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T cells play a crucial role in controlling and driving the immune response with their ability to
discriminate peptides derived from healthy as well as pathogenic proteins. In this review,
we focus on the currently available computational tools for epitope prediction, with a
particular focus on tools aimed at identifying neoepitopes, i.e. cancer-specific peptides
and their potential for use in immunotherapy for cancer treatment. This review will cover
how these tools work, what kind of data they use, as well as pros and cons in their
respective applications.
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INTRODUCTION

T cells recognize and survey peptides (epitopes) presented by major histocompatibility complex
(MHC) molecules on the surface of nucleated cells. To be able to perform this task, T cells must be
able to differentiate between native “self” peptides versus peptides deriving from pathogens,
infections or genomic mutations. In order to effectively mount and initiate an immune response,
T cells must undergo activation. The main requirement of T cell activation is the molecular
recognition between the T cell receptor (TCR) expressed on the T cell surface and peptide-MHC
complexes (pMHC) presented on the surface of other cells. This precise recognition process is of
paramount importance for a well-functioning immune system, and is shaped by a mechanism
named central tolerance. In order to ensure that T cells do not react against ubiquitous peptides
found in an individual, T cells undergo the process of negative selection. Early in their development,
T cells are presented with a plethora of self-peptides, where any T cell that recognizes self-peptides is
eliminated, leaving only T cells with little or no specificity for self. Cases in which this mechanism
fails and T cells recognize self-epitopes are typically associated with harmful effects on the organism
and might result in autoimmune disorders.

As mentioned earlier, T cells recognize epitopes only when they are presented by MHC
molecules. Early in the thymic development of T cells, they undergo the process of positive
selection ensuring that they bind to host MHC molecules. There exist two classes of MHC
molecules: class I expressed on surfaces of all nucleated cells and class II found on surfaces of
specialized antigen-presenting cells (APCs). As two classes of MHC molecules occur, two types of T
cells are specially equipped for binding to the MHC I and II, the CD8+ and CD4+ T cells,
respectively. The general focus of this review will be on cytotoxic CD8+ T cell binding to MHC I
presented epitopes.

The immune system in general is very good at identifying “foreign” peptides stemming from
bacterial or viral infections. On the other hand, as initially proposed by Burnet and Thomas through
the idea of immunosurveillance (1, 2), the same process can also protect our organism from cancer,
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by recognizing cancer-specific peptides (neoepitopes) generated
by somatic mutations or genomic aberrations (Figure 1). The
ability of the immune system to target cancer cells has been
exploited by a novel class of therapies, such as adoptive T cell
therapy and cancer vaccines, named immunotherapies. These
approaches, by exploiting the high selectivity of the immune
system, have the advantage to be more specific and less invasive
than traditional cancer therapies, and potentially effective even at
later stages by providing immunological memory.

Broadly, immunotherapy can be divided into two categories:
“active” and “passive”. The “active” works to stimulate T cells of
the individual’s immune system into attacking tumor cells i.e.
effectively training the immune system in vivo. The “passive”,
focuses on in-vitro training and subsequent injection of immune
agents that will help battle the disease in vivo (3). Passive
immunotherapy includes therapies such as adoptive cell
therapy, cytokine injection, monoclonal antibodies and
lymphocytes (4, 5). Active immunotherapies encompass
therapies such as non-specific immunomodulation and
vaccination (6, 7).

Computational tools for epitope prediction have been
recognized as being crucial for successful development of
various cancer immunotherapies (8). This review will therefore
give an overview of both general and cancer specific epitope
Frontiers in Immunology | www.frontiersin.org 2
prediction tools and discuss the pros and cons of the different
tools and future perspectives in the field.
EPITOPE PREDICTION METHODS

