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Purpose: The pathogenesis of CRSwNP is complex and not yet fully explored, so we aimed to identify the pivotal hub genes and 
associated pathways of CRSwNP, to facilitate the detection of novel diagnostic or therapeutic targets.
Methods: Utilizing two CRSwNP sequencing datasets from GEO, differential expression gene analysis, WGCNA, and three machine 
learning methods (LASSO, RF and SVM-RFE) were applied to screen for hub genes. A diagnostic model was then formulated 
utilizing hub genes, and the AUC was generated to evaluate the performance of the prognostic model and candidate genes. Hub genes 
were validated through the validation set and qPCR performed on normal mice and CRSwNP mouse model. Lastly, the ssGSEA 
algorithm was employed to assess the differences in immune infiltration levels.
Results: A total of 239 DEGs were identified, with 170 upregulated and 69 downregulated in CRSwNP. Enrichment analysis revealed 
that these DEGs were primarily enriched in pathways related to nucleocytoplasmic transport and HIF-1 signaling pathway. Data 
yielded by WGCNA analysis contained 183 DEGs. The application of three machine learning algorithms identified 11 hub genes. 
Following concurrent validation analysis with the validation set and qPCR performed after establishing the mouse model confirmed 
the overexpression of BTBD10, ERAP1, GIPC1, and PEX6 in CRSwNP. The examination of immune cell infiltration suggested that 
the infiltration rate of type 2 T helper cell and memory B cell experienced a decline in the CRSwNP group. Conversely, the infiltration 
rates of Immature dendritic cell and Effector memory CD8 T cell were positive correlation.
Conclusion: This study successfully identified and validated BTBD10, ERAP1, GIPC1, and PEX6 as potential novel diagnostic or 
therapeutic targets for CRSwNP, which offers a fresh perspective and a theoretical foundation for the diagnostic prediction and 
therapeutic approach to CRSwNP.
Keywords: chronic rhinosinusitis with nasal polyposis, key genes, machine learning, immune cell infiltration

Introduction
Chronic rhinosinusitis with nasal polyposis (CRSwNP) represents a prevalent localized persistent inflammatory disorder. 
Patients afflicted with this condition commonly experience symptoms featuring nasal blockage, rhinorrhea, olfactory 
dysfunction, and pain in the face, which markedly impair their quality of life and work efficiency. Additionally, the 
disease incurs substantial economic burdens.1,2 Over the past years, the occurrence of CRSwNP has escalated signifi
cantly due to alterations in people’s living environments and lifestyles, posing a grave threat to their physical and mental 
well-being.3 The estimated global prevalence of chronic rhinosinusitis(CRS) spans from 5% to 12%.4 Genetic analysis of 
CRSwNP can facilitate the elucidation of genes implicated in modulating the disease process, thereby enabling the 
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development of more precise therapeutic approaches and biomarkers.5 Considering the high prevalence of CRSwNP, the 
severe discomfort experienced by patients, and the pressing need for treatment, it is urgent to detect efficacious 
diagnostic predictors and therapeutical targets.

High-throughput sequencing advances have led to increased research combining sequencing and bioinformatics. 
These tools help identify key genes and pathways in diseases or biological processes, providing a basis for early 
diagnosis and drug development.In previous bioinformatics analyses, genes such as XIST, TAS2R19, TYROBP, and 
MAP1B6-9 have been identified to facilitate the progression of CRSwNP. Simultaneously, the application of supervised or 
unsupervised machine learning algorithms has demonstrated their potential for unveiling concealed relationships within 
high-dimensional data.10,11 Moreover, machine learning holds significant value in the evaluation of high-dimensional 
transcriptome data and the ascertainment of the positions of genes with biological relevance.12,13 In the field of CRS, it 
has been applied to research on the burden of medical care14 and the prediction of olfactory loss.15 Nonetheless, it has yet 
to be utilized in the mechanistic investigations of CRSwNP.

This study is predicated on transcriptome data derived from the Gene Expression Omnibus (GEO). Bioinformatics 
methodologies were employed to detect key genes implicated in CRSwNP, and Weighted gene co-expression network 
analysis (WGCNA) was utilized to pinpoint crucial gene modules linked to CRSwNP phenotypes. The outcomes of the 
screened differentially expressed genes (DEGs) and WGCNA underwent gene ontology (GO) enrichment analysis, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis, and disease ontology (DO) enrichment analysis. Different results 
will be obtained when analyzed with different logical algorithms. In order to compensate for the impact of the short
comings of different algorithms on the analysis results as much as possible, three representative machine learning 
algorithms, namely, least absolute shrinkage and selection operator (LASSO), randomForest, and support vector machine 
recursive feature elimination (SVM-RFE), were employed to ascertain feature genes, which were subsequently validated 
for diagnostic efficacy through ROC analysis and GSE136825 data.

