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Liquid-liquid-solid transitions (LLST) are known to occur in confined liquids, exist in supercooled
liquids and emerge in liquids driven from equilibrium. Molecular dynamics (MD) simulations claim
many successes in forecasting the phenomena. The transitions are also studied in the framework of
thermodynamics based methods and minimalistic models. In here, the proposed approach is derived in
the framework of continuum and includes spatial and temporal dynamic heterogeneities; the approach
is meant to capture the material behavior at small scales. We conjecture that the liquid-like and
solid-like behaviors are dissimilar enough for the two to be governed by different constitutive relations.
In this way, we gain additional degree of freedom, which is found essential when predicting the
transitional phenomena. As a result, we derive the LLST criteria for liquids in equilibrium, during
steady flow and at transient conditions. Lastly, we forecast short-lived LLSTs in human blood during
cardiac cycle.

E
nvision a thin film of a molecular liquid exhibiting one or a combination of transitions: the liquid-liquid
transition (LLT), where a semi-organized molecular structure is formed (liquid II); the liquid-solid trans-
ition (LST), in this case the liquid is transformed into a solid-like material and, lastly, the liquid-liquid-solid

transition (LLST) defined as a combination of the two. When controlled, these transitions can be utilized in
micro-electro-mechanical systems (MEMS), joint lubrication in biology and in micro-fluidics. Suspensions
exhibit similar behaviors and the transitions play a role in paints, inks, cosmetics, pharmaceuticals and food1.
There are also dense suspensions such as corn starch which exhibit jamming transitions and, in some cases, could
allow you to run on their surface without sinking.

The question is: What happens during these transitions? Liquids brought to the transitional regime display
collective (temporarily and spatially synchronized) motion of molecules and particles. Consequently, relaxation
times are much longer from those in bulk2–4, viscosity increases by many orders of magnitude and, when sheared,
confined liquids may experience smooth, stick-slip or chaotic responses5–9. The collective motion triggers
dynamic heterogeneities with a supermolecular length ranging from a few up to ten molecular distances10–13.
Heterogeneities of a similar kind are observed in various suspensions14 and, among them, in blood subjected to a
transient flow15. We also know that strong stimuli drive viscoelastic liquids to the transitional state. An impact-
activated solidification has been observed in dense suspensions16 and an aligned motion of molecules is detected
in liquids subjected to shock17.

Molecular dynamics simulations provide excellent insight into the transitional phenomena18–21. The simula-
tions are followed by thermodynamics-based models22,23 and minimalistic models24–26; the latter two are suitable
for the replication of the observed behaviors. Also, the transitions are studied in the framework of non-Newtonian
fluid dynamics27,28. As we noted earlier, the transitions emerge in over-constrained liquids where molecules lose
their ability to move freely and, consequently, are forced to act in a collective manner.

In here, the transitional regime is the regime of our interest.
Our assertion is that a continuum-level approach can be useful in forecasting the transitions so long as the

approach is brought close enough to the molecular scale. In our case, this is done by accounting for the relevant
spatial and temporal fluctuations known as the dynamic heterogeneities29. Also, we assume that the substance in
the liquid-like and solid-like states is different enough for the behaviors to be governed by independent con-
stitutive equations. By comparing the two we derive criteria for the liquid-solid and liquid-liquid transitions in
equilibrium and at steady state. The analysis prepares us for a more challenging task, namely the prediction of the
LLSTs during transient flow processes. We illustrate the later in the example of blood subjected to an idealized
cardiac cycle.
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Results
Dynamic heterogeneity. Let’s consider a viscoelastic liquid, where
the monitored particle moves from its initial position {Xk} to a less
than optimal position {xk}, Fig. 1. The ‘‘optimal’’ position refers to the
thermodynamically most favorable (mean) positin {zk}. From this
point of view, a collective motion of a few atoms in mona-
tomic liquids (transit) can be considered a deviation from the
expected trajectory30. In liquids, the current position of a molecule
often diverges from the optimal position, but the trajectory must be
physically admissible, i.e. it must be consistent with the constraints
imposed by the conservation laws. In the framework of continuum,
we expect to find the material particle (particle and its surroundings)
in an acceptable position determined by the equations of motion
Lsij=Lxj~r _ui, where the components of the current stress are sij,
the particle acceleration is _ui~Lui=Lt and, as usual, mass density is r.
Any deviation from the thermodynamically optimal trajectory
[ Xk?xkf g versus Xk?zkf g] triggers perturbations in stress.
Consider stress tractions plotted on a surface normal to the
direction of flow {nk}. The tractions in the optimal and actual
positions may not be the same sz

