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Abstract

In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise
function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous
developed 2-layered feedforwardspiking network that is able to segregate figure from ground and included feedback
connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (,9 Hz)
bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic) spiking
pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background
responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground
responses withthe responses to a homogenous texture. We propose that feedback controlsfigure-ground segregation by
influencing the neural firing patterns of feedforward projecting neurons.
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Introduction

Figure-ground segmentation refers to the assignment of visual

elements to either objects or background and is a primary step in

visual perception. In the brain, visual features are detected by

neurons by means of their feedforward defined classical receptive

field whereas contextual influences beyond the classical receptive

field have been interpreted as the neural substrate of figure-ground

segmentation. In the primary visual cortex (V1), cortical feedback

projections covering large parts transmit extra-classical receptive

field information [1] and are considered to be critical for figure-

ground segmentation. This assumption is reflected in many

theoretical [e.g. 2,3] and computational models that explain

figure-ground segregation by recurrent processing through

horizontal and/or feedback connections [4–19].

However the exact role of feedback in figure-ground segregation

is not clear. For instance has feedbacka decisive role in the

occurrence of figure-ground activity or more modulatory role

incontrolling the strength of the figure-ground signal? Consistent

with the former role, visual context presumably transmitted by

feedback may activate non-stimulated regions of V1 [20], and in

agreement with TMS experiments [e.g. 21,22; see also 23], patient

studies demonstrate that V1 alone is not sufficient for simple

figure-ground segregation[24]suggesting that feedback is required.

Yet other arguments are inconsistent with a leading role of

feedback projections in producing contextual effects and figure-

ground segmentation. Inactivation of V2, which is the main

contributor of feedback to the primary visual cortex, has no effect

on centre-surround interactions of V1 neurons [25].A lesion study

provides further evidence showing that after removing most of the

feedback (including V3, V4, MT, MST, but not V2) to

V1detection of textured figure-ground stimuli presented in the

lesioned field was not affected [26]. This means that figure-ground

segmentation occursin parts of the cortex that donot receive

feedback.

Recently using computer modeling, we have demonstrated that

figure–ground segregation can be achieved in a purely feedfor-

ward way [27–28]. In other studies we showed that thestrength of

figure-ground modulation to a particular stimulus is not fixed but

depends on the state of V1 neurons [29–31]. Cortical state that is

characterized by the way neurons fire, i.e. burst versus tonic firing,

controls the transmission of feedforward information [32,33].

Thisdifferential gating of feedforward information involves

inhibition by feedback projections [32–35].Taking these findings

together, we therefore speculate that a possible role for feedback is

to control the strength of the figure-ground signal by influencing

the cortical state.

To test this ideawe used our previous described computer model

[27]. Our data show that without feedback, neurons respond with

low-frequency (,9 Hz) bursting to a figure-ground stimulus.

Feedback changed this firing pattern into a tonic spiking pattern.

In this state,a further enhancement of the responses to the figure

and a further suppression of background responses were observed

resulting in a stronger figure-ground signal.To be effective,

surround inhibition must arrive after but within 100 ms, the

feedforward induced responses. Such push-pull effect, which

appears to be typical in figure-ground segregation[36–38], was

confirmed by comparing the figure-ground responses with the

responses to a homogenous texture. In conclusion, we propose that

feedback controls the segregation of figure from ground by
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influencing the neural firing patterns of feedforward projecting

neurons.

Results

We employed our earlier designed 2-layered model of spiking

neurons [27]using an input design (fig. 1a) for modeling figure-

ground segregation [9,16]. The model consist of two feature

channels (Feat-1 & Feat-2), which represent two neuronal cell

populations with opposite preference for a single feature. The model

input not only corresponds to texture defined images but also to

luminance, direction of motion, color defined figures. Neurons in

layer 1 transformed by means of their point-to-point excitatory

connections (fig. 1b) the figure-ground input into a spike map. These

neurons responded with a transient burst of 12 spikes (fig. 2). The

layer-2 neurons integrated this information through their centre-

surround receptive fields (fig. 1b). As a result in the first feature

channel (Feat-1), neurons at the central figure location produced a

similar spike burst as layer-1 neurons (fig. 2). In contrast to the Feat-

1 condition, neurons in the second feature channel (Feat-2) became

quiescent (fig. 2). Here the relatively large activated surrounding

(background) region provoked a strong suppression neutralizing the

point-to-point excitation. Strong inhibition however leads to

rebound spiking [27,28]. As a consequence, in the second layer

basic figure-ground segregation by global inhibition was achieved

[27,28; see also 39]; neurons located in the central figural region

fired spikes while surrounding (background) neurons were silent.-

This agrees with early studies reporting that V1 neurons generally

do not respond to areas of uniform luminance.