Murine models, which provides a bridge between genetic predictions and experimental validation, are widely used in 
the research of CRSwNP,16–18so a murine model was constructed, and qPCR experiments were conducted to validate the 
feature genes, which demonstrated that BTBD10, ERAP1, GIPC1, and PEX6 may serve as key genes in CRSwNP. The 
ssGSEA algorithm was leveraged for analyzing the expression level exhibited by immune cell genes, successfully 
identifying and quantifying the diverse immune cells residing in the nasal mucosa of CRSwNP and control samples, and 
characterizing the link between immune infiltration and CRSwNP biomarkers.

While previous studies have indeed confirmed a number of potential target genes related to CRSwNP, the precise 
genes and that are intricately associated with the condition are yet to be fully elucidated. The intention of this study is to 
detect prospective biomarkers for CRSwNP by screening key genes and signaling pathways pertinent to the disease 
employing bioinformatics techniques. Furthermore, we have carried out validation. This will facilitate the advancement 
of CRSwNP treatment and mechanistic research. The study’s flowchart is illustrated in Figure 1.

Materials and Methods
Data Download
CRSwNP datasets GSE136825 and GSE107624 both were procured from the NCBI’s GEO (https://www.ncbi.nlm.nih. 
gov/geo/). The GSE136825 dataset encompasses 42 nasal polyposis (NP) samples and 28 normal control samples, 
whereas the GSE107624 dataset contains 21 NP samples and 21 normal control samples. In the present study, 
GSE107624 was utilized as a training set, while GSE136825 functioned as a validation set. All datasets underwent 
standardized data preprocessing.

Differential Expression Analysis
The differentially expressed genes (DEGs) within GSE107624 were identified through the employment of the “Limma” 
R package, with the screening criteria established as |log2 fold change (FC)| > 0.5 and p < 0.05. Heatmaps and volcano 
plots of the DEGs were created by employing the “Pheatmap” R package and the “ggplot2” R package, respectively.
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Weighted Correlation Analysis
The “WGCNA” software package in R was utilized to examine gene expression trends among various samples and to 
identify potential biomarkers or therapeutic targets. Initially, the existence of each gene was investigated, and an 
adjacency matrix was devised to measure the degree of correlation strength between nodes. Thereafter, the adjacency 
matrix was converted into a topological overlap matrix (TOM) to numerically the likeness within nodes. The dissim
ilarity scores were computed to facilitate hierarchical clustering analysis. Utilizing a dynamic tree cutting approach with 
a threshold module size of 50, we identified co-expressed gene modules. Subsequently, we assessed the association 
between these gene modules and CRSwNP by evaluating gene significance (GS) and module membership (MM) values. 
In the end, the module demonstrating the strongest correlation with the disease was designated as the key module.

Enrichment Analysis of DEGs
The DOSE package in R was adopted for exploring biological functions in GO, DO, and KEGG enrichment analyses. 
Gene Set Enrichment Analysis (GSEA) was employed to delve into the modifications in biological functions and 
pathways between CRSwNP and normal control samples. The limit for statistical significance was set at a P-value < 0.05.

Figure 1 Flowchart of the study process GO, Gene Ontology; DO, Disease Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, least absolute shrinkage 
and selection operator; SVM-RFE, support vector machine recursive feature elimination; RF, random forest; ROC, receiver operating characteristic.
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Selection of Core Feature Genes (Hub Genes)
Three machine learning algorithms, specifically LASSO, SVM-RFE, and randomForest, were utilized to screen for hub 
genes in CRSwNP. The “glmnet” package was utilized to apply the LASSO algorithm, known for its efficient execution 
of LASSO and elastic-net regularization techniques, set the α value of the glmnet function to 1, obtained the best λ by ten 
cross-validations finally obtained the hub genes based on the best λ. For the SVM algorithm, the “e1071” package was 
employed, offering a wide array of utilities for SVM model training and classification operations. The RF algorithm was 
executed with the help of the “randomForest” package. An error rate assessment was conducted for each tree, with the 
optimal trees being identified as the count that resulted in the minimum error rate while ensuring model robustness. 
Subsequently, the genes screened out by these machine learning algorithms were overlapped to identify potential hub 
genes for further investigation. The expression rates of the hub genes were scrutinized in GSE107624.

