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Abstract

Animals have evolved specialized photoreceptors in the retina and in extraocular tissues that allow them to measure light
changes in their environment. In mammals, the retina is the only structure that detects light and relays this information to
the brain. The classical photoreceptors, rods and cones, are responsible for vision through activation of rhodopsin and cone
opsins. Melanopsin, another photopigment first discovered in Xenopus melanophores (Opn4x), is expressed in a small
subset of retinal ganglion cells (RGCs) in the mammalian retina, where it mediates non-image forming functions such as
circadian photoentrainment and sleep. While mammals have a single melanopsin gene (opn4), zebrafish show remarkable
diversity with two opn4x-related and three opn4-related genes expressed in distinct patterns in multiple neuronal cell types
of the developing retina, including bipolar interneurons. The intronless opn4.1 gene is transcribed in photoreceptors as well
as in horizontal cells and produces functional photopigment. Four genes are also expressed in the zebrafish embryonic
brain, but not in the photoreceptive pineal gland. We discovered that photoperiod length influences expression of two of
the opn4-related genes in retinal layers involved in signaling light information to RGCs. Moreover, both genes are expressed
in a robust diurnal rhythm but with different phases in relation to the light-dark cycle. The results suggest that melanopsin
has an expanded role in modulating the retinal circuitry of fish.
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Introduction

Melanopsin, the long sought after photopigment involved in

circadian regulation, was first shown to mediate light dependent

dispersal of pigment granules in Xenopus melanophores [1] and

later found to be produced in the ganglion cell layer of the

mammalian retina [2,3]. Approximately 2–4% of retinal ganglion

cells (RGCs) in the mouse retina express melanopsin, where they

serve as a specialized class of photoreceptive cells that directly

transmit light information to the brain [3]. Much has been

learned about the diversity and functions of these intrinsically

photosensitive RGCs (ipRGCs) in mammals in regulating

circadian activity, the pupillary light response and sleep, as well

as contributing to light detection for vision [3,4,5,6,7]. However,

less is known about melanopsin proteins and the roles of

melanopsin-expressing cells in non-mammalian vertebrates,

especially in aquatic species.

In contrast to mammals that have a single melanopsin or Opsin 4

(Opn4) gene, the genomes of birds, amphibia and fish contain genes

belonging to two groups that encode either Opn4x-related or

Opn4-related proteins on the basis of their greater similarity with

either the Xenopus or mammalian protein, respectively [8].

Genomic analysis suggests that, during evolution, mammals lost

the opn4x gene through a chromosomal rearrangement [8].

In non-mammalian vertebrates, opn4-related genes are not only

expressed in a small subset of retinal ganglion cells, but also in

interneurons of the inner nuclear layer of the retina [1,9,10,11]. In

teleost fish, such as the Atlantic cod, cichlid and roach melanopsin

transcripts are detected in horizontal cells [10,12,13]. Opn4-related

genes are also expressed in some amacrine cells in the developing

and adult retina of the Atlantic cod and chicken [10,11].

While the retina is the only light-detecting organ in mammals,

other vertebrate species have evolved specialized extraocular

photoreceptors that allow them to detect changes in irradiance

[14]. In some birds and reptiles, for example, both the pineal gland

and deep-brain photoreceptors are thought to regulate circadian

entrainment and seasonal responses to changes in photoperiod

length [14,15]. A number of photopigments have been localized to

extraocular photoreceptors, including neuropsin [16], vertebrate-

ancient Opsin (Val-Opsin) [17], parapinopsin [18], pinopsin [19],

exo-rhodopsin [20] and melanopsin [1,9,10]. In the case of

melanopsin, expression is found in the photosensitive pineal organ

of chickens, where mRNA levels oscillate in a circadian manner

[9]. In various species, melanopsin is also produced in the

biological clock, the suprachiasmatic nucleus (SCN), and in other

regions of the brain including the habenular nuclei, the thalamus,

hypothalamus and the lateral septal organ, the presumed deep-

brain photoreceptor of birds [1,9,10]. The functional relevance of
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these diverse sites of melanopsin photoreceptors in the brain is not

well understood.

We set out to characterize the melanopsin system in the

zebrafish because of its advantages as a vertebrate genetic model.

