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Abstract
Adoptive T-cell therapies have shown exceptional promise in the treatment of
cancer, especially B-cell malignancies. Two distinct strategies have been used
to redirect the activity of engineered T cells. In one case, the well-knownex vivo 
ability of the T-cell receptor (TCR) to recognize a specific peptide bound to a
major histocompatibility complex molecule has been exploited by introducing a
TCR against a cancer-associated peptide/human leukocyte antigen complex.
In the other strategy, synthetic constructs called chimeric antigen receptors
(CARs) that contain antibody variable domains (single-chain fragments
variable) and signaling domains have been introduced into T cells. Whereas
many reviews have described these two approaches, this review focuses on a
few recent advances of significant interest. The early success of CARs has
been followed by questions about optimal configurations of these synthetic
constructs, especially for efficacy against solid tumors. Among the many
features that are important, the dimensions and stoichiometries of CAR/antigen
complexes at the synapse have recently begun to be appreciated. In
TCR-mediated approaches, recent evidence that mutated peptides
(neoantigens) serve as targets for endogenous T-cell responses suggests that
these neoantigens may also provide new opportunities for adoptive T-cell
therapies with TCRs.
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Introduction
T cells recognize antigens as short peptides bound to a protein 
encoded by the major histocompatibility complex (MHC). The key 
T-cell molecule involved in binding to the peptide-MHC (pepMHC) 
is an αβ heterodimer called the T-cell receptor (TCR)1. The TCR is 
part of a cell surface complex with subunits of CD3, which provide 
the proximal signaling components. In addition, co-receptors CD4 
and CD8 are involved in the recognition of class II and class I MHC, 
respectively. TCRs have evolved to recognize MHC molecules such 
that during thymic development, only T cells with TCRs that bind 
to MHC will be exported to the periphery as mature T cells (termed 
“positive” selection)2. T cells with TCRs that bind self-peptide/
MHC with too high affinity will be deleted in the thymus (termed 
“negative” selection). The TCR affinities that trigger signaling in 
these processes are very low, and the range that distinguishes posi-
tive selection from negative selection or peripheral T-cell activation 
appears to be relatively narrow and most likely influenced by the 
strength of the peptide:MHC interaction3–5.

The remarkable feature of the system is that despite their low affini-
ties, TCRs mediate peptide-specific reactivity with very low levels 
of the pepMHC on the antigen-presenting cells (APCs). Thus, a  
T cell can be triggered with a TCR affinity of 100 μM and only a 
few pepMHC complexes on the surface of the target cell5–9. This 
exquisite sensitivity allows the recognition of virtually any intracel-
lular foreign peptide that can be bound to an MHC molecule and 
transported to the surface. Given these properties, the use of TCRs 
that recognize tumor-antigen peptides has become an important 
strategy for adoptive T-cell therapies. Clinical efforts to date have 
focused on shared self-peptides that are from proteins upregulated 
in some cancers, such as WT1 antigen, differentiation antigens like 
gp100 and MART-1, and cancer/testis antigens like NY-ESO and 
MAGE-A3 (for example,10–16). However, a significant challenge 
in adoptive T-cell therapy with gene-transferred TCRs is com-
petition for pairing with the endogenous TCR chains, leading to 
lower levels of the tumor-specific TCR or possibly off-target reac-
tivities of mispaired TCRs that lead to graft-versus-host reactions17.  
Current strategies to minimize or avoid mispairing include the use 
of cysteines in exogenous TCR constant domains that promote  
preferential pairing18–20 or gene editing strategies that limit the 
expression of the endogenous TCR chains21,22.

The other strategy for redirecting the activity of T cells has been 
to create synthetic receptors that use an antibody fragment (single-
chain fragments variable, or scFv) fused to a transmembrane region 
and signaling domains23. These chimeric antigen receptors (CARs) 
have allowed T cells to be targeted against cancers in an MHC-
independent mechanism. The most clinically studied CARs are 
those that target B-cell malignancies, in particular CARs against the 
antigen CD19 (for example,24–30). However, there is intense inter-
est in developing CARs with other specificities, especially those 
against cell surface antigens expressed on solid tumors (for exam-
ple, ErbB2, mesothelin, EGFR, and Tn-glycopeptides31–36).