Analyzing the responses over a longer time period (1 sec) showed

that a continuous figure-ground input resulted in continuous low-

frequency (,9 Hz) bursting in both layers and conditions (fig. 3a).

The response rate (46 spikes/s) of layer 1 neurons was similar for

neurons located at the figure and background location (table 1).Thus

over longer periods background neurons do respond to the input,

which agrees with reports showing that some V1 neurons do

respond to uniform surfaces covering their RF [e.g. 40].In the

second layer figure-ground segregation occurred where neurons at

the figure location responded slightly higher than the neurons at the

background location (fig. 4).

Effect of feedback on figure-ground responses
We then included feedback connections from layer-2 neurons to

layer-1 neurons.Feedback changed thelow-frequency bursting firing

pattern into a tonic spiking pattern (fig.3b).Feedback had no major

effect on the background responses (50spikes/s)of the neurons in

layer 1. Figure responses, however, showed a decrease in response

rate of 40% (table 1). Despite the lower figure responses of layer 1

neurons, we found that after including feedback the average

figureresponses were enhanced and background responses suppres-

sedof the neurons in layer 2 (fig. 4; red bars). Comparing these

responses to the responses with the responses to a homogenous

texture,an increasedspike ratewas observed for the neurons located

at the figure region and a decreased spike rate for the neurons

located on the background (fig. 4a,b; orange bars). So, inhibitory

feedback produces a stronger figure-ground modulation (fig.4c).

Changing strength of feedforward and feedback
connections

We then changed the weights of the feedback and feedforward

connections. Modifying the strength of the feedback connections

caused a change in the strength of figure-ground modulation

(fig. 5a). Stronger feedback connections (i.e. more inhibition)

resulted in anenhancement of the figure-ground signal in layer 2

while weaker feedback connections lead to a decrease in the figure-

ground signal. When changing the feedforwardconnections, we

observed that figure-ground modulation specifically was enhanced

when the feedforward connections were weak (fig. 5b). When

feedback was absent the weak (80% of the initial value)

feedforward connections did not produce figure-ground activity.

When feedback was included strong modulation was observed for

the same weak stimulus input (fig. 5b, orange point vs. red point at

80%). Thus feedback specifically enhances figure-ground modu-

lation at lowstimulus contrast, as indicated by the green trace in

figure 5.

Figure 1. Model, receptive field organization and figure-ground segregation. A: The model consists of two separate feature channels
(Feat-1 and Feat-2) with each two layers, which are unidirectional connected (arrows). The white regions in the two lower squares indicate the
stimulus input (figure-ground input). Black regions provide no input to the model. In the two layers of the model, the light grey central squares depict
the figureregion and dark grey regions the background. B: Layer-1 neurons have a centre receptive field, i.e. they are driven by one input pixel. Layer-
2 neurons have an excitatory centre and inhibitory surround receptive field. The central small black circles represent a neuron in the first and second
layer of the model. The small grey square represents one input pixel. Blue arrows indicate point-to-point (retinotopic), excitatory connections and
orange region represent the inhibitory connections from layer 1 to layer 2.C: Each layer-1 neurons receives inhibitory feedback connections from all
layer-2 neurons, indicated by the orange region. Connections are identical for both feature maps. Note that in B,C only one feature map is shown.
doi:10.1371/journal.pone.0021641.g001

Feedback Alters Firing Mode and FG Responses
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Time delay of feedback inhibition
To better understand why inhibition changes figure-ground

segregation, we varied the time of arrival of the spikes from layer 2

to layer 1. The resultsshow that feedback inhibition produced-

stronger FG segregation when it arrived after, and not before, the

feedforward evoked spikes (fig. 6). Feedback input however must

arrive within 100 ms to be effective.When feedback inhibition

came later than 100 ms, FG modulation was not enhanced. Thus

inhibition influences the dynamic behavior of the spiking neuron

within a limited but relative long time interval.