iknk=siknk and the difference is
responsible for stress fluctuations

ds
f
ij~

lc
V0

ð
LV0

sik{sz
ik

� �
nknjdS: ð1Þ

Stress in the reference (optimal) position is sz
ik and in the actual

position {xk} is sik. Using divergence theorem, the stress

perturbations centered about sz
ik become ds

f
ij~

lc
V0

ð
V0

sik,knjdV .

The material length lc is understood as the dominant length and it
captures the relevant spatial stretch of the stress gradient. Next, the
stress gradient is replaced by the inertia term taken from the
equations of motion, while volume V0 is reduced to a material
point V0?0ð Þ. As a result, the perturbations are simplified to

ds
f
ij~lcsik,knj~rlc€cij. We assume that the tensor ds

f
ij is symmetric

and, then, we have _cij~ uinjzujni
� �

=2. However, the symmetry
restriction does not need to be enforced. The stress fluctuations are
incorporated into the constitutive description of the liquid and the
solid. In the transitional regime, the liquid is prone to shear and may
experience changes in mass density. This behavior is described by the
Maxwell-like viscoelastic model

_eij~C{1
ijkl _sklzsij=gzRM

e €cij=us’, ð2Þ

where strain rate is _eij~ Lui=LxjzLuj=Lxi
� �

=2. In this relation, elastic
matrix is Cijkl and g is viscosity. Viscosity is determined by averages
over a spectrum of relaxation times31. Usually, the viscous term in (2)
is based on stress deviator alone. In this case, shear stress and
pressure are viscous quantities32,33. Also, the elastic matrix includes
contributions of bulk and shear moduli. The last term in (2) captures

the contribution of the stress perturbations. The perturbations ds
f
ij

are added to the mean stress denoted as sij. In the constitutive
relation, the parameter RM

e ~uslc=uk resembles the Reynolds
number and, for this reason, we call it the material Reynolds
number. We introduce the number for reasons discussed later. In
here, kinematic viscosity is uk~g=r and us is sound velocity. When

the tensors ds
f
ij and _cij are not symmetric, we expect the non-

symmetry would trigger perturbations in flow. The rate of
mechanical work performed by the material is sijui,j~ _GLz

2yLzRM
e sijnj _ui=us. The state function GL and the dissipation

potential yL are GL~sijC
{1
ijkl skl=2 and yL~sijsij= 2gð Þ,

respectively. We omit the contribution of heat flux. The flux
RM

e €cij=us in (2) may become a powerless quantity when the term
sij _cij is equal to zero. As suggested34, the powerless flux captures
the contribution of hidden micro-scale dynamic events.

The liquid is said to be converted to a viscoelastic solid-like mater-
ial. In the simplest circumstance, the solid follows the Kelvin-Voigt
behavior and includes the contribution of the micro-inertia
described in (1), thus

sij~Cijkleklzg_eijz g=lcð Þ
ðt

t0

€cij sð Þds: ð3Þ

The time span (t 2 t0) is taken to include the relevant history of the
perturbations. This means that the material retains a short memory
of the past history but this memory fades away beyond (t 2 t0)31,35. In

here, mechanical work is sijui,j~ _FSz2ySzrusui,jnj

ðt

t0

_ui sð Þds=RM
e .

The state function is FS~eijCijklekl=2 and the dissipation potential
becomes yS~g_eij _eij=2. With the use of normality rules36 the dissipa-
tion potential captures viscous stress g_eij in (3). The contribution of
the dynamic heterogeneity ui,jnj

� �
r ui tð Þ{ui t0ð Þ½ �us=RM

e is linked to
the relevant change in particle momentum. Under certain conditions
the responses produced by the liquid (Eqn. 2) and the solid (Eqn. 3)
become indistinguishable. This is what we call the liquid-liquid
transitional state (liquid II).