Assessment of the Diagnostic Efficacy of Hub Genes
A nomogram was crafted using the expression levels of hub genes, and the risk of developing CRSwNP was predicted 
via the “rms” package in the R software. A calibration plot was constructed to assess the predictive precision of the 
model. Subsequently, curves for decision analysis and clinical impact were drawn to determine whether the application of 
the diagnostic model would result in beneficial clinical decisions for patients. The diagnostic merit of hub genes and the 
nomogram was then evaluated by establishing ROC curves, with the area under the curve (AUC) and 95% CI 
worked out.

Examination of Immune Infiltration of Hub Genes
The Single-sample gene set enrichment analysis (ssGSEA), which is an expansion of the traditional GSEA approach, has 
become a prevalent technique in bioinformatics research for investigating immune infiltration, implemented in the 
R language, was adopted to quantify the proportions of 28 types of immune cell within the merged dataset. Violin 
plots were employed to display the contrast in immune cell composition between CRSwNP and healthy samples. The 
relationship between hub genes and infiltrating immune cells was scrutinized via the R software. The findings of the 
analysis were presented in a visual format via the “ggpubr” package in R.

Animals
Male C57BL/6J mice, aged 6 to 8 weeks and free from specific pathogens, were supplied by Jinan Pengyue Experimental 
Animal Breeding Co., Ltd. and maintained at the Experimental Animal Center of Yuhuangding Hospital. The mice were 
allowed to adapt to the animal facility environment for a period of one week prior to the commencement of the 
experiment, which had been authorized by the Ethics Committee of Yantai Yuhuangding Hospital, affiliated with 
Qingdao University. All animal experiments were conducted in accordance with the ARRIVE guidelines, the UK 
Animals (Scientific Procedures) Act 1986 and related guidelines, and the EU Directive on Animal Experiments 2010/ 
63/EU. The mice were housed in temperature-controlled environments ranging from 22°C to 24°C, with a 12-hour light/ 
dark cycle from 7:00 am to 7:00 pm, and they had free access to food and water.

Establishment of CRSwNP Model in Mice
With regard to the meticulous experimental setup, the techniques utilized in prior research were replicated.16 Six-week- 
old mice in the NP group were intranasally challenged with a mixture of Aspergillus proteinase (AP) and ovalbumin 
(OVA). A solution containing 2 units of AP (Sigma-Aldrich, St. Louis, MO) and 75 mg of OVA (Sigma-Aldrich) was 
prepared by diluting it in sterile PBS to a total of 20 mL and was then administered intranasally to each mouse on three 
occasions per week for a duration of 12 weeks, with 6 mice in each experimental group. The mice in the normal group (6 
mice per group) were dosed with PBS at equal intervals. Following nasal instillation, the mice were held with their heads 
downward to prevent the reagents from entering the lungs.

https://doi.org/10.2147/JIR.S484914                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 7576

Wang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Sample Collection
Mice were induced into anesthesia with a 2% dose of isoflurane and subsequently euthanized. Nasal mucosa samples were 
collected, and the dermal tissue from the mouse’s head was separated by blunt incision under a microscope to expose the mouse’s 
skull. The connection between the zygomatic bone and the maxillary structures on either side of the skull was then trimmed with 
scissors. The nasal bones above the nostrils were separated with forceps, and the soft tissue covering the palate was also separated 
with forceps to expose the bottom of the nasal cavity. Additionally, the alveolar bone of the maxilla was severed with forceps. The 
upper jawbone and the nasal tip were removed with scissors. At the base of the maxilla, a blade or a pair of scissors was employed 
to cut the bone septum free from the maxillae on the left and right. Forceps were utilized to grasp the front end of the maxilla and 
pry the maxilla on both sides. They were also employed to grip the base of the nasal septum and detach the nasal septum. It is of 
paramount importance to exercise caution to avoid damaging the nasal mucosa. The mucosa lining the nasal cavity over the 
maxillae on either side was observable. Fine forceps were employed to collect and preserve the nasal mucosa on both sides of the 
bony nasal septum. The complete array of tissue samples was stored in a −80°C freezer for further research.

Histological Analysis
A 4% PFA solution was used to fix the nasal mucosa tissue of mice for a duration of 12 hours, and then a 5% 
nitric acid solution was employed for decalcifying the material for a duration of three days. The tissue was 
embedded in paraffin in line with standard practices. A paraffin slicer (RM2016, Leica, Germany) was used to cut 
4-μm thick sections. The sections underwent hematoxylin and eosin (H&E) staining to facilitate the evaluation of 
polypoid lesions. Histological analysis of H&E was performed by two impartial pathologists unaware of the study 
design.