Discussion

In this study, we showedby means of a simple 2-layered spiking

network that feedback increases the feedforward segmentation of figure

from background elements by enhancing the figure responses and at

the same time lowering the background responses.To do so, inhibitory

feedback changed the responsefrom bursting to tonic mode and did not

activate neurons preventing the model from going into an open-loop.

Feedback
Feedback connections from extra-striate areasshow an orderly

topographic organization and terminate in discrete patches within

V1. These patchy feedback terminations overlap with patches of V1

feedforward projecting neurons [1]. Furthermore, feedback tends to

target alike tuned cells [41], and correlate with ocular dominance,

iso-orientation columns, and CO blobs [42].Together with the

described wide spread termination in V1, feature selectivity of

feedback was incorporated in our model architecture.

In the visual system, the contribution of surround is asymmetric

with a shape that is related to the feature selectivity of the target

cell [e.g. 43]. We have simplified this notion by feature maps and

Figure 2. Spike responses of the neurons in the first and second layer to figure-ground stimulus. Arrows point to the responses of
neurons (small circles) lying on the figure (red traces) and background (green traces) regions.
doi:10.1371/journal.pone.0021641.g002

Figure 3. Figure-ground responses. A, B: Responses without (A) and with (B) feedback. Small circle represents a single neuron. Time is from
stimulus onset.
doi:10.1371/journal.pone.0021641.g003

Feedback Alters Firing Mode and FG Responses
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feature selective inhibition. In our model inhibitory feedback onto

a layer-1 neuron comes from all layer-2 neurons. This signifies that

the surround is a fixed term and is not shape dependent. The only

relevant factors of the surround are size and time. Thus, the

different types of surrounds observed in early visual areas [e.g.

43,44] are amalgamated into a difference in the balance between

excitation and inhibition. Thus although on the first sight our

model may be (too) simple, it nevertheless captures the essential

elements of centre-surround processing.

In our model feedback arrived almost immediately to the

ascending neurons. The almost immediate effect of V2 feedback

on their target neurons in V1, where it acts on the first stimulus

evoked spikes [45] agrees with this feature. Such a fast effect is

indicative for direct feedback onto the ascending V1 neurons. For

instance, the same V1 layers that send ascending signals to extra-

striate areas, e.g. V2 or MT, receive information back from these

areas. However, unlike our model there is no clear evidence (yet) of

re-entrant feedback to the visual cortex. On the contrary,

inactivation of V2, which is the main contributor of feedback to

the primary visual cortex, has no effect on centre-surround

interactions of V1 neurons [25]. This finding contrasts the

interpretation that inhibitory feedback in our model represents V2

feedback. Alternatively, surround inhibition may derive from the

wide spread lateral connections that exists in the visual cortex.In-

trinsic inhibitory connections convey information from beyond the

classical receptive field and can provide surround information of the

target stimulus.It has been shown that contextual suppressive effects

come from large regions (4-7 mm). According to our findings

inhibitory feedback needs to arrive within 100 ms after the

feedforward evoked response. Such relatively long time interval

may overcome the rather slow conductance velocities (typically 0.1-

0.2 m/sec) observed forlateral fibers.

Feedback: a push-pull mechanism to enhance stimulus
contrast

In our model feedback has a direct consequence on the activity of

the ascending neurons where it lowers the responses to figure

elements in layer 1. Despite the inhibitory nature, feedback

enhances the figure-ground signal in layer 2.Feedback accomplishes

this by a differential effect on neural activity; it enhances figure

responses and lowers background responses. Such push-pull effect is

also observed in neurons of the visual cortex responding to figure-

ground textures [36–38].Moreover, we show that feedback

especially enhances figure-ground signal when the feedforwardinput

is relatively weak (see fig. 4b).So feedback acts as a kind of attention

mechanism enhancing stimulus contrast [46,47]. In accordance,

feedback improves stimulus response precision [48] and feature

contrast [49], and enhances figure-ground discrimination [50], and

top-down attention may enhance feedforward responses in the LGN

[51] and figure-ground modulatory responses in early cortex [52–

54].Therefore, instead of generating the contextual effectsneeded

for figure-ground segmentation, we speculate that inhibitory

feedback boosts the feedforward generated figure-ground activity.