Given the clinical progress with TCR- and CAR-mediated  
therapies, it is not surprising that there have been numerous reviews 
on these adoptive T-cell approaches (for example,37–42). Reviews 
have covered many of the properties that might guide the optimal 

configuration and application of these receptors, including binding 
affinities, specificity, construct design, signaling domains (CARs), 
vector delivery systems, recipient T-cell populations, and manufac-
turing. Arguably, one of the most important elements of each adop-
tive T-cell therapy strategy is the choice of target, whether it is 
a pepMHC for TCR therapies or a cell surface antigen for CAR  
therapies. With this in mind, we focus here on three features 
of TCR- or CAR-mediated therapies that have received recent  
attention: (1) dimensions of the TCR/pepMHC versus CAR/antigen  
complexes at the synapse, (2) target antigen sensitivity and  
affinity requirements of T cells expressing TCRs and CARs, and  
(3) mutated cancer peptides (neoantigens) as targets for adoptive 
T-cell therapies with TCRs.

Dimensions of TCR versus CAR interfaces
Whereas the TCR/CD3 complex has evolved to be an exquisitely 
sensitive recognition and signaling machine, CARs represent 
synthetic constructs with distinct differences: antigen binding is  
accomplished with an scFv, membrane insertion is accom-
plished using the membrane-spanning region of yet another T-cell  
molecule (for example, CD8), and intracellular signaling compo-
nents are derived from multiple T-cell molecules, often the CD3ζ 
subunit and CD28, 4-1BB, or OX40. This structural organization  
endows CARs with MHC-independent binding properties of  
antibodies and unique signaling properties that share some of the 
features of normal T cells but that differ in both quantitative and 
mechanistic details (for example,37–42).

Although the TCR/CD3 complex fixes the mechanisms involved 
in TCR-mediated adoptive T-cell approaches, including the maxi-
mal surface level of the complex43, the design of CARs and their 
inherent mechanisms continue to evolve. First-generation CARs 
consisted of an scFv linked to the CD3ζ subunit in order to more 
closely mimic the natural TCR/CD3 signaling machinery, in prin-
ciple allowing clustering and cross-linking of multiple receptors 
in the membrane. Improvements in signaling capacity and T-cell 
function were achieved in second- and third-generation CARs by 
adding the signaling domain(s) of CD28, 4-1BB, or OX40 or a 
combination of these. These domains were designed to incorporate 
co-stimulatory signaling (signal 2). Hinge/spacer domains in CARs 
enable stable expression and typically consist of a hinge linked to 
the C

H2
-C

H3
 domains from IgG1 or IgG444,45 or spacer domains from 

CD4 or CD846. Reports have shown that CAR T cells containing 
a hinge from IgG1 Fc regions can bind to Fcγ receptors (FcγRs) 
and activate cells of the innate immune system44,47. Differences in 
potencies of individual CARs have been associated with choice of 
co-stimulatory domain used in CAR design, spacer length and its 
modification if any, target epitope density and location, and inter-
membrane distance (for example,44,45,47–51). A study that used the  
γ chain of FcεRI receptor as a signaling domain in a CD30-specific 
CAR also showed that location of the epitope influenced activity, 
in that a CAR with a spacer region (C

H2
-C

H3
 domains) was less  

efficient in mediating T-cell activation than the same CAR without 
the spacer52.

Given the differences in extracellular domains and their antigen struc-
tures, the dimensions of the conserved TCR:pepMHC interface can 
differ substantially from a CAR:antigen interface. TCR:pepMHC 
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interaction interfaces have been studied extensively1,53–56 and crys-
tal structures predict that the static inter-membrane distance for a 
TCR:pepMHC interaction is about 150 Å (Figure 1A). This has 
been supported by the measurement of inter-membrane distances 
at TCR:pepMHC interfaces by electron microscopy57. The issue 
of dimensions is important because the kinetic segregation model 
of TCR triggering proposes that the TCR:pepMHC distance has 
been optimized to include TCR:pepMHC and accessory receptor- 
ligand combinations at the synapse while excluding larger inhibi-
tory tyrosine phosphatases (CD45 and CD148)57–60. Accordingly, 
TCR-mediated adoptive T-cell approaches will automatically retain 
the same evolutionarily optimized dimensions at the interface.