Total RNA Extraction from Mouse and Quantitative Real-Time Analysis of PCR 
Expression
The RNeasy mini-kit (SparkJade, China) was employed to isolate total RNA from mouse olfactory bulbs (OB). cDNA 
was subsequently produced via the QuantiTect Reverse Transcription Kit (SparkJade, China). Real-time PCR quantifica
tion was carried out with SYBR Green Master Mix (SparkJade, China) on the QuantStudio 3 Real-Time PCR System. 
(SparkJade, China). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) served as the internal control benchmark. 
Listed below were specific primers (Sangon Biotech, Shanghai, China):
Mouse PEX6: F: CACACTCCGTCATCTCCTCCTTG; R: GACAGCACTGGCACCTCTAGC
Mouse BTBD10: F: AGGAACAGCAGCCAGTCAAGC; R: GTCACTCGCTCAGATGTCCTCAC
Mouse CYFIP1: F: ACACGCTACAACTACACCACTGAG; R: CACACTCTCCATCCTGCCCATC
Mouse ERAP1: F: GCCAACACTCATCATCAACCTCAC; R: TGCACATTCCGCCCACTCAC
Mouse GIPC1: F: CCTCGCCTCGTGTTCCATACC; R: ATCTTGCCGTACAGCTCCTTGAC
Mouse NYNRIN: F: TCTGGCTATTGCTTCTACCGTGAC; R: AGGTGGGCGTATGTGGTTGTG

Analysis of Statistical Data
Comprehensive statistical analyses and graphical illustrations were undertaken via R software (version 4.1.2). 
Data analysis was conducted using GraphPad Prism 8.0 (GraphPad Software, La Jolla, CA). The diagnostic 
performance of hub genes was assessed by employing ROC curve analysis. Unpaired t-tests were conducted to 
evaluate the differential expression of core genes. Unless otherwise stated, P < 0.05 was defined as statistically 
significant.

Results
Selection of DEGs and GSEA
A total of 239 DEGs were obtained from GSE107624, with 170 upregulated and 69 downregulated in CRSwNP. Volcano 
plots and heatmaps were constructed (Figure 2A and B). GSEA demonstrated that DEGs exhibiting upregulation might 
be predominantly in association with aminoacyl-tRNA biosynthesis, antifolate resistance, nucleocytoplasmic transport, 
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pyrimidine metabolism, and ribosome biogenesis in eukaryotes. The downregulated DEGs might be chiefly correlated 
with the metabolic processes of drugs − cytochrome P450, the metabolism of xenobiotics by cytochrome P450, nitrogen 
metabolism, and pentose phosphate pathway (Figure 3A). GSEA ridge plots were also constructed (Figure 3B).

Figure 2 The volcano plot and the heatmap of DEGs screened from GSE107624. (A) The heatmap representing the differentially expressed genes (DEGs). The red 
coloration denotes genes with high expression, and the blue coloration denotes genes with low expression. (B) The volcano plot is a graphical illustration of the differentially 
expressed genes. The red coloration represents genes with high expression, and the green coloration represents genes with low expression.

Figure 3 GSEA as a Tool for Analyzing DEGs. (A) The GSEA plot presenting the enriched signaling pathways based on the hallmark gene sets. (B) The ridge plot of the top 
30 most enriched pathways in CRSwNP patients.

https://doi.org/10.2147/JIR.S484914                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 7578

Wang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


WGCNA Analysis and Detection of Modules
All the genes were ordered in a descending manner of variance, and the leading 25% of genes in terms of variance were 
selected for analysis. Following the removal of outliers, a sample clustering tree (Figure 4A) was generated. A soft 
threshold of 7 (R² = 0.85) was set to fabricate a network with a scale-free nature. Subsequently, an adjacency matrix was 
constructed and a matrix reflecting topological overlap (Figure 4B) was generated. Functionally similar modules were 
determined through the combination of average hierarchical clustering and dynamic tree clipping (Figure 4C). The 
magenta module exhibited the highest correlation of module eigengene (ME) with CRSwNP (r =0.44; p =0.004), 
followed by the darkturquoise module (r = 0.4; p = 0.008, Figure 4D). Consequently, the status of these two modules 
as key modules for CRSwNP has been acknowledged. Furthermore, the linkage between module membership (MM) and 
gene significance (GS) was calculated within the magenta and darkturquoise modules (Figure 4E and F).