Markedly, feedforward inhibition decreases the figure-ground signal

[27] whereas inhibition through feedback increases the figure-

ground signal [current study]. Further studies are needed to

understand the dynamics that lead to such a difference.

Cortical state, attention, and figure-ground segmentation
The strength of figure-ground modulation depends on the

momentary state of the visual cortex[29–31]. A proper state is

characterized by low-frequency correlated neural firing. Absence or

deficiency in such synchronous firing prohibits figure-ground

segregation resulting in the occasionally failure to detect a stimulus

[29]. In this study, we show that feedback affects the strength of

figure-ground activity by changing the cortical state, i.e. changing

the firing from low-frequency bursting mode (9 Hz) to a tonic firing

pattern, which is consistent with the observations that feedback

shifts neural responses in the thalamus from a bursting mode into a

Figure 4. Average responses to figure, ground and homogeneous input (A,B) and strength of figure-ground segmentation (C) with
(red/orange) and without (black) feedback connections.
doi:10.1371/journal.pone.0021641.g004

Table 1. Number of spikes per second of layer-1 neurons in
the two feature maps in the presence or absence of feedback.

Figure Background

Feat map
No
Feedback Feedback No Feedback Feedback

1 46 23 0 0

2 0 0 46 50

doi:10.1371/journal.pone.0021641.t001

Feedback Alters Firing Mode and FG Responses

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e21641



tonic mode [32].Low frequency or busting activity is generally

associated with less attentive states. For example, in the thalamic

LGN of the awake animal, bursting is more common during periods

of drowsiness and is largely restricted to episodes lasting a few

seconds with most of the episodes showing rhythmic bursting

activity in the delta (0.5–4 Hz) frequency[55]. In accordance, other

studies report that the state of vigilance is associated with single or

tonic firing patterns whereas rhythmic bursting at alpha frequencies

(8–12 Hz) relates to periods of low vigilance[56,57].Furthermore,

tonic firing increases the signal-to-noise ratio [32]. Similarly to the

dynamical changes in cortical state, fast temporal changes in EEG

activity have also been associated with changes in attention and

discrimination [58–60].Putting these findings together it is reason-

able to assume thatmoments of high vs. low vigilance,so to say, have

different strength of figure-ground modulationbecause of the

different firing pattern of the ascending neurons[see also 29].

Such an explanation may also be relevant for the observed

discrepancy on attentional effects in V1. Whereas single-unit

studies of attention in monkeys have repeatedly revealed relatively

modest attentional modulations in V1, human functional magnetic

resonance imaging studies demonstrate a large attentional

enhancement of the blood oxygen level-dependent (BOLD) signal

in V1.A recent report shows that the neuronal metabolic rate

differs between low frequency oscillatory bursting and more

random or aperiodic (tonic) neural firing where the former gives

smaller BOLD responses[61].If one considers that attention,

carried by top-down feedback, affects besides spike rate also the

firing pattern (bursting versustonic) fMRI recordings will measure

a stronger attentional signals than single cell recordings.Finally,it

has been shown that cognitive processing of sensory stimuli, like

attention is represented by spike rate as well as by spike timing

(synchrony). The finding that feedback changes spike rate by

Figure 5. Amount of figure-ground modulation after testing the model with different strengths of feedback connections (A) and
feedforward connections (B). Grey lines indicate the strength of figure-ground modulation observed in the previous experiments and is used as
reference.
doi:10.1371/journal.pone.0021641.g005

Figure 6. Amount of figure-ground modulation for different time delays of feedback inhibition. Sign indicates whether feedback input
arrives before (negative value) or after (positive values) the feedforward input. For each time delay one iteration step should be added.
doi:10.1371/journal.pone.0021641.g006

Feedback Alters Firing Mode and FG Responses
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changing spike timing may shed some new light on the debate

about the neural correlates of cognitive processing.

Materials and Methods

Model architecture
The model is composed of two feature channels with each two

layers (fig. 1a) of NxNneurons of the Izhikevich type [62]. We used

N = 64 but lower and higher values of N are also used and did not

critically affect model performance. The two separate feature

channels represent two neuronal cell populations with opposite

preference for a single feature. The channels are referred to as

Feat-1 and Feat-2 condition.