The anatomy, circuitry and biochemistry of the retina are highly

conserved across vertebrates, including the zebrafish [21]. By 5

days post-fertilization (dpf), the larval retina has differentiated and

is functional, displaying responses evoked by visual stimuli

[21,22,23]. In previous studies, cDNA clones corresponding to

two mammalian-like genes, opn4a and opn4.1 (originally named

opn4m1 and opnm2), were identified [8,24]. Expression analyses by

RT-PCR had indicated that opn4a is expressed in the adult eye and

brain but not in skin and muscle cells [8,24]. Transcripts for the

opn4.1 gene were also detected by in situ hybridization in

horizontal cells in the adult retina [24]. However, there were no

reports of any zebrafish opn4-related gene expressed in RGCs, as in

mammals and other vertebrate species.

Here we describe the five melanopsin genes that are present in

the zebrafish genome and their diverse expression in multiple

neuronal cell types of the developing retina, including classical

photoreceptors, horizontal, amacrine and bipolar interneurons

and RGCs. Unlike birds [9,11], transcripts were not detected in

the presumptive pineal organ of zebrafish larvae, although a few

melanopsin-expressing cells were found at the base of the pineal

stalk. Expression was also observed in discrete regions of the

developing forebrain and hindbrain. We unexpectedly discovered

that length of the photoperiod influences expression of two opn4

related genes, revealing robust rhythms in their levels. The results

suggest that zebrafish have evolved an adaptive melanopsin system

that may not only mediate non-image forming light responses but

also modulate visual input.

Results

Five zebrafish melanopsin genes arose by gene
duplication and retrotransposition

The mouse melanopsin coding sequence was used as a query

against the zebrafish genome (Ensembl Zv6) and five distinct

sequences with considerable homology were identified. Four genes

were already localized to different chromosomes and we mapped

the fifth gene to chromosome 10 using the LN54 radiation hybrid-

mapping panel (data not shown) [25]. Phylogenetic analyses

cluster the melanopsin-related genes of vertebrates into two separate

groups, opn4x (Xenopus-related) and opn4 (mammalian-related)

[8]. Two of the zebrafish genes, opn4a and opn4.1 had been

previously identified as belonging to the mammalian-like opn4

group [8,24]. The nomenclature for the zebrafish genes has been

revised based on their syntenic relationships (Figure 1), degree of

similarity with the frog and mouse protein sequences (Figures 2A

and B) and zebrafish nomenclature conventions (refer to Materials

and Methods). Two opn4x-related genes (opn4xa, opn4xb) and two

opn4-related genes (opn4a and opn4b) map to syntenic chromosomal

regions. We speculate that the fifth gene, opn4.1, arose by

retrotransposition since the entire melanopsin open reading frame is

encoded by a single exon and there is no evidence of synteny with

any of the other zebrafish genes or with the Xenopus, chicken and

mouse opn4 loci. As shown below, the opn4.1 retrogene is expressed

in the retina and likely encodes a functional photopigment.

The predicted proteins encoded by the five zebrafish genes show

48–60% similarity at the amino acid level to mouse Opn4

(Figures 2A and C). However, similarity within the core region

(i.e., the seven transmembrane domains and their associated

intracellular and extracellular loops) is much higher, ranging from

77–85% (Figure 2C). All five zebrafish proteins share the

hallmarks of opsins; G-protein coupled receptors that bind

chromophore (Figure 2A). These properties include seven helical

transmembrane domains, a lysine on the seventh transmembrane

domain for chromophore binding, conserved residues that could

serve as the counter ion for chromophore binding via a Schiff base

linkage, a structural DRY tripeptide motif in the third transmem-

brane domain and rhabdomeric opsin signature motifs on the

third and fourth cytoplasmic loops (KMAK, HPKY, respectively)

[1,26]. Both Opn4x proteins contain amino acid substitutions in

the cytoplasmic loops where the G-protein binds, suggesting that

this subgroup may have altered binding affinity or activate

different G-proteins. Another exception to a largely conserved

overall structure is an amino acid substitution in the DRY motif of

Opn4.1, changing it to DRC. A comparable tyrosine substitution

to cysteine has been observed in other G-protein coupled receptors

and is thought to have minimal effect on function [27,28].

Despite its unique genomic origin, the opn4.1 locus encodes an

Opsin protein that is functional in a heterologous cell culture

system and has an absorbance spectrum similar to mouse

melanopsin (Figure 2D). Following transfection and expression

in HEK293 cells (Figure 2E), Opn4.1 mediates light-dependent

induction of calcium release. The kinetics of the calcium response

are slower than those for mouse melanopsin and there is also a

delay in deactivation of this zebrafish protein.