As mentioned before, a peptide needs to be presented by an
MHC I molecule for it to be able to elicit effector T cell responses.
Contrarily to MHC II molecules, which can bind to peptides that
are longer and more variable, MHC I binding is restricted to
peptides typically 8-14 amino acid long in sequence and that
some of the residues in the peptide, denoted anchor residues, are
important for peptide-MHC binding (9) (Figure 2). In most
human alleles the anchors are the second and the last residues in
the peptide (10), but this depends on the allele and species. The
binding of peptides to MHC molecules is therefore a very
selective step, which has been a major focus in many epitope
prediction models. However, most peptides presented by MHC
molecules will not elicit an immune response as they do not
evoke TCR specific recognition by the T cell. In order to shed
light on this interaction, computational models are being
constructed with the goal of predicting T cell recognition of
the presented peptide and its connection to an overall immune
response. Epitope prediction can thus currently be divided into
FIGURE 1 | Graphic representation showing genomic aberrations, which can lead to the occurrence of cancer-specific peptides (neoepitopes). The left panel shows
gene fusions, which is the rearrangement of two genes leading to the encoding and translation of a potentially novel immunogenic peptide. The right upper panel
shows single nucleotide variations (SNV) and the right lower panel shows insertions and deletions (indels), that may cause the creation of immunogenic cancer-
specific peptides. For further detail see the main text.
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two main focus areas. The first addresses the presentation of
peptides by MHC molecules. Extensive reviews on this subject
have been published recently, and we single out the in depth
work by Peters et al. (11). In this review, we mainly focus on the
second part of the interaction: predicting T cell recognition of
pMHC complexes.

One of the first attempts at defining the immunogenic
potential of peptides was based on their local and global
physico-chemical characteristics, regardless to the specific T
cell interaction. One of such tools is POPI (12), which is a
support vector machine (SVM) based method. SVMs are
machine learning tools that can identify complex non-linear
relationships between the input data and the predicted variable.
In this case, a feature set of physico-chemical properties derived
from MHC I binding peptides is used to predict the peptide’s
immunogenicity. POPI uses averaged values of the physico-
chemical properties independent of the amino acid positions in
the peptides, therefore being unable to take local information
into consideration in the predictions.

Another model named POPISK (13), by the same group, tries
to improve on this by utilizing a SVM in conjunction with a
weighted degree string kernel. The model is seemingly only
capable of predicting immunogenicity for HLA-A2-binding
peptides. Where predictions reached an overall accuracy
(ACC) of 0.68 and 0.74 for area under the curve (AUC). The
ACC and AUC are calculations based on a confusion matrix,
which in different ways essentially estimates how often an
algorithm predicts correctly. In both cases, a perfect prediction
would have both ACC and AUC equal to 1, and lower values for
worse predictions. A more exhaustive introduction to accuracy
metrics for prediction tools can be found in Peters et al. (11). It
Frontiers in Immunology | www.frontiersin.org 3
should be mentioned that the dataset was not pre-processed to
remove or reduce the redundancy - i.e. very similar peptides
might be present. This has been observed to have a negative
impact on the methods’ ability to generalize, that is the ability of
an algorithm to achieve good results on data that is different from
the data used to train. A typical strategy to deal with this issue is
to perform some form of homology reduction to reduce
redundancy. In the discussion we will discuss more about the
importance of such procedure when assessing the actual
accuracy of prediction tools. Furthermore, it should be noted
that both POPI and POPISK are not available for general
use anymore.

Calis et al. created the immunogenicity model (14) based on
experimental indications. The authors discovered that T cells
show a preference for binding peptides containing aromatic and
large amino acids. They also showed that positions 4-6 were
important in regards to immunogenicity. Based on this
information, a scoring model was created which scores
peptides based on the ratio of an amino acid between a non-
immunogenic and immunogenic dataset. Furthermore, it
weights the amino acid based on its position in the ligand. The
authors estimated the accuracy of the model on new MHC I
binding peptides, and obtained an AUC of about 0.65, thus the
model is only to some extent predictable. It should be noted, that
where models such as POPISK only is capable of predicting TCR
propensity for HLA-A *02:01, the Calis et al. immunogenicity
model can make predictions for any MHC I molecule.

PAAQD (15) is a model which focuses on predicting T cell
reactivity. It works by encoding nine-mer peptides which are
processed in a random forest algorithm, in order to predict the
immunogenicity of a peptide binding to MHC I. The peptides are
FIGURE 2 | T-cell interaction with a pMHC complex rendered in PyMOL (PDB code: 6TRO). Here MHC I is shown as colored in beige. The TCR is colored blue
white. The CDR3 variable regions of the T-cell have been colored in different colors, these are as follows: CDR3 a colored in yellow, CDR3b colored in orange. The
bound peptide is colored in green, with the anchor residues are colored in red.
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numerically encoded by combining information regarding
quantum topological molecular similarity (QTMS) descriptors
and amino acid pairwise contact potentials (AAPPs). In the
article it was mentioned that an ACC of 0.72 and a AUC of 0.75
was obtained for immunogenicity prediction. It obtained a
higher AUC and ACC than POPISK and a higher AUC than
the immunogenicity model by Calis et al., however, like POPISK,
no homology reduction was done to reduce redundancy.
Furthermore the model had a focus on HLA-A2 and will have
limited success in predicting immunogenic peptides for other
HLA molecules.