In contrast, distances at the CAR-target antigen interface will be 
highly variable depending on the size and epitope location of the 
target antigen. Figures 1B and 1C show a representation of two 
targets, ErbB2 and mesothelin, which are overexpressed in certain 
forms of cancer and have been used as targets for immune-based 
therapies, including CARs33,61,62. Domains of ErbB2 and mesothelin 
have been crystallized in complex with antibody domains, allow-
ing a schematic comparison of the possible interfaces that might 
exist when these proteins are targeted by CARs63–65. The ErbB2/
scFv (antibody chA21) predicts that the extracellular domain of 
ErbB2 is about 115 Å in length, and the Ig-domains of the scFv 
measure about 35 to 40 Å. Thus, the static view of this complex  

Figure 1. Dimensions of the interaction interfaces involving conventional αβ T-cell receptor (TCR) T cells and chimeric antigen 
receptor (CAR) T cells. (A) TCRs on the surface of T cells interact with peptide-major histocompatibility complex (pMHC) complexes on the 
surface of target cells (antigen-presenting cells). This conserved interaction spans approximately 150 Å of inter-membrane space between 
the two cell types. TCRs assemble in the membrane of T cells with subunits of CD3 molecules (δ, ε, γ, and ζ) and CD4 or CD8 (not shown). 
Proximal, intracellular molecules initiate phosphorylation of CD3 subunits and subsequent signaling pathways. Structure of the Mel5 TCR 
in complex with MART-1 peptide bound to HLA-A2 is shown (PDB: 3HG1)116. (B, C) CARs typically contain single-chain variable fragment 
(scFv) domains (VH and VL) of an antibody, linked to a hinge or spacer domain, transmembrane domain, and intracellular signaling domains 
(for example, co-stimulatory domains CD28 or 4-1BB and CD3ζ). CAR interacts with its antigen present on the target cell surface. Owing to 
potential differences in the size of the antigen and location of the epitope, the interaction interface of CAR-target antigen can be variable. In 
(B), a representation of a CAR-target antigen interaction interface is shown by aligning the structures of an extracellular domain of the CAR 
target, ErbB2, in complex with the scFv of an anti-ErbB2 antibody, chA21 (PDB: 3H3B)63, with the complete extracellular domain of ErbB2 
(PDB: 1N8Z)64. To illustrate the range of possible CAR interactions, in (C) a representation of another CAR-target antigen interaction interface 
is shown for mesothelin, a membrane glycoprotein present on the cell surface of various cancers, including mesothelioma. Mesothelin 
was modeled by using the online tool “Phyre2”117, followed by alignment with the domain of mesothelin that was crystallized with the Fab 
fragment of the anti-mesothelin monoclonal antibody MORAb-00965,118. Note that although these are depicted as static structures, both protein 
dynamics and membrane mobility will also impact interface interactions.
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indicates an interaction interface of about 150 Å, similar to the  
TCR:pepMHC interaction. In contrast, mesothelin has a very dif-
ferent domain structure with potentially shorter distances at the  
interaction interface. Both the ErbB2 and mesothelin models high-
light the view that the location of the scFv epitope and the flexibility 
of the membrane-bound target antigen will have a direct influence 
on the dimensions of the interface. Of course, other factors such 
as the level of expression of the antigen, its inherent membrane 
mobility, and the affinity of the scFv will all influence the sensitiv-
ity of the CAR reactions. For example, the importance of epitope  
location has been emphasized by Abken and colleagues, who 
showed that transfer of a membrane-distal epitope to a membrane-
proximal location resulted in improved CAR T-cell activation51.