LST- near-equilibrium scenario. We place the liquid (2) into a small
container. Walls of the container restrict the motion of molecules
and, in this manner, contribute to the increase of viscosity. In
equilibrium, the fluctuations represent the primary response of the
substance and, therefore, we omit the inertia terms in (2) and (3). In a
one-dimensional setting, the nano-scale stress in the position {x} is
calculated from the equation of motion s%szzr x{zð Þ _u, where s
and sz are stresses in the actual and optimal positions. At a larger

(meso) scale, the stress becomes s~szz

ðx

z
r _u sð Þds. Next, we

separate the spatial and temporal terms in velocity u x,tð Þ~
ux xð Þut tð Þ and substitute the nano- and meso-stresses into the
truncated constitutive equations (2) and (3). The nano-scale spatial
perturbations ux xð Þ in the liquid and the solid are Gaussian

unano
x xð Þ~uzexp { x{zð Þ2=2l2

nano

h i
and, then, become harmonic

at meso-scale umeso
x xð Þ~duzRe exp i x{zð Þ=lmesoð Þ½ �, where duz is

the magnitude of the perturbations. In the next step, we determine
the temporal contribution ut(t). It turns out that the expression for
ut(t) is scale independent (regardless whether it is the nano- or meso-
scale), but ut(t) is different in the liquid and the solid

Figure 1 | Trajectory of a material point: starting from the position {Xk}
the new optimal position would be in the point {zk}, but instead the
particle travels to the actual position {xk}.
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u
Liquid
t tð Þ~Re exp {

t

2t0

1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{4 RM

e

� �{2
q� �� �� �

uSolid
t tð Þ~Re exp {

t

2t0 RM
e

� �2
1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{4 RM

e

� �2
q� � !" #

:

ð4Þ

In here, the characteristic relaxation time is t0~uk=u2
s , while

us~
ffiffiffiffiffiffiffiffiffi
C=r

p
is sound velocity and, as before, uk~g=r is kinematic

viscosity. The elastic constant is reduced to a single parameter C. A
substance in the liquid and the solid state has very different
properties and these properties become comparable only within
the LST regime. The two expressions in (4) become identical when
the material Reynolds number RM

e is equal to one. We conclude that
the liquid-solid transition emerges when

RM
e ~uslc=uk~1: ð5Þ

The magnitude of kinematic viscosity increases as the size of the
confinement becomes smaller7,8,37,38. As indicated, the transitional
length in water, hexadecane, cyclohexane and other substances is
in the range of six to ten molecular distances. When knowing
sound velocity and viscosity (both measured at small scales), the
predicted characteristic length lc~uk=us is within the range
observed in the experiments and predicted in molecular dynamics
simulations.

LLT- steady flow. We have shown that spatial nano-fluctuations in
equilibrium are Gaussian and become harmonic at meso-scale. It is
suggested that steady shear makes the fluctuations non-Gaussian39

and, then, the fluctuations (1) trigger the liquid-liquid transition. We
begin by enforcing conservation of mass Lr=LtzL ruð Þ=Lx~0 and
momentum Ls=Lx~r _uzruLu=x, where the Cauchy stress is s,
velocity is u~Lu=Lt and displacement is denoted as u. All the
variables are expressed in terms of moving coordinate system
z~x{Dt, where the steady velocity is D. Consequently, we have
u~u zð Þ, s~s zð Þ and strain is e~Lu=Lz. Stress is derived directly
from the conservation laws and is s zð Þ~{r0Du zð Þ. In here, velocity
is u zð Þ~{DLu=Lz and r0 is the initial mass density.

As in the near equilibrium scenario, we predict the liquid-solid
transition by comparing Eqns. 2 and 3; in here, both the relations
include the contributions of the dynamic heterogeneities. The trans-
ition occurs when

RS
e~RM

e
us

D
~1 or

us

D
~1: ð6Þ

Note that at D~us the two material numbers are equal RS
e~RM

e

� �
and, consequently, the two criteria (5) and (6) become identical. The
transitional liquid (liquid II) should exhibit the properties described
by (2) and (3). From the solution presented in Methods A, flow
patterns exhibited by the liquid II are limited to

u zð Þ~{

ffiffiffiffiffiffiffiffiffiffiffiffi
RS

e{1
p

t0
u1exp

z

Dt0

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS

e {1

q� ��

{u2exp
{z

Dt0

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS

e {1

q� �� ð7Þ

where u1 and u2 are constants. From (7) we see that the liquid II
cannot be formed at RS

e~1. In all other situations RS
e=1

� �
, the liquid

II must follow the script defined in (7). There are four scenarios:

(1) At RS
ev1, the substance is in its solid state (pastes, wet sands,

and other dense suspensions) exhibiting high resistance to flow
(high viscosity). As a result, the material Reynolds number is
small RM

e v1
� �

. The solid-liquid conversion is accomplished by
applying a standing wave designed according to the protocol

(7). The most known phenomenon of this kind is soil
liquefaction40.