Multiple neuronal cell types express melanopsin in the
developing zebrafish retina

As in other vertebrates, the zebrafish retina is a multilayered

structure composed of highly specialized neuronal cell types

(Figures 3A and S1A). By 5 days post-fertilization (dpf), the larval

retina has differentiated and is functional [21]. The zebrafish opn4-

related genes are all expressed in the larval retina, but in distinct

patterns. Only one Xenopus-related gene, opn4xa, shows expres-

sion similar to the mouse and human opn4 genes, in a small subset

of cells in the retinal ganglion cell layer [2,3] (Figures 3A–C and

S1B). These opn4xa transcripts colocalize with the ganglion cell

marker, gc56 [29] (Figure S1C).

Expression of opn4xb and all genes in the opn4 group was

detected in different regions within the inner nuclear layer (INL)

(Figures 3D–O and S1D–J). The zebrafish opn4xb gene becomes

uniformly expressed in the central region of the INL (Figures 3D–

F) where bipolar cell bodies are located. Expression of opn4a was

found in clusters of cells distributed throughout the INL

(Figures 3G–I) although the pattern of expressing-cells varied for

embryos reared under different light conditions (compare Figure 3I

and Figure S1E and see below). In some cells in the INL of the

retina, opn4xb, opn4a and opn4b were co-expressed with bipolin, a

marker of bipolar cell identity [29] (Figures S1G–I). Strong

expression of opn4b was also found in distinct sublaminae of the

INL that correspond to regions enriched for amacrine or

horizontal cells (Figures 3J–L). Transcripts for opn4.1 localized to

the outermost shell of the INL where horizontal cells are located

and in scattered photoreceptor cells (Figures 3N and O).

Expression of melanopsin genes in extraocular tissues but
not in the larval pineal gland

In contrast to mammals where expression is confined to the

retina, in non-mammalian vertebrates, melanopsin is not only

expressed in the retina but also in discrete regions of the brain

[1,9,11,30]. The opn4xa, opn4a and opn4b genes are all expressed in

non-overlapping patterns in the embryonic brain prior to

retinogenesis (Figures S2A, D and H), which starts between

28–32 hpf [21]. The opn4a gene is expressed continuously from 1

Rhythmic Expression of Zebrafish Melanopsin Genes
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to 3 dpf in the presumptive preoptic area, as defined by

coexpression of the orthopedia homolog (otp) gene (Figures S2D–G).

At 1 dpf, opn4b is expressed in an undefined region of the ventral

forebrain and, commencing at 3 dpf, in bilateral domains in the

thalamic region just dorsal to the lateral forebrain bundles (Figures

S2H and I). The opn4.1 gene is not expressed in the brain until 3

dpf, when transcripts are located at the juncture between the

caudal hindbrain and anterior spinal cord, in cells in the

ventricular region (Figures S2J and K).

Only one of the Xenopus-related genes is expressed outside

of the retina. At 1 dpf, a small number (2–5) of opn4xa-expressing

cells are bilaterally positioned in the dorsal diencephalon, in the

proximity of the pineal complex (Figure S2A). The pineal gland is a

photosensitive organ in non-mammalian vertebrates [31] and, in

chickens, is a site of melanopsin expression [9,11]. However, in

zebrafish, opn4xa was not co-expressed with a marker of the

developing pineal complex (orthodenticle homolog, otx5 [32]) (Figure

S2B). The opn4xa-expressing cells are also not located within the

dorsal habenular nuclei (Figure S2C). These few cells reside at the

base of the pineal stalk just medial to the dorsal habenular nuclei

and persist until at least 5 dpf.

In addition to the developing brain, we find that only one gene,

opn4b, is expressed outside of the nervous system at 1 dpf, in cells

within trunk and tail somites (Figures S2L and M).

Photoperiod modulates retinal opn4 expression
Light adaptation in the retina is critical for signaling from rods

and cones to ganglion cells across a wide range of light intensities.

Figure 1. Five zebrafish opn4-related genes arose by duplication and retrotransposition. Schematic diagrams of the chromosomal
regions surrounding mouse (Mus musculus), chicken (Gallus gallus), frog (Xenopus tropicalis) and zebrafish (Danio rerio) opn4-related loci. Gray boxes
represent melanopsin exons and arrows indicate direction of transcription. The opn4a and opn4.1 genes were previously identified [8,24]. Orange and
green boxes represent syntenic genes located upstream and downstream of the chicken opn4 locus. Blue and yellow boxes represent syntenic genes
located upstream or downstream of the mouse Opn4 locus. Pink boxes represent conserved genes upstream of duplicated zebrafish opn4m loci. The
single exon opn4.1 locus shows no synteny with other opn4 chromosomal regions and likely arose by retrotransposition.
doi:10.1371/journal.pone.0025111.g001
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The expression of melanopsin in processing neurons of the inner

nuclear layer of the zebrafish retina prompted us to examine the

effect of different light lengths on transcription of opn4-related

genes in vivo. We discovered that photoperiod length has a

significant effect on expression of two opn4-related genes in the

INL. Zebrafish larvae raised in two different light:dark (LD) cycles,

14:10 LD and 18:6 LD, showed dramatic differences in expression

of the opn4a and opn4.1 genes at zeitgeber time 1 (ZT1) (Figure 4).