DO, GO, and KEGG Enrichment Analysis of Overlapped Genes
The overlap of DEGs with genes from the magenta and darkturquoise modules, identified through WGCNA, yielded 56 
common genes (Figure 5A). The 56 overlapped genes were subject to DO, GO, and KEGG functional enrichment analysis via 
the “clusterProfiler” package in R. The DO enrichment analysis revealed that the overlapped genes might be related to 
conditions including fatty liver disease, Parkinsonism and nephroblastoma (Figure 5B). The GO enrichment analysis 
established that these genes were predominantly enriched in such biological processes (BP) as nucleus organization, and 
the regulation of DNA methylation. In terms of cellular components (CC), these genes were chiefly enriched in cytoplasmic 
ribonucleoprotein granule, and nuclear periphery, among others. Regarding the molecular functions (MF), these genes were 
characterized by the enrichment in amide binding, and peptide binding (Figure 5C). KEGG enrichment analysis revealed their 
associations with pathways such as Nucleocytoplasmic transport, Dopaminergic synapse, and HIF-1 signaling pathway 
(Figure 5D).

Figure 4 Establishment of WGCNA and Detection of Key Modules. (A) Dendrogram of sample clustering. (B) Examination of the scale-free index and average connectivity 
across a range of soft threshold powers (β). (C) Dendrogram representing the grouping of all differentially expressed genes, characterized by measurement variability 
(1-TOM). The colored ribbons represent the findings derived from the automated single-block analysis. (D) A heatmap illustrating the correlation between modules and 
CRSwNP. The numbers within and outside the parentheses demonstrate the p-values and correlation coefficients in respective order. The linkage between MM (X-axis) and 
GS (Y-axis) for genes within the magenta module (E) and the darkturquoise module (F).

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S484914                                                                                                                                                                                                                       

DovePress                                                                                                                       
7579

Dovepress                                                                                                                                                            Wang et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Screening of Hub Genes Based on Three Different Machine Learning Algorithms
Initially, SVM-RFE was employed to screen the aforementioned 56 differential feature genes. The minimum 5-fold 
cross-validation error resulted in the detection of 21 feature genes (Figure 6A). Secondly, the random forest algorithm 
identified 40 feature genes (Figure 6B). Finally, LASSO regression analysis indicated that 13 feature genes were included 
in the regression model when selecting the log λ with the minimum mean square error (Figure 6C). The genes identified 
by SVM-RFE, random forest, and LASSO analyses exhibited significant overlap. Finally, a total of 11 hub genes were 
identified in GSE107624 (Figure 6D), namely BTBD10, RAB6A, SPEN, TMEM87B, COBLL1, CYFIP1, ERAP1, GIPC1, 
NYNRIN, PEX6 and VHL (Figure 6E). All of these were of statistical significance.

Construction of a CRSwNP Prediction Model and Appraisal of the Diagnostic 
Reliability of Key Genes and the Prediction Model
A nomogram was built upon the 11 hub genes using logistic regression analysis (Figure 7A). The calibration plot 
demonstrated a marked degree of concordance between the calibration prediction curve and the standard curve 
(Figure 7B). The decision curve analysis (DCA) indicated that the model had a favorable clinical benefit (Figure 7C). 
In GSE107624, the AUCs values of the prediction model for 11 hub genes were also >0.7, indicating a desirable 
predictive performance (Figure 7D). In addition, the diagnostic efficacy of these key genes and the prediction model in 
the validation set GSE136825 was evaluated (Supplementary Figure 1). These phenomena indicated that the screened 
signature genes had remarkable diagnostic efficiency in forecasting CRSwNP.

Figure 5 DO, GO, and KEGG Enrichment Analysis of Overlapped Genes. (A) Venn diagram illustrates the overlap of DEGs with Turquoise module-specific genes. (B) The 
findings of the DO enrichment analysis. (C) The outcomes of the GO enrichment analysis. (D) The outputs of the KEGG enrichment analysis.
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Figure 6 Screening of Hub Genes Using Machine Learning Algorithms. (A) SVM-RFE analysis. (B) Random forest analysis. (C) LASSO regression analysis. (D) A Venn 
diagram illustrating the overlapping analysis through SVM-RFE, random forest, and LASSO. (E) A bar chart presenting the differential expression of hub genes in GSE107624. 
NP: nasal polyposis.
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Figure 7 Construction and Validation of the Prediction Model. (A) The nomogram model built upon hub genes in GSE107624. (B) Calibration curve of the nomogram. (C) 
DCA. (D) Evaluation of the diagnostic efficacy of key genes and the prediction model in GSE107624. DCA: decision curve analysis.
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Figure 8 Results of Immune Infiltration. (A) Infiltration rates of 28 immune cell categories in the non-diseased group versus that in the CRSwNP group. (B) A heatmap 
illustrating the linkage of target genes to immune cells. *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001; ns: non-significant.
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Results of Infiltrative Behavior of Immune Cell
The ssGSEA was employed to measure the extent of immune infiltration. In comparison to the control group, the 
CRSwNP group showed decreased infiltration levels of Type 2 T helper cell, Activated CD4 T cell, Memory B cell, Mast 
cell, and Natural killer T cell. Furthermore, the immature dendritic cell exhibited a association with the infiltration levels 
of Effector memory CD8 T cell (Figure 8A). Examination of correlation revealed that there were affirmative correlations 
between CYFIP1 and type 2 T helper cell. CYFIP1 and BTBD10 were positively correlated with memory B cell. ERAP1 
presented a positive connection with natural killer T cell; TMEM87B demonstrated a negative correlation with Immature 
dendritic cell. NYNRIN, COBLL1, GIPC1, SPEN, CYFIP1, and BTBD10 exhibited a negative association with Effector 
memory CD8 T cell (Figure 8B).