Jørgensen and Ramussen, who developed NetMHCstab (16)
and NetMHCstabpan (17) respectively, theorized that instead of
entirely focusing on the HLA binding affinity one should also take
pMHC stability into account to predict immunogenic MHC I
ligands. They based this hypothesis on the assumption that a
more stable presentation of an epitope bound to an MHC will
increase the likelihood of a T cell recognizing the epitope.
However, as the authors have also indicated in the papers
themselves, stability alone did not give as good results as
combining a stability predictor with a pMHC I binding predictor.

Experimental investigation of peptide presentation and
binding by Schmidt et al. (18) showed poor correlation with
predictions for the same peptides by NEtMHCstab and
NetMMHCpan in combination with a binding affinity
predictor. These models were outperformed by another epitope
prediction model: NetTepi (19). This model has been built on top
of previous efforts and combines: peptide-MHC stability using
NetMHCstab, T cell propensity predictions using the
immunogenicity model by Calis et al. and peptide-MHC
binding affinity using NetMHCcons (20). The model has been
stated to be capable of predicting T cell epitope for multiple HLA
molecules with a sensitivity of 90% and a false positive rate
of 1.5%.

One of the newer models for predicting which epitopes will be
recognized by T cells is NetTCR (21). NetTCR implements a
convolutional neural network (CNN) model to predict TCR
recognition of a peptide. CNNs are a type of neural network
which are very popular for different tasks (e.g. image recognition)
and capable of identifying local patterns in the input data. The
model takes as input a HLA-A *02:01 binding MHC I peptides
and the CDR3 protein sequence of a T cell receptor. The model
obtained a somewhat high AUC of 0.727. The AUC is lower than
the AUC for POPISK (0.74) and PAAQD (0.75). However, it
should be noted that unlike POPISK and PAAQD, NetTCR
performed homology reduction to reduce any redundancy in
the data.

A major bottleneck in improving the accuracy of models is in
the limited amount of available training data. However, several
databases collecting experimental immunogenicity data are now
available, with one of the first to pioneer this area being
SYFPEITHI from Rammensee et al. in 1999 (22). Newer
databases have since been created such as IEDB (23), VDJdb
(24), McPAS-TCR (25), ATLAS (26) and STCRDab (27). The
steadily increasing amount of experimental data will support the
generation of models with greater prediction power.
Frontiers in Immunology | www.frontiersin.org 4
STRUCTURAL EPITOPE PREDICTION

The energetic balance of the TCR-pMHC interaction is one of
the main drivers in dictating the initiation of an immune
response. As evident from structural (28) and mutagenesis
studies (29), this balance is very delicate. All circulating T cells
have undergone the so-called positive selection process, meaning
that they must bind with low affinity to MHC molecules,
regardless of the specific epitope. Additionally, TCR interaction
is highly cross-reactive, meaning that a single TCR will
potentially be able to bind to thousands of peptides. This poses
a serious hurdle to develop computational tools to predict
immunogenicity based on structural calculations. In recent
years, it has been shown that, when using fine-grained
molecular dynamics (MD) simulations, one can to some extent
predict TCR-pMHC interactions (30). Unfortunately, this
approach is neither very precise nor feasible. For such
calculations, high quality structures of the interacting
molecules are needed, and the current available amount of
solved structures for TCRs is very limited - less than three
hundred at the time of writing. In contrast, the number of
different TCRs that circulate at any time in humans is 106 to
108 (31), and the theoretical numbers of different TCRs is at least
4 x 1011 (32). This stark difference greatly reduced the usefulness
of such methods to a tiny minority of the available cases. Even
when solved structures are available, MD simulations are very
demanding in terms of computing time. The dynamics of the
TCR-pMHC interaction, especially regarding their dissociation
rate, have time scales that are currently at the very limit of what
one can achieve with full-grain MD Simulations.