Larvae kept in a 14:10 LD cycle had transcripts in discrete regions

of the retinal INL (Figures 4A and C). In addition, opn4.1

expression was greatly increased in the photoreceptor cell layer

(Figure 4C). However, opn4a and opn4.1 transcripts were only

weakly expressed in larvae maintained in an 18:6 LD cycle,

(Figures 4B and D).

To explore this finding further, we examined expression of the

two genes at different phases during the 14:10 and 18:6 LD cycles

and discovered that both show a robust diurnal rhythm that varies

with each photoperiod and are not synchronous. The opn4a gene

shows a decline in expression between ZT9 and ZT13 under both

photoperiods, but expression decreases between ZT17 and ZT21

only in the 18:10 LD cycle (Figure 5A). Thus, two peaks of

expression are present under the prolonged light cycle (at ZT 9

and ZT17). Rhythmic expression levels of opn4.1 also vary between

the two photoperiods (Figure 5B). Under the shorter LD cycle,

opn4.1 shows two peaks of expression (ZT1 and ZT13), whereas a

single peak of expression from ZT5 through ZT21 is found in the

18:6 cycle. However, the phase of the diurnal rhythm is

dramatically different between the expression profiles of opn4a

and opn4.1 in both photoperiods (Figure 5C). These results indicate

that the melanopsin system in zebrafish is rhythmic and has the

capability to respond to environmental light conditions by

modulating gene expression.

Discussion

Zebrafish larvae have evolved a sophisticated melanopsin

system with distinct patterns of gene expression in multiple

neuronal cell types in the retina, as well as in the brain and

somites. As in mammals, perception of light by melanopsin may

involve a subset of retinal ganglion cells in zebrafish, but additional

expression in classical photoreceptors and in interneurons

throughout the INL suggests that melanopsin has an expanded

role in information processing in the developing retina of fish.

Zebrafish retinal cells also have the capacity to regulate opn4

expression based on the length of the photoperiod.

The literature on the melanopsin gene family of non-mammalian

vertebrates has been complicated by the fact that the genes fall into

two groups, those that encode proteins more similar to Xenopus

melanopsin (Opn4x) or more similar to the human and mouse

proteins (Opn4). It has been proposed that during evolution

mammals lost the opn4x gene due to a chromosomal rearrange-

ment [8]. The pairs of Xenopus-related (opn4xa, opn4xb) and

mammalian-related (opn4a and opn4b) genes that exist in the

zebrafish genome arose following the whole-genome duplication

that occurred in the teleost lineage [33]. However, after the

duplication event, considerable divergence in the regulatory

sequences that control cell-type specific expression must have

occurred because each pair of genes shows completely different

patterns of expression. An additional unexpected finding, but one

consistent with studies on the chicken [9] and Atlantic cod [10] is

that only one gene from the Xenopus-related group, opn4xa, is

transcribed in zebrafish retinal ganglion cells similar to the opn4

gene in mammals. This suggests that a single ancestral melanopsin

gene was expressed in the precursor cells to RGCs and that cell

type-specific regulatory sequences were present at the opn4 locus

when the Xenopus-related gene was lost in mammals. Thus, the

mouse Opn4 and the zebrafish opn4xa loci may retain common cis-

regulatory elements for transcriptional activation in the retinal

ganglion cell layer. Whether the melanopsin-expressing RGCs of the

zebrafish are functional equivalents of mouse ipRGCs, projecting

to analogous regions of the brain and controlling circadian

photoentrainment and sleep, remains to be demonstrated.