Expression Levels of Hub Genes in CRSwNP Mouse Model
To validate the observed changes in gene expression GSE107624, we utilized GSE136825 as a validation set. It was 
observed that in both datasets, the gene expression of BTBD10, CYFIP1, ERAP1, GIPC1, NYNRIN and PEX6 exhibited 

Figure 9 (A) H&E staining to assess the nasal mucosal status in different groups. The yellow line frames indicate the same magnified areas. The black arrows indicate the 
presence of uneven, swollen, and ruptured nasal mucosa. (B) The magnitude of expression for BTBD10, GIPC1, NYNRIN, and PEX6 in the healthy group and the CRSwNP 
group of mice. *: p<0.05; ***: p<0.001.
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an similar upward trends (Supplementary Figure 2). To verify the expression profiles of hub genes in CRSwNP, a mouse 
experimental model was established. Examination of CRSwNP mouse nasal tissues via H&E staining revealed the 
presence of polypoid lesions and diffuse mucosal swelling, whereas normal mice exhibited a smooth thin mucosa 
(Figure 9A). Nasal mucosal samples were obtained from nine control mice and nine mice with CRSwNP. The RT-qPCR 
findings indicated that the mRNA expression levels of BTBD10, GIPC1, NYNRIN, and PEX6 in the CRSwNP group were 
relatively higher than those observed in the control group (Figure 9B), which was consistent with previous findings. No 
significant trends were observed for CYFIP1 and ERAP1.

Discussion
NP is defined as a benign protrusion of the inflammatory nasal and sinus mucosa in CRSwNP. CRSwNP is a condition marked 
by the persistent inflammatory process and the emergence of edematous polyps in the nasal mucosa. The symptoms associated 
with this condition include nasal congestion, olfactory dysfunction, and rhinorrhea. CRSwNP influences a substantial fraction 
of the global community, with its incidence rising annually. This imposes a substantial burden on human health and the social 
economy, and has become an increasingly severe global public health issue.1,2,19,20 Consequently, the detection of hub genes 
and pathways associated with the disease, as well as the exploration of new diagnostic or therapeutic targets, are of paramount 
importance for the effective prevention and treatment of the disease.

This study investigated and analyzed transcriptomic data from nasal polyp tissues and normal mucosal tissues. The 
analysis indicated that the DEGs played pivotal roles in nucleocytoplasmic transport, regulation of DNA methylation, 
nucleus organization, and other processes. A recent meta-analysis incorporating 65 studies demonstrated that there was 
a notable distinction in overall methylation between the CRSwNP and control groups.21 Moreover, these DEGs were 
evidenced to have a part to play in various pathways, such as those associated with influenza A, dopaminergic synapse, 
and HIF-1 signaling pathway. Existing research indicates that CRSwNP is possibly induced by hypoxia, a factor that can 
contribute to hyperpermeability of airway epithelium and epithelial mesenchyme through upregulation of the HIF1 
pathway.22,23 The application of three machine learning methods to screen DEGs and subsequent comparison with the 
validation set GSE136825 revealed a high degree of consistency in gene expression patterns of BTBD10, CYFIP1, 
ERAP1, GIPC1, NYNRIN and PEX6. However, these genes have not yet been thoroughly studied in CRSwNP. 
Furthermore, an immuno-infiltration analysis was conducted on these genes. Notably, the results indicated reduced 
infiltration levels of type 2 T helper cells, activated CD4 T cells, memory B cells, mast cells, and natural killer T cells in 
the CRSwNP group, and increased infiltration levels of Immature dendritic cells and effector memory CD8 T cells. This 
finding is consistent with previous studies on NP.9,24–27 Finally, following the successful establishment of a mouse mode, 
RT-qPCR validation was conducted on mouse nasal mucosal samples, which revealed that a higher degree of mRNA 
expression was noted for BTBD10, GIPC1, NYNRIN and PEX6 in the CRSwNP group than those in the control group. It 
is postulated that these genes may serve as potential new diagnostic or therapeutic targets.