(2) One may envision another situation, where a viscoelastic liquid
RS

ew1
� �

is subjected to the standing wave. In this manner, the
liquid is forced to act as if it were a liquid II substance. Such
experiments have been conducted14,41 and show the formation
of microstructural patterns. We are interested in predicting the
aggregation and disaggregation of red cells in blood not only
under the steady state but also during transient flow42.

(3) Exponential flow of liquid II occurs at RS
ew1. Strongly driven

liquids (under shock or impact) fit well the scenario. Often, it is
assumed that shock wave Dwusð Þ has a sharp shock transition.
In reality, the transition consists of several molecular layers of
aligned molecules15 which (we predict) are organized within a
thin membrane. The membrane travels through the material
with shock velocity. Impact loading is also known to trigger
the liquid-liquid conversions16.

(4) We predict that the liquid II behavior may emerge in liquids
pushed from equilibrium and, then, allowed to relax according
to the rules in (7). Supercooled liquids may fit the scenario,
where a controllable decrease of temperature leads to an
increase of viscosity, thus, affecting the substance’s relaxation
time21. We are not aware of any other experimental work done
in this area.

LLST- short-lived transitions in blood during cardiac cycle. In
simple terms, blood is a liquid tissue consisting of plasma and
blood cells. On average 1 microliter of blood contains about 5:106

red cells. Thus, in larger vessels (diameter 2 mm or larger), the
number of cells is large enough for blood to become a homo-
geneous viscoelastic liquid. Blood viscosity and elasticity strongly
depend on the actual blood composition, flow rate, shape and size
of the blood vessels. A steady flow is fastest at the center of the vessel
and slowest near the wall. This non-uniformity is linked to the
buildup of wall shear stress. A pulsatile cycle produces conside-
rably more complex flow patterns43,44. It is observed that vessel

Figure 2 | A rigid tube filled with blood is rapidly moved in axial direction
(x) at constant velocity. Initially, the velocity gradient triggers liquid-

liquid-solid transitions but, later, blood is converted back to its liquid

form. The liquid (L), transitional liquid (T) and solid (S) are marked in the

tube and are plotted as a function of time. Velocity distributions are shown

in 2-D and 3-D representations and are plotted for t 5 0, 50, 100 and

150 ms.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1323 | DOI: 10.1038/srep01323 3



segments with low wall shear stress and oscillatory changes in flow
direction appear to be at high risk for the development of various
diseases and among them atherosclerosis and thrombosis.
Atherosclerosis affects the inner lining of an artery and is
characterized by plaque deposits that block the flow of blood.
Thrombosis is the formation of clots capable of obstructing the
flow of blood. Factors that affect blood viscosity45–48 are:
hematocrit, red cell aggregation and deformation, plasma viscosity,
concentration and size of low-density lipoproteins (LDL) and age.

Our objective is to forecast liquid-liquid-solid transitions in blood
during cardiac cycle49. In our idealized scenario, the vessel is a rigid
tube with inner radius le. The tube is filled with blood and the system
stays at rest. The derivations are based on Lagrange description,
where strains are small, times are relatively short tƒt0. The tube is
large enough for the blood to remain in its liquid state RM

e §2
� �

.
Next, the tube is rapidly moved from rest along its axis and kept in
motion at constant velocity u0, Fig. 2. Blood slippages along the walls
are not allowed. Whole blood in the state (L) is the viscoelastic liquid
(2), where the temporal and spatial fluctuations are considered
important. The blood in the transitional state (T) exhibits the prop-
erties of both the liquid (L) and the solid (S). The solid-like behavior
is described in terms of the ‘‘local’’ Kelvin-Voigt model, where the
stress fluctuations are omitted. The liquid (L), liquid II (T) and solid
(S) are glued together, Fig. 2. The boundary of the liquid rL with
respect to the boundary of the solid rS in the presence of the liquid
II rS{rLð Þmust be optimal in terms of the rate of work performed by
the system sW