Because the fifth zebrafish gene, opn4.1, has a unique genomic

structure and suspected origin as a retrogene, we wondered

whether it encoded a functional protein. Not only is the gene

expressed in the retina, but Opn4.1 protein produced and purified

from a heterologous cell culture system also has properties of

melanopsin. The absorption maximum of mouse melanopsin

expressed in heterologous culture systems is shorter than that

inferred from measurements of the action spectra of various light-

dependent behaviors in mice that lack rod and cone photorecep-

tors [7,34]. In this study, we found that zebrafish Opn4.1 has an

even shorter lmax than what has been reported for mouse

melanopsin in cultured cell systems. It is likely that in its native

form in vivo, the zebrafish protein has a longer lmax than what is

observed in vitro, but may still be blue shifted from the mouse

protein. Other types of zebrafish opsins display a short-wavelength

shift compared to homologous proteins from different species

[35,36] and it has been suggested that this shift correlates with

optimization of the visual system for an aquatic habitat [37].

In addition to its absorbance spectrum, results from the calcium

activation assay indicate that, when activated by light, Opn4.1

bound to the chromophore 11-cis retinal forms a visual pigment

that functionally couples to a G-protein in HEK293 cells. There

are some differences in the kinetics of this response compared to

mouse melanopsin that probably reflect the variation between

protein sequences. For example, the observed delay in deactiva-

tion of the zebrafish protein could be due to the reduced number

of phosphorylation sites in the carboxyl tail of Opn4.1. These sites

are thought to be important for deactivation of mouse melanopsin

and are present in two of the other zebrafish Opn4-related

proteins that show more similar kinetics to the mouse protein in

the HEK293 assay system (Blasic and Robinson, unpublished

observations). The results indicate that the protein encoded by

opn4.1 has the characteristics of a functional melanopsin

photopigment. Its unique expression in classical photoreceptors

suggests that the opn4.1 retrogene coopted endogenous regulatory

Figure 2. Zebrafish proteins share features of mammalian melanopsin. (A) Alignment of the core region of the predicted zebrafish
melanopsin-related proteins with the Xenopus Opn4x and mouse Opn4 proteins. The core region includes seven transmembrane domains (TM1-7,
underlined) and associated intracellular and extracellular loops. The DRY tripeptide motif of G-protein coupled receptors and the two signature
motifs of rhabdomeric opsins are indicated by brackets (a, b and c, respectively). Glu (*) or Tyr (‘) is a possible counter ion for Schiff base linkage and
Lys (+) is the site of chromophore binding. (B) Phylogenetic analysis separates the five zebrafish proteins into the Opn4m and Opn4x groups as
indicated in a neighbor-joining tree rooted to Amphioxus Opn4 with five hundred bootstrap values. (C) Percentage of amino acid similarity between
zebrafish Opn4-related and mouse Opn4 proteins (blue) or core regions (orange). (D) Normalized absorbance difference spectrum for zebrafish
Opn4.1 with a maximum of 403 nm (dashed line). (E) Time course in seconds (s) of the response of HEK-293 cells (green) or transiently transfected
with zebrafish Opn4.1 (blue) or mouse Opn4 (grey), as measured by fluorescent calcium imaging.
doi:10.1371/journal.pone.0025111.g002
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elements at its site of integration for transcriptional activation in

the retina.

In contrast to mammals, where melanopsin is only expressed in

the retina, non-mammalian vertebrates show expression in a

variety of tissues [2,9,10,11,30] such as the skin, brain and pineal

gland. It has been shown that zebrafish embryos are sensitive

to light at 1 day, prior to retinogenesis [38], suggesting that

production of photopigments in extraretinal tissues may contribute

Figure 3. Diverse expression of zebrafish opn4-related genes in the developing retina. Profile of opn4-related gene expression in the larval
retina from 3 to 5 dpf. Following whole-mount RNA in situ hybridization, larvae were embedded in LR gold media and 4 mm sections prepared. In A,
the lens and retinal cell layers are indicated (GCL, ganglion cell layer, INL, inner nuclear layer, PCL, photoreceptor cell layer). (A–C) opn4xa is expressed
in a small subset of cells in the ganglion cell layer. (D–F) opn4xb is transcribed in bipolar cells in a broad domain of the INL. (G–I) opn4a is expressed in
clusters of bipolar cells scattered throughout the INL. (J–L) opn4b transcripts are found in three domains within the INL, where amacrine (arrowhead
in L), bipolar (arrow in K) and horizontal cells (open arrowhead in K) are located. (M–O) opn4.1 expression is weakly detected at 3 dpf but, one day
later, strong expression is observed in horizontal cells in the outer shell of the INL. Sparse opn4.1 expression is also found in the photoreceptor cell
layer.
doi:10.1371/journal.pone.0025111.g003
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to early light detection. In post-natal mice, ipRGCs are the earliest

photoresponsive cells [39,40] and melanopsin is required for

negative phototaxis at a stage when classical photoreceptors are

not yet functional [41]. The products of opn4a, opn4b and opnxa, or

other opsin genes that are known to be expressed in extraretinal

tissues [42,43,44], could provide necessary light information to

zebrafish embryos before the retina is completely functional.