The PEX6 gene is involved in the synthesis and maintenance of peroxisomes (peroxisome). Pex1 and Pex6 are ATPases 
related to a variety of cellular operations (AAA-ATPases) and are indispensable for the biogenesis and maintenance of 
peroxisomes. Being the exclusive Pex proteins capable of utilizing energy, Pex1 and Pex6 initiate the uptake of matrix 
enzymes into peroxisomes and proactively inhibit the deterioration of peroxisomes. Peroxisomes play a significant role in 
intracellular lipid metabolism, oxidative reactions, and lipid protonation processes.28–31 In humans, mutations that result in the 
dysfunction of PEX1, PEX6, and PEX26 are the most widespread triggers for infrequent genetic conditions (known as 
peroxisome biogenesis disorders (PBD)).31,32 Previous studies have indicated that aberrant regulation of PEX6 is a key 
contributor to diseases such as Zellweger syndrome,33 Refsum disease,34 and Usher syndrome.35 In conclusion, abnormal 
expression of the PEX6 gene may result in dysfunctional peroxisomes, which may subsequently affect intracellular metabolic 
balance. The implications of such dysfunction are particularly relevant in the context of CRSwNP. The altered intracellular 
environment, characterized by a deranged metabolic state, can create conditions that are conducive to inflammation and tissue 
damage, which potentially stimulate the development and progression of CRSwNP. For instance, the accumulation of reactive 
oxygen species (ROS) due to impaired peroxisomal antioxidant defenses can lead to oxidative stress, a known contributor to 
the pathogenesis of nasal polyps.36,37 Moreover, the dysregulation of lipid metabolism that might occur due to peroxisomal 
dysfunction could contribute to the hyperplasia of the nasal mucosa,37,38 which might lead to a chronic inflammatory state that 
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perpetuates the symptoms of CRSwNP. Therefore, the abnormal expression of the PEX6 gene and the subsequent impact on 
peroxisomal function could represent a significant genetic factor in the complex etiology of CRSwNP.

GIPC1, a protein situated in the cytoplasm, is found at the periphery of the membrane, and acts as an adaptor protein 
connecting receptor interactions with intracellular signaling pathways (including cell cycle regulation). It plays a role in 
the transduction of various signaling pathways such as the PDGFR/PI3K/AKT signaling pathway and is essential in the 
context of integrin re-uptake during cell migration, angiogenesis, and cytokinesis.39–41 Abnormal expression of GIPC1 
may disrupt the equilibrium of intracellular signaling pathways, accordingly influencing physiological mechanisms 
including cell differentiation, multiplication, and apoptotic cell death. Upregulation of GIPC1 in breast cancer, ovarian 
cancer, gastric cancer, and pancreatic cancer facilitates tumor proliferation and invasion, and inhibition of GIPC1 may 
holds potential for therapeutic intervention of human cancers.39,41,42 The integration and regulation within the same 
tumor environment may be dependent on the intensity and time frame of interaction with GIPC.43 Additionally, some 
research suggests that dysfunction of the GIPC1 protein may influence the pathogenesis of oculopharyngodistal 
myopathy.44 In CRSwNP, GIPC1 may contribute to the disease process by participating in the imbalance of intracellular 
signaling pathways and affecting core physiological processes, encompassing cell differentiation, proliferation, and 
apoptosis. The dysregulation of these processes due to GIPC1’s involvement could lead to the inflammation, tissue 
hyperplasia, and structural changes observed in CRSwNP, thereby contributing to the chronicity and severity of the 
condition. Understanding the specific mechanisms by which GIPC1 influences these pathways could offer new insights 
into the pathobiology of CRSwNP and potentially lead to novel therapeutic strategies for its management.

BTBD10, designated as glucose metabolism-related protein 1 (GMRP1) as well, represents a fresh entrant of the KCTD 
family. BTBD10 harbors a BTB/POZ domain and has been identified to activate Akt by reducing dephosphorylation mediated 
by protein phosphatase 2A. It is instrumental in the processes of cell division and proliferation. The protein synthesized by this 
gene may participate in the division of the cell nucleus and the maintenance of chromosome stability, which is crucial for the 
growth and development of tissues and organs.45–47 Earlier investigations have demonstrated that the overexpression of 
BTBD10 in human glioblastoma cells exerts antiproliferative effects and promotes apoptosis.48 Additionally, BTBD10 
overexpression has been revealed to facilitate the proliferation of pancreatic β cells.49 Moreover, elevated BTBD10 expression 
in hepatocellular carcinoma tissues is associated with a worse prognosis.50 In CRSwNP, the dysregulation of BTBD10, 
a protein pivotal to various cellular processes, has been observed to have significant implications on the behavior of epithelial 
cells. This abnormal expression of BTBD10 does not merely perturb the cells’ routine functions; it can fundamentally alter 
their ability to proliferate and to engage in the repair mechanisms necessary for maintaining tissue integrity. The consequences 
of such alterations are profound, as they lead to an exacerbated disease process in CRSwNP. With epithelial cells less capable 
of regenerating and repairing themselves, the cycle of inflammation and tissue damage is perpetuated, resulting in a chronic 
state that is epithelial barrier deficiency, which not only contributes to the persistence and severity of the polyps but also 
impacts the overall pathophysiology of the disease,20,51 leading to a more complex clinical picture that challenges therapeutic 
intervention strategies.