:u0ð Þ, where the wall shear stress is sW~s le,tð Þ and
s r,tð Þ is shear stress. Expressions for the particle velocity and stress in
each state are presented in Methods B. Blood viscosity and elasticity
are determined for whole-blood (hematocrit 38%), where
us~4:3:10{3mm=ms and uk~3:25:10{3mm2=ms. In each solution,
the radius le of the vessel is equal to the significant stretch lc of the
stress gradient. As stated earlier, the vessel is rapidly moved from rest
and kept in motion at constant velocity u0~0:12mm=ms. In terms of
cardiac cycle this is the worst case scenario. The analysis is con-
structed for relatively large vessels, where the diameter is varying
between three to six millimeters. These diameters correspond to
the material Reynolds number RM

e in the range of two to four.
Rapid departure from rest converts the liquid (L) into the liquid II
(T) and the solid-like material (S), Fig. 2. In all the studied cases, clock
is set to zero when all particles across the tube start sensing the

motion, while the particle velocity at the center of the tube is still
equal to zero. This setup properly replicates the velocity distribution
in the tube at the moment of the blood flow reversal49. In the first
example RM

e ~2
� �

, at t 5 0 the entire vessel contains blood in the
transitional (T) and solid (S) states, Fig. 2. Gradually, blood is con-
verted back to its liquid form (L) and at t < t0 the conversion is
complete, where t0~176ms. There is a moment when the trans-
itional liquid (T) disappears and a sharp liquid-solid interface
emerges rS~rLð Þ. At this point, the L-S interface migrates toward
the tube walls. Stress tractions along the L-S interface are satisfied but
velocity becomes discontinuous causing slippages. Such slippages
have been observed in vessels near the vessel walls in a plasma layer
of the thickness about 45.8 mm15,49. In larger vessels RM

e ~2:5,3,4
� �

,
the layers T and S are smaller and the conversion process is faster
(Fig. 3). An indirect support for the LLSTs in blood at transient
conditions is offered in ref. 15. The presence of the transitional
and solid-like blood near the vessel walls is a concerning factor.
We should note that an increase of blood viscosity and/or measurable
decrease of elasticity may further aggravate the problem. Often,
blood viscosity is considered the unifying indicator of cardiovascular
diseases. It seems that the material Reynolds number would be a
better predictor of cardiovascular disease risk.

Discussion
There are two aspects of the work worth noticing. First, our con-
tinuum level approach is adapted for a small scale analysis. We
accomplish this by incorporating the spatial and temporal stress
fluctuations into the material’s description. Second, we view the
substance either as a liquid-like or solid-like material. Thus, we
diverge from the approaches where the liquid-like, solid-like and
the transitional behaviors are constructed within a single mathemat-
ical framework. In this manner, we gain additional degree of freedom
which we find necessary when describing the transitional processes.
Consequently, we predict LLSTs during active flow processes (steady
or transient); where in some circumstances the substance is hard
driven. There are several mechanisms by which the transitions occur.
Our criterion for the liquid-solid transformation works for liquids
in small confinements. We predict microstructural reorganiza-
tions in liquids stimulated by standing waves, as we show that the
standing waves are responsible for triggering liquefaction in dense
suspensions. A synchronized motion of molecules (or particles in

Figure 3 | In the upper right corner of the figure, we show the relaxation of the solid (S) and transitional (T) phases as a function of time for three vessels
(D 5 3.78, 4.54 and 6.04 nm). The liquid II (T) and the solid (S) phases vanish faster as the size of the vessel increases. Also, the thickness of the T-S layer is

plotted as a function of the vessel diameter. At the initial time of the flow reversal (t 5 0), the T-S layer has a measurable thickness even in a very large vessel

(D $ 20 mm). However, the size of the layer shrinks with the progression of time, as shown in instances (t 5 10, 20, 30, 40 and 50 ms).

www.nature.com/scientificreports
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suspension) is forecasted in liquids subjected to an impact and/or
shock loading. Lastly, we indicate that the liquid-liquid transitions
should occur in liquids pushed away from equilibrium and, then, are
allowed to relax according to a controllable scenario.