Melanopsin was found in the pineal gland of chickens [9,30],

which is surprising because, structurally, pinealocytes are thought

to be more similar to the ciliary photoreceptors of the vertebrate

retina [14]. We did not detect opn4-related gene expression in the

zebrafish pineal, at a stage when this organ is presumed to be light

sensitive [45,46]. However, a small number of opn4xa-expressing

cells were found at another site in the epithalamus, at the base of

the pineal stalk just medial to the bilaterally paired habenular

nuclei. The habenula itself is known to express an opn4x-related

gene in the Atlantic cod [9] and in the mouse is directly innervated

by ipRGCs [47]. The close proximity of cells that express the

RGC-specific melanopsin gene, opn4xa, to the presumptive pineal

organ and habenular nuclei raises the intriguing possibility that

they are specialized photosensitive projection neurons that interact

with the adjacent structures.

In the zebrafish retina, expression of melanopsin-related genes

encompasses all layers and neuronal types. In agreement with

studies of other non-mammalian vertebrates [1,9,10,11], two

genes, opn4b and opn4.1, are expressed in the outer lamina of the

INL in the horizontal cell layer. These results are also consistent

with the observation that some horizontal cells are intrinsically

photosensitive in fish [13,48]. What was unexpected was the

presence of opn4a and opn4b transcripts in bipolar cells because of

their predicted evolutionary origin. It has been proposed that

photoreceptive cells evolved from two parallel lineages in the

retina, with rods, cones and bipolar cells derived from a ciliary

photoreceptor precursor and amacrine, horizontal and retinal

ganglion cells derived from a rhabdomeric photoreceptor

precursor [49]. However, the finding of melanopsin expression in

all of these cell types in the developing zebrafish retina argues that

they arose from a common, evolutionarily ancient, bimodal

ciliary/rhabdomeric photoreceptive precursor cell.

We discovered that the length of the photoperiod alters

melanopsin expression in the retina. Reduced transcriptional levels

of opn4.1 in horizontal cells in response to a prolonged photoperiod

could lead to differences in the ability of the retina to detect

contrast because horizontal cells mediate the center surround

responses necessary for contrast detection. In photoreceptors, as in

ganglion cells [50], activation of the melanopsin pathway via

Opn4.1 could lead to calcium release from internal stores and

through gated calcium channels, thereby modulating calcium

levels following extended exposure to light.

The opn4.1 and opn4a genes show rhythmic expression but with

different waveforms. When opn4.1 expression peaks at ZT13 in

horizontal cells under a 14:10 LD cycle, opn4a expression is

reduced in bipolar cells, and at some points when opn4a expression

is high (e.g., ZT5 and ZT21), opn4.1 transcripts are not detected.

Notably, under the 18:16 LD cycle, an opposite relationship is

observed (e.g., expression of opn4a is undetected at ZT13, whereas

opn4.1 is highly expressed). Thus, rhythmicity of gene expression is

maintained but is altered under different light:dark conditions.

The existence of independent diurnal rhythms for the two genes is

suggestive of distinct oscillators functioning in horizontal and

bipolar cells. Future experiments to monitor expression under

constant dark conditions will determine whether the circadian clock

also regulates opn4a and opn4.1. It is known in mammals that both

melanopsin signaling and circadian activity within the retina alter

electrical responses to light [51,52]. The zebrafish studies suggest

that rhythmic control of melanopsin is a potential mechanism to

explain how both processes could be coupled to modulate

physiology of the inner retina.

Figure 4. Photoperiod length influences melanopsin expression. (A, C) Larvae housed in 14:10 LD or (B,D) 18:6 LD cycles were fixed at ZT1 at
96 hpf, and assayed for opn4-related gene expression. opn4a and opn4.1 expression in the inner nuclear layer is greatly reduced in the prolonged
light conditions. Additionally, opn4.1 transcripts are only detected in the photoreceptor cells (arrowhead) of larvae raised in the 14:10 cycle. Over 90
larvae were assayed in 3 independent experiments.
doi:10.1371/journal.pone.0025111.g004
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The influence of photoperiod length on melanopsin expression in

horizontal cells and classical photoreceptors, combined with

expression in bipolar and amacrine cells, illustrates the expanded

role melanopsin signaling could play in the regulation of retinal

circuitry. In mammals, ipRGCs signal back to dopaminergic

amacrine cells [53] and are known to modulate visual processing

by classical photoreceptors [54]. However, in fish and other non-

mammalian vertebrates, expression of melanopsin in multiple

neuronal types has the potential to influence retinal function

directly in both an ipRGC-dependent and/or independent

manner.