Some works have focused on solving these 2 problems - the lack
of structural information and the need for more efficient structure-
based algorithms. It is now possible to model to a very good
accuracy TCRs, pMHCs, and their complexes. Without delving in
too much detail, most currently available methods (33–35) can
model pMHC complexes to a very good accuracy - often less than
1Å Root Mean Square Deviation (RMSD) - from the native
structure, and almost as good as the experimentally resolved
structures. TCRs can also be modeled with good accuracy (in
general less than 2Å RMSD), with some minor exception for the
CDR3 regions of both TCR chains. The real culprit of all modeling
tools is in predicting the correct mutual orientation of the TCR
with respect to the pMHC, for which only a decent accuracy can be
achieved: approximately, only 50% of the molecular contacts
between TCRs and pMHC are recovered in the model. Given the
current accuracy of the modeling tools for TCR-pMHC complexes,
together with the computational cost of running detailed atomistic
simulation, underline the need of more coarse-grainedmodels, that
can ease both the aforementioned problems. In recent years,
Lanzarotti and co-workers (36, 37) used TCR-pMHC models to
refine existing computational force fields [Rosetta (38) and FoldX
(39)], and combined such refined energy calculations in a simple
statistical framework to improve the prediction of existing TCR-
pMHC complexes. The authors show that, even in such a simple
approach, it is possible to exploit structural models to identify,
among a pool of TCRs and pMHCs, the actual interacting partners.
September 2021 | Volume 12 | Article 712488
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The same results have recently been confirmed using a similar
approach (40). The authors show that, by investigating the energy
and the structural variability in TCR-pMHC models, it is possible
to improve the prediction of TCR-pMHC pairs. At the current
stage, structure-based methods can greatly reduce the number of
false positive predictions obtained by sequence-only methods, at
the cost of reduced sensitivity.
NEOANTIGEN PREDICTION

Genome aberrations are a typical feature of many cancer types (41).
On the one hand such aberrations are linked to the cancer
occurrence and growth, i.e. by disrupting normal cell cycle and
apoptosis control. On the other hand, they can be exploited by the
immune system to recognize and eliminate cancer cells. As
mentioned previously, neoepitopes have been a major target of
immunotherapy approaches such as adoptive T cell therapy or
cancer vaccination. Several computational tools have been
developed to assist and improve immunotherapy. The main
rationale of these tools is to first identify aberrations in the
cancer genome, and then, to a different extent and with
individual approaches, to predict the ones that are more likely to
trigger an effective immune response. Besides genomic aberrations,
events such as post-translational modifications (PTMs) (42) and
peptides derived from non-coding regions (43) can also cause
neoepitopes to arise. However, due to the limited availability of data
and of the biological basis of these, there are currently only very few
computational tools for their analysis and prediction (44). Broadly
speaking, the available tools can be categorized by the type of input
data they accept, by the type of variants they can call, and by the
strategy used to filter or prioritize the most immunogenic variants.
Regarding the first point, neoepitopes can arise due to events such
Frontiers in Immunology | www.frontiersin.org 5
as single nucleotide variations (SNV), insertions and deletions
(indels), intron retention, and chromosomal aberrations (45–48).
While most of the tools can predict neoepitopes from SNVs [Epi-
Seq, TIminer, Neopepsee, DeepAntigen], some also incorporate
indels [pVACseq, MuPeXI, Epidisco, OpenVax, NeoEpiScope,
CloudNeo, pTuneos, antigen.garnish, NeoPredPipe, TSNAD],
and others only focus on indels [ScanNeo], gene fusions
[NeoFuse, INTEGRATE-neo], or they let the users input the
variants as peptides [EDGE, DeepHLApan], for an overview see
Table 1. Another difference between the tools is the types of data
that these models rely on. Inmost cases the tools use whole genome
sequencing (WGS), whole exome sequencing (WES),
transcriptome sequencing (RNA-seq), peptide sequencing, or a
combination of those. Finally, in order to filter and prioritize
neoepitopes, many tools incorporate predictions from NetMHC
(68) and NetMHCpan (69), alongside some other tools for
predicting MHC binding. In the following, we will briefly present
the available tools based on the characteristic that we have
just discussed.

Single Data–Based Models
Both RNA-seq and DNA-seq data can be exploited to identify
variants in the cancer genome, and several tools make use of
these data to predict neoantigens. It is important to notice that
these two experimental methods provide complementary
information. DNA-seq data is in general more sensitive, i.e. it
can identify more variants. RNA-seq experiments can be used to
generate expression levels at the gene or, as at the transcript level,
thus helping to prioritise variants that are present in highly
abundant genes over those that have low or no expression. It
should be noted that the transcript level is often recommended,
since this can further give information regarding events
important for neoepitope prediction, such as isoform selection
TABLE 1 | Overview of the different neoantigen prediction tools.