Methods
A. Transitional liquid (liquid II):

Suppose that the liquid-like and solid-like behaviors are indistinguishable. If
so, we can substitute stress from (3) into the flow equation (2) and construct a general
solution. First, we introduce an effective velocity

~u x,tð Þ~ u x,tð Þ
t0

z
du x,tð Þ

dt
: ðA:1Þ

Next, we define an effective strain rate

_~e x,tð Þ~ d~u x,tð Þ
dx

z
t0

lc

d~u x,tð Þ
dt

ðA:2Þ

The liquid II obeys the relations (2) and (3). We find that with the use of the new
variables (A.1) and (A.2) the transitional liquid must follow the rule defined below

_~e x,tð Þzlc
d _~e x,tð Þ

dx
~

1
lc

u x,t0ð Þzlc _e x,t0ð Þ½ �: ðA:3Þ

In here, u x,t0ð Þ is the initial velocity and _e x,t0ð Þ is the initial strain rate. In addition,
the material in the transitional state must adhere to the conservation laws. Under the
condition of steady flow z~x{Dtð Þ, the rules (A3) are

d
dz

u zð Þ
t0

z
lc
t0

1{
t0

lc
D

� �
du zð Þ

dz
{lcD

d2u zð Þ
dz2

� �
1{

t0

lc
D

� �
z

D
lc

du zð Þ
dz

zlcD
d2u zð Þ

dz2

� �
~0,

ðA:4Þ

where stress is s zð Þ~r0D2:du zð Þ=dz. Solution of the problem is presented in terms of
displacements and stresses, namely

u zð Þ~u0zu1exp
z

Dt0

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS

e {1
q� �

zu2exp {
z

Dt0

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS

e {1
q� �

:

s zð Þ~ Dr0

t0

ffiffiffiffiffiffiffiffiffiffiffiffi
RS

e{1
p u1exp

z

Dt0

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS

e {1
q� �

{u2exp
{z

Dt0

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS

e {1
q� �� � ðA:5Þ

A. LLST in rigid vessel:
In a rigid vessel filled with blood, velocity and shear stress in the liquid (L)

satisfy the equation of motion and are

uL r,tð Þ~u0
Lzu1

L
1
2
z

2

RM
e

� �2 z
r
le

 !
exp½{

2RM
e RM

e rz2ust
� �

4z RM
e

� �2
	 


le

�

sL~2u1
L

rus

RM
e

1z
4

RM
e

� �2 z
r
le

 !
exp½{

2RM
e RM

e rz2ust
� �

4z RM
e

� �2
	 


le

�:

ðB:1Þ

There are two constants, namely u0
L and u1

L . Moreover, the velocity gradient in the
center of the tube is always equal to zero _eL 0,tð Þ~0, where _eL~LuL=Lr.

The responses of the liquid II are constructed by solving the equation (A.3).
Consequently, velocity and shear stress are

uT r,tð Þ~u0
Tzu1

T
us

le
exp { rzustð Þ=le½ �zu2

T

RM
e us

le
exp {RM

e RM
e rzust

� �
=le

� �

sT ~{ u1
T exp { rzustð Þ=le½ �zu2

T exp {RM
e RM

e rzust
� �

=le
� �
 �ru2

s

le
:

ðB:2Þ

The transitional flow is determined in terms of three constants u0
T , u1

T and u2
T .

Lastly, the solution for the solid is

uS r,tð Þ~u0
Sz_e0

Sr

sS~rus
le

RM
e

ztus

� �
_e0

S ,
ðB:3Þ

where u0
S and _e0

S are constants. Boundary conditions for this problem are defined as
follows:

uS le,tð Þ~u0; uL le,0ð Þ~u0; uL 0,0ð Þ~0;

uS rS,tð Þ~uT rS,tð Þ; sS rS,tð Þ~sT rS,tð Þ;

uL rL,tð Þ~uT rL,tð Þ; sL rL,tð Þ~sT rL,tð Þ:

ðB:4Þ

We have seven constants u0
S ,_e0

S ,u0
L,u1

L,u0
T ,u1

T ,u2
T


 �
and two time-dependent variables

rL tð Þ,rS tð Þf g. The LLT and LLST boundaries are determined from the criterion of
least action

L sW rL,rS,tð Þ:u0½ �=LrL~0

L sW rL,rS,tð Þ:u0½ �=LrS~0:
ðB:5Þ
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