Determining the dimensions of CAR-target antigen interfaces is dif-
ficult, as often the structures of the extracellular regions of antigens 
are not known and, even if they are, the flexibility and membrane 
mobility of these structures cannot be predicted. Nevertheless, 
studies have indicated that altering the hinge/spacer domain of 
CAR constructs impacts their potency, supporting the idea that an 
optimal distance of interaction for CARs exists, as seen with the  
TCR:pepMHC interface45,49,50. For example, ROR1-directed CAR 
constructs were effective with a shortened spacer domain for  
recognition and killing of ROR1-positive tumors because of the 
membrane-distal location of the ROR1 epitope48. It was hypoth-
esized that shortening the spacer may reduce the distance between 
T cell and target cell, hence allowing exclusion of inhibitory  
phosphatases (CD45)41. Accordingly, a membrane-proximal 
epitope of ROR1 was efficiently recognized by CARs with a longer 
spacer45. Similar results have been observed with CD19-directed 
CARs45. As the size of the CAR:antigen dimension was increased 
with a CD22-directed CAR, the efficiency of target cell lysis was 
reduced, perhaps because the larger membrane interface permitted 
CD45-mediated dephosphorylation of substrates involved in T-cell 
signaling49. These studies support the importance of maintain-
ing an optimal inter-membrane distance between CAR and target  
antigen. They suggest that spacer lengths will need to be designed 
for individual CARs and that scFv fragments against a particular 
epitope of an antigen may need to be generated.

Target antigen density and affinity requirements for 
TCRs and CARs
T-cell triggering is not only sensitive to the distance between the 
antigen-receptor machinery and target cell antigen but also, of 
course, affected by the density of antigens presented to T cells bear-
ing either the native TCR or the synthetic CAR (Figure 2). It has 
been suggested that one pepMHC molecule may be sufficient to 
trigger T-cell activation6–9. A factor contributing to this sensitivity, 
suggested by the serial triggering hypothesis, is that the low affinity 
(fast off-rate) of the TCR:pepMHC interaction allows serial binding 
of multiple TCR/CD3 complexes by a single pepMHC complex, 
thereby amplifying the reaction66. The extraordinary sensitivity of 
T cells is also explained by the action of co-receptors CD4 or CD8 
which interact with invariant regions of class II or class I MHC and 
consequently bring the intracellular kinase Lck (lymphocyte spe-
cific receptor kinase) into proximity with the TCR/CD3 complex67. 
Accordingly, TCR:pepMHC binding drives local aggregation 
of multiple TCR-pepMHC complexes, leading to Lck-mediated 

downstream signaling. In the absence of co-receptor, the sensitivity 
is reduced to about 30 or more pepMHCs, and this co-receptor- 
independent reaction requires a 10- to 100-fold higher affinity  
TCR:pepMHC interaction3,8,9,68.

Whereas T cells have evolved the machinery to optimize proxi-
mal signaling, synthetic CARs have adopted some but not all of 
these features. In fact, it could be argued that the antigens currently 
targeted by CARs dictate that the CARs have at least some prop-
erties that are different from TCRs. For example, the densities of 
cell surface antigens recognized by current-generation CARs are 
orders of magnitude higher than the densities of most specific  
pepMHC antigens, and these levels vary considerably from one tar-
get to another. CAR-based therapies have targeted antigens such as 
CD19, CD20, and ErbB2 that are expressed at densities that range 
from 10,000 to 1,000,000 molecules per tumor cell36,62. Depending 
on the system, there may be less information about the minimum 
number of antigen molecules required by CAR T cells to generate 
a response. With a unique glycopeptide-directed CAR system, the 
antigen density required for target cell lysis ranged from 300 to 
3,000 epitopes per target cell, and this sensitivity was greater for 
the scFv used as a CAR compared with its use as a bispecific anti-
body (also known as BiTEs or bispecific T-cell engagers)36. More 
recently, Watanabe and colleagues used a CD20-directed CAR 
system to establish that the threshold of antigen density required 
for target cell lysis was about 200 molecules per cell69. On the 
other hand, a WT1-human leukocyte antigen (HLA)-A2-directed 
BiTE system has been shown to induce T-cell response and target-
cell killing at 500 to 6,000 epitopes per cell70,71, whereas current  

Figure 2. Sensitivity thresholds for various antibody or  
T-cell-based therapy modalities. A comparison of approximated 
sensitivity thresholds (that is, number of target molecules per 
cancer cell that are required for killing) that have been identified for 
antibody or T-cell-based approaches is depicted. Note that these 
are estimates and that within each category the sensitivity can be 
further influenced by various parameters, including the affinity of the 
receptor toward the target antigen. BiTE, bispecific T-cell engager.
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antibody drug conjugates (ADCs) target antigens at significantly 
higher density (~104 to ~105)72. It is important to note that, whether 
an antigen is targeted by a CAR, BiTE, or ADC product, each 
strategy can be optimized within its class to achieve recognition  
of the lowest antigen levels possible. Ultimately, this depends on  
the mechanism of action of their respective effector functions. 
With this in mind, TCRs expressed in T cells are currently the only  
mediator of activity endowed with the extreme sensitivity to  
recognize as few as one target molecule per tumor cell (Figure 2).

