epoxidized
camelina oil, a bio-based epoxy monomer with 5.24 meq/g. All the molecules used as
hardeners contain dynamic disulfide bonds, to engender reprocessability and recyclability
in the thermosets. Moreover, the mixture of crosslinkers causes a reduction in the tempera-
tures of the reaction, as shown in the DSC thermograms, so there are less drastic conditions
for curing and reprocessing, compared with the systems with an individual crosslinker.
The addition of DTBA, as an aromatic diacid, in ECMO/DTDA and ECMO/4-AFD matrices,
produces an increase in the glass transition, the thermal stability and the crosslink density.

On the one hand, the thermosets exhibited strong solvent resistance while, on the other
hand, thanks to the nature of the disulfide bonds in the network structure, full chemical
recycling was obtained.

We can use these outcomes to create a series of thermosetting materials by modulating
the ratios between the hardeners to obtain a variety of properties, ensuring, at the same
time, recycling ability.
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ECMO/DTBAxDTDAy–DTBAx 4-AFDy blends; Table S3. DSC results for the ELO/DTBAxDTDAy
and ELO/DTBAx4-AFDy systems; Table S4. DSC results for the ECMO/DTBAxDTDAy systems;
Table S5. Curing and post-curing protocol for the ECMO/DTBAxDTDAy and ECMO/DTBAx4AFDy
blends; Table S6. Recycling conditions and aspects of the reprocessed ECMO/DTBAxDTDAy and
ECMO/DTBAx4AFDy blends.

Author Contributions: Conceptualization, A.G. and A.M.; data curation, C.D.M.; investigation,
C.D.M.; validation, A.G. and A.M.; writing—original draft preparation, C.D.M. and A.M.; writing—
review and editing, C.D.M. A.G. and A.M.; project administration, A.G. and A.M.; supervision, A.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the ECOXY project funded by the Bio Based Industries Joint
Undertaking under the European Union Horizon 2020 research and innovation program (grant
agreement n◦ 744311).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

EVO: Epoxidized vegetable oil; ECMO: Epoxidized camelina oil, DCA: Dicarboxylic
acids; DTBA: 2,2′-dithiodibenzoic acid; DTDA: 3,3′-dithiodipropionic acid; 4-AFD: 4-
aminophenyl disulfide; IM: Imidazole; FT-IR: Fourier transform infrared spectroscopy;
DSC: Differential scanning calorimetry; DMA: Dynamic mechanical analysis; TGA: Ther-
mogravimetric analysis; DTG: Derivative thermogravimetry; vs.: Versus.

References
1. Jin, Y.; Yu, C.; Denman, R.J.; Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 2013, 42, 6634–6654.

[CrossRef] [PubMed]
2. Capelot, M.; Unterlass, M.M.; Tournilhac, F.; Leibler, L. Catalytic Control of the Vitrimer Glass Transition. ACS Macro Lett. 2012, 1,

789–792. [CrossRef]
3. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science

2011, 334, 965. [CrossRef] [PubMed]
4. Lehn, J.-M. Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries. Chem. Eur. J. 1999, 5, 2455–2463. [CrossRef]
5. Rowan, S.J.; Cantrill, S.J.; Cousins, G.R.L.; Sanders, J.K.M.; Stoddart, J.F. Dynamic Covalent Chemistry. Angew. Chem. Int. Ed.

2002, 41, 898–952. [CrossRef]
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