Materials and Methods

Zebrafish
Adult zebrafish of the Oregon AB strain [55] were housed in a

14:10 light:dark (LD) cycle at 27uC. All techniques and the care of

zebrafish were approved by the Carnegie Institution Animal Care

and Use Committee (Protocol #122). Embryos were obtained

from natural matings, sorted at the 2–4 cell stage and initial-

ly maintained in rooms with different L:D cycles. For the

photoperiod experiment, 2–4 cell stage sibling embryos were

divided into two groups. The first group was raised in a 14:10 LD

cycle and the second group was raised in an 18:6 LD cycle. For

both groups, larvae were fixed in 4% paraformaldehyde (PFA) at

96 hours post-fertilization (hpf), at a Zeitgeber time (ZT) of 1. To

examine diurnal rhythms, we followed the same protocol and

sacrificed larvae every four hours starting at 96 hpf until 120 hpf.

Genomic and phylogenetic analyses
DNA sequence corresponding to the mouse melanopsin gene was

used as a query against the zebrafish genomic database (Emsembl

Zv6). Two melanopsin sequences were identified as corresponding to

previously described genes (opn4a and opn4b) [8,24]. Three new

sequences, one in the opn4m group and two in the opn4x group,

were identified with Expect (E) values ranging from 0.30 to

8.6610215. Because of its syntenic relationship and percent amino

acid identity with opn4a, and based on the guidelines for nam-

ing of zebrafish genes (https://wiki.zfin.org/display/general/

ZFIN+Zebrafish+Nomenclature+Guidelines), the newly identified

opn4 group member is referred to as opn4b and the less conserved

gene (previously called opm4m2 in [8]) is renamed opn4.1. The two

members of the opn4x group are referred to as opn4xa and opn4xb.

Multiple sequence alignments of the Opn4 protein sequences were

created using the ClustalW software [56] . Phylogenetic analysis

was conducted using MEGA 4 [57]. Phylogenetic trees were

obtained from the multiple sequence alignment using the

neighbor-joining method with five hundred bootstraps.

Isolation of zebrafish melanopsin-related genes
Total RNA was extracted from larvae at 5 dpf using TRIzol

reagent (Invitrogen) and cDNA was synthesized using the

RETROscript kit (Ambion). To isolate a unique fragment from

each predicted zebrafish melanopsin-related cDNA, forward and

reverse primers (Supplemental Experimental Procedures) were

designed using the Primer3 program (http://frodo.wi.mit.edu/

primer3) for amplification by the polymerase chain reaction

(PCR). Appropriately sized PCR products were subcloned into the

pCR II-TOPO vector using the TOPO TA cloning kit. The

resultant plasmids were linearized and sense and antisense

digoxigenin or fluorescein-labeled RNA probes were transcribed

in vitro (for details see Table S1).

RNA in situ hybridization
Whole-mount RNA in situ hybridization was carried out as in

[32] with over 100 larvae assayed for each probe in multiple

experiments. Hybridized probes were detected using alkaline

phosphatase-conjugated antibodies (Roche Applied Science) and

were visualized using nitro blue tetrazolium chloride and bromo-4-

chloro-3-indolyl phosphate (NBT/BCIP) (Roche Applied Science).

For double labeling, reacted specimens were stained in iodoni-

trotetrazolium violet and bromo-4-chloro-3-indolyl phosphate

(INT/BCIP) (Roche Applied Science) as described [32]. Following

in situ hybridization, embryos or larvae were post-fixed overnight

in 4% PFA at 4uC, dehydrated in a 35%, 50%, 75% ethanol series

and embedded in LR gold media (London Resin). Sections (4 mm)

were prepared on a Leica ultramicrotome.

Absorbance spectrum analysis
Full-length cDNA for opn4.1 was amplified using the following

primers sequences: opn4.1 59-NNNNNNCAATTGATGAGCCA-

TCACTCTTCATG-39 and 59NNNNNNGCGGCCGCTTAG-

GCAGGCGCCACTTGGCTGGTCTCTGTGTTCCCTCCA-

AGCAAAGCCT-39. Sequences corresponding to the peptide

from bovine rhodopsin recognized by the monoclonal antibody

1D4 [58] were included in the reverse primer. The opn4.1 PCR

product was subcloned into the pMT3 vector [59] and used in

Lipofectamine 2000 (Invitrogen) transfection of HEK293 cells.