Mechanistically, it is not clear whether CARs require the same 
extent of clustering as TCRs in the T-cell membrane and whether 
the signaling domains of CARs are actually generating the same 
stoichiometry and quantitative signaling amplification. The struc-
tural organization of CARs allows MHC-independent recognition 
of antigens, and hence there is no known contribution of co-receptors  
for further improvements in the sensitivity of this interac-
tion. Accordingly, for each CAR system, it will be important to  
determine the range of target antigen densities toward which 
responses against tumor (but not normal tissue) are achieved.  
This might also require comparison of multiple scFv and CAR  
formats.

Naturally occurring TCRs possess low affinity toward their  
pepMHC ligands (dissociation constant [K

D
] ranging from 10 to 

100 μM for foreign pepMHC) but still efficiently induce T-cell 
activation because of the contribution from co-receptors, serial  
triggering, and the stoichiometry of the CD3 complex. However, 
the affinity can be significantly lower for a self-cancer antigen (K

D
 

of as low as about 1,000 μM)73. Efforts to engineer TCRs for higher 
affinity are focused on two goals: first, to optimize the activity of 
CD8 T cells against self-pepMHC (class I) since the higher-affinity 
TCRs have been deleted during thymic selection73 and, second, to 
redirect the activity of CD4 T helper cells against a class I MHC 
target since this interaction would not be able to use the cognate 
co-receptor CD874,75. Various studies have shown that there is an 
affinity threshold for TCRs in CD8 T cells (about 10 μM) and  
CD4 T cells (about 1 μM) beyond which they risk mediating  
self-peptide cross-reactivity76–82. Such affinity-enhanced TCRs 
(for example, against HLA-A1 restricted MAGE-A3 epitope) have  
been shown to cause off-target cross-reactivity resulting in 
lethality16,83,84. It is generally accepted that there is no need to  
engineer TCR affinities below these “optimal” K

D
 values, but again 

each TCR requires individual testing to assess safety issues.

In contrast to TCRs, CARs typically contain scFv fragments from 
higher-affinity, monoclonal antibodies (K

D
 values in the range of 

1 to 100 nM). It should be possible to select scFv affinities and 
CAR formats that avoid stimulation by normal tissues caused by 
on-target, off-tumor reactions, as apparently was observed with an 
ErbB2-directed CAR that was reactive with ErbB2 levels in the 
lungs of a patient62. A recent study demonstrated the usefulness 
of low-affinity CAR T cells for distinguishing between malignant 
and normal cells (high antigen density versus low antigen density), 
but the high-affinity CAR T cells demonstrated a response that 
was independent of antigen density, indicating that, as with TCRs, 
understanding the affinity threshold window is important for con-
trolling responses mediated by CARs85.

To directly compare TCRs and CARs, our lab used the recogni-
tion domains (Vα and Vβ) of a high-affinity TCR, formatted either 
as a conventional full-length αβ TCR or as a CAR. Although both  
formats exhibited the same high affinity (30 nM), the TCR format 
was significantly more sensitive to pepMHC than the CAR format86, 
showing that the native TCR/CD3 architecture has evolved more 
sensitivity than the current CAR designs. In another study, a TCR 
with a K

D
 value of about 1 μM was compared with CAR constructs 

(scFv) with K
D
 values of 30 or 400 nM against the same pepMHC87. 

The lower-affinity TCR exhibited more potent cytotoxic activity 
and a high degree of specificity, whereas the high-affinity CAR 
exhibited reduced cytotoxic activity and loss of specificity.