NYNRIN (known for its inclusion of an NYN domain and retroviral integrase) is a common RNA-binding protein 
(RBP). Previous studies have demonstrated high expression of NYNRIN in pediatric acute myeloid leukemia with a high- 
risk profile and hereditary nephroblastoma. However, the function of NYNRIN remains largely unknown. Although the 
NYN domain is believed to serve a function in RNA processing events, and NYNRIN is associated with microRNA- 
mRNA regulation,52,53 the functional mechanisms of this gene remain to be explored. Further investigation is warranted 
to ascertain the association between the NYNRIN gene and CRSwNP, with the objective of elucidating its role in the 
disease process.

It is well-established that hypoxia and immune mechanisms may be two key factors in the progression of CRSwNP, 
and they are inevitably intertwined. Currently, it is currently acknowledged that the involvement of hypoxia in the disease 
process of CRSwNP has been established, as oxygen content in inflammatory sinus cavities of CRSwNP has been found 
to be significantly reduced.54 A recent study demonstrates that under hypoxic conditions, on the one hand, hypoxia 
regulates the multiplication and differentiation of macrophages, eosinophils, basophils, as well as mast cells in the sinus 
mucosa, thereby influencing the inflammatory status of CRSwNP via the adjustment of T cells and B cells.54–57 On the 
other hand, the stable expression of hypoxia-inducible factors-1 (HIFs-1) α and HIFs-2α engages in the immune response 
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and inflammatory pathways of CRSwNP. This affects the differentiation of nasal epithelial cells, aids in fibroblast 
proliferation, and triggers epithelial-mesenchymal transition (EMT) and tissue remodeling, which in turn mediates the 
formation of NP.54,58–60 Furthermore, our ssGSEA results also indicate that type 2 T helper cells, activated CD4 T cells, 
memory B cells, and immature dendritic cells bear a close association with the pathogenesis of CRSwNP. However, the 
specific mechanisms require further experimental verification in future studies. Concurrently, the findings of our 
functional enrichment analysis indicate that DEGs are primarily enriched in the pathways related to the immune system 
and hypoxia. Consequently, therapy strategies that address the immune and hypoxic pathways are of importance and 
promise.

In this study, WGCNA analysis and three machine learning algorithms (LASSO, SVM-RFE, and RF) were employed 
to identify hub genes associated with CRSwNP, thereby reducing potential bias to the greatest extent. To validate the key 
genes, animal modeling experiments were conducted, which identified four hub genes as potential new targets for the 
diagnosis and treatment of CRSwNP.

It must be pointed out, however, that this study is not without its constraints. The sample size of the GSE136825 and 
GSE107624 validation cohorts was relatively limited, and thus, the results of the analyses should be validated in larger 
cohorts to determine the reproducibility of the study findings. While several hub genes that may be established as fresh 
targets for CRSwNP diagnosis and treatment were assessed using bioinformatics analysis, larger-scale prospective 
studies are required to validate our conclusions. Furthermore, more laboratory and biological studies on mechanisms 
both in test tubes and in living organisms should be conducted to expand upon and validate the results obtained by 
experiments.

In future research, we anticipate more methods to identify appropriate solutions to address these issues. We need to 
conduct functional studies to confirm the roles of these genes, further utilize animal models to investigate the underlying 
mechanisms, and carry out clinical research to explore the roles of the identified genes as therapeutic targets or diagnostic 
markers.

Conclusion
In conclusion, this study implemented three machine learning algorithms in combination with WGCNA analysis and 
animal model validation to identify BTBD10, GIPC1, NYNRIN, and PEX6 as potential hub genes that may be used as 
promising targets for the diagnosis and treatment of CRSwNP. These genes may be involved in the occurrence and 
development of CRSwNP through hypoxia and immune mechanisms. In the future field of CRSwNP, we must explore 
the functions of these genes through studies, use animal models to understand their mechanisms, and large-scale perform 
clinical trials to assess their potential as treatments or diagnostics.
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