Transfected cells producing zebrafish Opn4.1 or mouse Opn4

were harvested and stored at 280uC. Cells were resuspended in

PBS and incubated with 40 mM 11-cis-retinal in the dark. Proteins

were solubilized from cell membranes as described [60]. The ID4

monoclonal antibody 1D4 was used to purify melanopsin by

immunoaffinity chromatography [61]. Purified melanopsin was

eluted in 0.1% dodecyl maltoside in phosphate buffered saline and

analyzed using a Hitachi Model U-3300 dual path spectropho-

tometer.

Kinetic measurement of melanopsin activity by
fluorescent Ca2+-imaging

The procedure for measuring melanopsin activity was modified

from [62]. Transfected HEK-293 cells were allowed to grow for

24 hours and then released from the plate with 0.25% trypsin

(Invitrogen), counted, and replated for fluorescent Ca2+-imaging at

a density of 105 cell per well in a 96 well plate with a clear bottom

and black walls (BD). One day after re-plating, cells were washed

twice with Hank’s Balanced Salt Solution (HBSS) containing

20 mM HEPES, pH 7.4, and incubated in HBSS/HEPES

supplemented with 4 mM Fluo-4 (Molecular Probes), 0.02%

pluronic acid (Invitrogen), and 50 mM 11-cis retinal. Fluorescent

measurements were performed on a Tecan Infinite M200

microplate reader (Tecan Group Ltd.,) (EX 485 nm, EM

520 nm) at a sampling rate of 1 Hz for 60 seconds. Background

Figure 5. Rhythmic expression of opn4a and opn4.1. (A, B) Larvae maintained in 14:10 LD or 18:6 LD cycles were collected every 4 hours starting
at ZT1. Expression of (A) opn4a and (B) opn4.1 show diurnal rhythms with different phases for each light cycle. The rhythm of opn4a expression is a
single wide waveform in 14:10 LD, and either a dual waveform or an ultradian rhythm at 18:6 LD. Under the same LD conditions, expression of opn4.1
shows a reversal in the waveforms with respect to opn4a. (C) Summary graph representing the relative expression levels of opn4a and opn4.1 under
the two photoperiods depicted as white (light phase) and black (dark phase) bars.
doi:10.1371/journal.pone.0025111.g005
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fluorescence was subtracted to account for variations in transfec-

tion efficiency and dye loading.

Supporting Information

Figure S1 Expression of zebrafish opn4-related genes in
unique patterns in multiple retinal cell types. (A)

Schematic diagram of the multilayered retina of the zebrafish

larval eye with the photoreceptor cell layer (PCL), inner nuclear

cell layer (INL), ganglion cell layer (GCL) and lens indicated. (B–J)

Whole mount single or double RNA in situ hybridization at 5 dpf

with the indicated probes. (B,C) opn4xa is expressed in a subset of

cells in the GCL that coexpress gc56. (D–F) opn4xb, opn4a and opn4b

are all expressed in subregions of the INL and some cells (G–I)

coexpress bipolin (bip), a marker of bipolar cells. (J) opn4.1 is

transcribed in horizontal cells in the outer lamina of the INL.

(PDF)

Figure S2 Expression of opn4-related genes in extrao-
cular tissues prior to retinogenesis. (A) opn4xa is weakly

expressed in bilateral domains the dorsal diencephalon as early as

1 dpf. (B) At 2 dpf, the opn4xa-expressing cells (blue) are located in

close proximity to the orthodenticle homolog 5 (otx5) expressing

presumptive pineal gland (C) and medial to the dorsal habenular

nuclei that express the Ca2+-dependent activator protein (cadps2) at 4 dpf

[63]. (D–F) From 1–3 dpf, opn4a positive cells are found in the

forebrain where (G) they coexpress the orthopedia (otp) gene, a

marker of the preoptic area. (H) At 1dpf, opn4b expression is found

in the ventral forebrain and (I) at 4dpf is expressed in the dorsal

thalamus (J–K) opn4.1 is expressed in small subset of cells in the

caudal hindbrain at 4dpf. opn4b is the only gene that is also

expressed in the body, as shown in (L) a whole-mount embryo and

in (M) a section through the tail region at 1dpf.

(PDF)

Table S1

(XLS)
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