There are various possible explanations for reduced sensitivity of 
CARs compared with conventional TCRs. The TCR/CD3 assembly 
in the membrane provides a total of 10 immunoreceptor tyrosine-
rich activation motifs (ITAMs) that can be phosphorylated during 
TCR-pepMHC binding, initiating downstream signaling for T-cell 
activation42. Current-generation CARs, on the other hand, con-
tain fewer ITAMs (for example, three) which may yield a reduced 
level or kinetics (or both) of proximal signaling and corresponding 
lower sensitivities than TCRs, even when the TCR and CAR have 
identical binding affinities86. The co-receptors CD4 or CD8 also  
participate in the binding and proximal signaling upon TCR  
interaction with pepMHC, whereas CAR-target antigen inter-
actions do not appear to involve CD4 or CD8. Finally, normal  
TCR:pepMHC interactions can involve co-stimulatory receptors 
like CD28 and 4-1BB, further promoting full T-cell activation. In  
summary, although CAR design has included domains from impor-
tant T-cell signaling domains (CD3ζ, CD28, or 4-1BB or a combina-
tion of these), the ability of CARs to multimerize in the membrane 
and to associate with other proximal signaling molecules is likely 
not as efficient as has evolved with TCR-associated machinery.

Neoantigens as targets for TCR-mediated adoptive 
T-cell therapies
To date, efforts to treat cancer using TCR gene transfer into adop-
tive T cells have targeted shared cancer-associated antigens, includ-
ing cancer/testis antigens10,12,14. Whereas TCR-mediated targeting 
of NY-ESO has shown significant clinical promise12,14,15, targeting  
of MAGE-A3 by two different TCRs led to lethal off-target  
reactions16,83,84, and targeting of MART1 has been associated with 
significant on-target, off-tumor side effects11,88. Hence, there has 
been increasing interest in redirecting the activity of T cells against 
antigens that are unique to tumors in the form of mutated pep-
tides known as neoantigens89–91. Although these antigens represent  
potential targets with a high level of antigen specificity, they are 
also typically unique to individual patients and thus pose sig-
nificant challenges in the development of such personalized  
TCR-based therapeutics92. Also, not all patients will possess T cells 
that mount a response to neoantigens, and one of the challenges 
will be to determine which neoantigen(s) are expressed at adequate 
levels on tumors to serve as targets for T-cell therapies.

Neoantigens arise as a consequence of somatic mutations in tumors 
and hence T cells against them are not subject to the same thymic 
tolerance mechanisms as self-antigens90,93. In fact, it is this prop-
erty that allows cancer patients treated with checkpoint inhibitors 
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against CTLA-4 and PD-1 to elicit immune responses against such 
neoantigens94–96. The identification of neoantigens from a patient’s 
tumor has been performed by whole exome sequencing, when 
RNA is available for RNASeq analysis (for example,97,98), followed 
by in silico screening for mutated peptides using HLA-binding  
and -processing prediction algorithms99–106. Candidate neoantigens 
are assessed for their ability to elicit T cells by use of synthetic  
peptides and autologous APCs107, single-cell analysis using  
pep-HLA multimers108, or expression of peptide cassettes in  
autologous APCs109.

Although some approaches will use neoantigens in vaccine formu-
lations, the use of neoantigens as targets in therapeutic numbers of 
T cells may benefit from the isolation of TCR genes from T cells 
that respond to the specific neoantigens, as has been done recently 
in a mouse system110. Success here will depend on multiple factors. 
It has been shown that even with a significant number of predicted 
neoantigen epitopes, neoantigen-reactive T cells may be limited in 
some patients with cancer91,111. In a recent study, T cells isolated 
from healthy individuals were used to raise specific T cells against 
tumor neoantigens derived from patients91. These results and others 
suggest that it will be possible to identify TCRs against specific 
neoantigens and to eventually use them to increase the number of 
therapeutic T cells by TCR gene transfer.

Neoantigens identified by tumor sequencing and bioinformatic 
analysis of MHC-binding (and possibly antigen-processing)  
algorithms are not all equal in terms of theoretical efficacy. It is  
useful to consider the classes that each neoantigenic peptide 
may represent. First, some predicted peptide epitopes will not be  
processed, or presented, at levels adequate to elicit T-cell immune 
responses. The magnitude of this class of neoantigen will vary 
depending on the robustness of the prediction algorithms for each 
HLA allele112,113.