Feedforward and feedback projections
The excitatory feedforward projections from the stimulus input

to the first neural layer and from the first to the second neural

layer were retinotopic (point-to-point connections) where pixel/

neuron Nijin one layer solely connected to neuron Nij in the next

layer. Thus the excitatory part of a neuron’s receptive field had

size one. Neurons in the first neural layer did not receive inhibitory

signals from the stimulus input. Each neuron in the second layer

received inhibition from all neurons located in the preceding layer.

Inhibition was achieved by assigning negative weights to the

connections. In the feedback condition, each neuron in the first

layer received global inhibition from all layer-2 neurons of the

same feature channel. Feature selectivity of feedback was chosen

because feedback targets alike tuned cells in the visual cortex [41]

and correlate with iso-orientation columns [42].

Stimulus inputs
The studied textured figures were two arrays of N6N pixels,

with N as in the model. Input arrays were binary (0 or 1)

corresponding to the preference for a single visual feature such as

luminance, orientation, direction of motion, color etc. In other

words, 1 stands for optimal tuning whereas 0 is the opposite. In the

Feat-1 condition stimulus input was defined as an array of zeros

except for the centre region of 16616 pixels where the pixels had a

value of 1 [see also 27]. The other array for the Feat-2 condition

was its binary complement, which represented the reverse

preference of the visual feature. Together they formed the

figure-ground texture [9,16]. The homogenous texture was a

matrix in which all pixels had a value of 1.

Model dynamics
Cell dynamics is described by the spiking model of Izhikevich

[62]

du

dt
~0:04v2z5vz140{uzI

du

dt
~a(bv-u),

ð1Þ

supplemented with the after-spike reset rule

if v§vsp,then
v/c

u/uzd:

�
ð2Þ

v,u,I ,tare dimensionless versions of membrane voltage, recovery

variable, current intensity and time. Further, a is a time scale for u,

b measures the recovery sensitivity, c is the reset value for v, and d

is the height of the reset jump for u. A capacitance factor C was

chosen to be 1 and therefore omitted. For all our simulations

a = 0.02, b = 0.25, c = 255, d = 0.05, and vsp, = 30. When dimen-

sions are reintroduced, voltages are read in mV and time in ms.

As initial conditions at t0 = 0 we set

v t0ð Þ~c, u t0ð Þ~bv t0ð Þ ð3Þ

for all the positions in our arrays (since we deal with two-

dimensional objects, equations (1) and (2) are actually meant for

v?vij , u?uij , I?Iij , i,j = 1, N, and condition (3) is in fact

applied to vij , uij , Vij . We used the Euler method with Dt = 0.20

msec. The input current I in (1) is the result of summing different

matrix contributions of the form

Iij~Iexc ijzIinh ij ð4Þ

where ‘exc’ stands for ‘excitatory’, ‘inh’ for ‘inhibitory’, and i,j are

spatial indices.

Further, for neural layers,

Iexc~vexc F ,

Iinh~vinh

1

N2

X
i,j

Fij

 !
1NxN ,

ð5Þ

F is either the two dimensional figure itself or the binary array

defined by the presence of spikes, i.e., with ones where condition

(2) is satisfied and zeros elsewhere. The 1NxN symbol denotes an

NxN matrix containing just ones. Since excitatory receptive fields

have size one, excitatory signals are point-by-point (retinotopic)

copies of F itself, multiplied by the corresponding weight. The

inhibitory part, whose associate receptive field has the same size as

F , produces a spatially constant term –hence the 1NxN matrix-

which is proportional to the normalized sum of all the F

coefficients times the inhibitory weight. Thus center and

peripheral neurons receive the same amount of inhibition. In

our design, the employed weights were vexc = 1 for the stimulus

input to neural layer 1 and vexc = 400, vinh = 2700 for the signals

from neural layer 1 to neural layer 2. The weight of the feedback

connection was vinh = 250. For strong feedback vinh = 2100 and

for weak feedback vinh = 210. Different proportions of the

feedforward weights, vexc, of the stimulus input to neural layer

1 were also tested (see results).

Calculating responses
To calculate the amount of figure-ground modulation we

employed a modulation index (F–G)/ (F+G), where F and G stand

for the amount of spikes at the figure and ground regions,

respectively [63]. The figure (background) responses from the two

central (surround) regions of both feature channels were averaged.
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