A second class of neoantigens will be those peptides that have been 
identified because they were predicted to have greater binding, than 
the wild-type peptide, to an HLA allele (for example, peptides with 
a mutation in a known anchor residue or other residues that point 
toward MHC) (Figure 3A). Such a mutation may increase bind-
ing of the peptide to the MHC molecule and hence will impact 
the number of the neoantigen/HLA complexes on the tumor cell  
surface (that is, density) compared with the number of the wild-type 
antigen/HLA complexes. Mechanistically, this outcome (higher 
pepMHC surface levels) is similar to upregulated cancer-associated 
self-peptides if one assumes that the mutation does not impact 
the conformation of the peptide region presented to the T cell. T 
cells with TCRs against these neoantigens, like TCRs against self- 
peptide cancer-associated antigens, will in general be of lower 

Figure 3. Neoantigens as targets for T cells: possible effects of single mutations. (A) A mutation in a major histocompatibility complex 
(MHC) anchor residue (Ala to Leu; shown in red) is shown. Such a mutation could improve the binding of the peptide to MHC and thereby 
increase the number of peptide-MHC (pepMHC) complexes on a target cell (antigen-presenting cell). (B) A mutation (Ile to Ala; shown in blue) 
in a residue that points away from the MHC but is in a position to interact with a T-cell receptor (TCR) is shown. Since the normal repertoire 
of peripheral T cells has not been tolerized against the mutated peptide, there are likely to be some TCRs that have binding affinities for this 
pepMHC complex that drive T-cell activity. Alternatively, a combination of effects shown in (A) and (B) might be achieved when the mutated 
residue impacts affinity for the MHC but also alters the conformation of the exposed peptide which could interact with a TCR. For reference, 
the MART-1 peptide is shown (PDB: 4QOK) and the specific mutations were either present in a known structure (PDB: 3HG1) or modeled by 
using PyMol.
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affinity as T cells expressing higher-affinity TCRs will have been 
deleted during thymic selection73.

A third class of neoantigens consists of those peptides that contain 
a mutation in a residue that points toward the TCR and hence could 
impact binding to TCR (Figure 3B). In principle, these mutated 
peptides could serve as optimal targets since they will be more 
immunogenic; that is, peripheral T cells will perceive these pep-
tides as non-self/foreign since the T cells have not been subjected 
to thymic negative selection.

A fourth class of neoantigens includes peptides that have a muta-
tion in a residue that impacts the interaction both with the TCR 
and with the MHC. These neoantigens could potentially have the 
strongest impact since the number of neoantigen/HLA complexes 
would be higher than the wild-type peptide/HLA (assuming the 
mutation increased binding to the HLA) and the neoantigen-peptide 
surface recognized by the TCR would differ from the surface of the 
wild-type peptide, such that T cells with TCRs exhibiting higher 
affinity would be available in the periphery. We have shown that the  
number of positions in a peptide that could impact both MHC 
and TCR binding varies among different MHC alleles114. It will 
be important to examine these issues with single amino acid pep-
tide variants tested in many different HLA alleles. Such detailed  
analysis of mutations at each residue in peptide antigens should 
provide a better understanding of the potential potency of neoan-
tigens and help guide the selection of neoantigens for adoptive  
T-cell therapies. Although we have focused here on neoantigens that 
exhibit single-site mutations, there is the potential for other classes 
of neoantigens that derive from more extensive mutation, including 
insertions, deletions, or even glycosylation aberrancies115.

Concluding remarks
Recent efforts to engineer T cells against cancer have taken two 
different approaches. Conventional TCR-mediated therapies take 
advantage of the well-known specificity and sensitivity of nor-
mal T-cell activities. Studies have begun to explore the possi-
bilities of engineering T cells by using TCRs against a patient’s  

neoantigens. Many of these represent intracellular antigens that 
would not be accessible by conventional antibody (or CAR) ther-
apies. The selection of the most efficacious neoantigen(s) as tar-
gets should consider the mechanistic impact of the mutation and  
the selection algorithms used to identify these potential antigens.

CAR-mediated approaches have tremendous potential against tumor 
cell surface antigens but their mechanism of action is less fixed 
than the TCR because of features that vary among different target 
antigens and CAR constructs. Thus, it is important to find an appro-
priate balance between antigen on the one side (antigen surface  
level, epitope location, and antigen mobility) and CAR structure 
(CAR surface level, affinity, and signaling domains) on the other.
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