Bioinformatic tools for neoantigen prediction

Tool DNA RNA Peptide SNV indels Gene fusion Reference

Epi-seq X X (49)
TIminer X X X (50)
Neopepsee X X X (51)
DeepAntigen X X X (52)
PVACseq X X X X (53)
Mupexi X X X X (54)
Epidisco X X X X (55)
OpenVax X X X X (56)
Neoepiscope X X X X (57)
CloudNeo X X X X (58)
pTuneous X X X X (59)
antigen.garnish X X X X (60)
NeoPredPipee X X X X (61)
TSNAD X X X X (62)
ScanNeo X X (63)
NeoFuse X X (64)
INTEGRATE-neo X X X (65)
EDGE X X X X X (66)
DeepHLApan X X X X (67)
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and alternative splicing (70–72). Peptide sequencing can also be
used for neoantigen prediction. This holds information
regarding whether a gene is actually expressed or not at the
protein level. This is very important information; identified
variants at DNA or RNA level are not always expressed at
protein level. The reader should take this into account when
deciding which tools they want to use.

Epi-Seq (49) is a tool which only uses tumor RNA-seq data.
Epi-Seq works as a wrapper tool, i.e. it combines the output of
other tools to perform an integrated prediction. It only supports
SNV variant calling and neoantigen prediction from those calls.
The Epi-Seq pipeline is very useful when only RNA-seq data is
available. However, since the pipeline only focuses on SNV
variants other potentially important variants are not predicted on.

ScanNeo (63) is a tool capable of predicting neoepitopes from
small to large-sized indels. ScanNeo is a wrapper tool, which
takes as input RNA-seq data. The three major steps in its pipeline
are i) indels discovery, ii) annotation and filtering and iii)
neoantigen prediction. ScanNeo uses NetMHC in its pipeline.
Besides NetMHC, the tool also employs NetMHCpan in its
pipeline to predict peptides that bind to HLA class I with
high affinity.

NeoFuse (64) is a computational pipeline predicting
neoantigens from gene fusions. It is a wrapper tool which uses
raw RNA-seq data from patient tumors as input to do HLA class
1 typing, predict fusion peptides and quantification of gene
expression. MHCflurry (73) to predict pMHC binding and the
gene expression levels are utilized to filter out candidate fusion
neoantigens. Like Epi-seq this is convenient when only tumor
RNA-seq data is available.

DeepHLAPan (67) is a recurrent neural network-based
approach, which takes both peptide-HLA binding and
potential peptide-HLA immunogenicity into account. The tool
predicts neoepitopes utilizing HLA class I typing provided by the
user and peptides. The tool further filters the candidate
neoantigens based on a score generated by an immunogenicity
model based on immunogenicity data from IEDB.

Data Integration–Based Models
Next generation sequencing (NGS) has made it easier to
sequence in parallel the DNA and RNA of a patient. By
integrating the use of both DNA and RNA data, the researcher
can call somatic mutations from the DNA and quantify gene and
transcript expression from the RNA data, which can help in
identifying which variants are more likely to be expressed. Also
in this case, most of the computational tools are in fact wrappers
of multiple different methods which are integrated in multi-step
workflows to perform the neoepitope prediction. Besides
integrating DNA and RNA data, it is also possible to predict
neoepitopes from peptide and RNA sequencing data. The
peptide data enables us to know which genes are actually
expressed at protein level and the RNA data helps with
identifying which of the peptides will be presented by the HLA
alleles, since expression of messenger RNA is strongly correlated
with HLA peptide presentation (74). In general integrating data
can often help in generating more accurate predictions, as many
Frontiers in Immunology | www.frontiersin.org 6
of the tools which will be mentioned in this section also have
shown in their studies. When choosing tools, the reader should
keep in mind the somatic variations they want to account for and
what kind of data they possess.

pVACseq (53) is a neoantigen prediction tool, which can
work with either WES or WGS data together with RNA data.
This tool can predict neoantigens from small indels and SNVs.
pVACseq utilizes HLAminer (75) to infer the patients HLA class
I typing and NetMHC to predict HLA class I restricted epitopes.
The tool prioritizes neoepitopes based on sequencing depth and
fraction of reads containing the variant allele.

INTEGRATE-neo (65) is another tool which also uses
NetMHC in its pipeline. This tool is based on INTEGRATE
(76), which uses DNA sequencing data to predict peptides
generated by gene fusion events, and thereafter uses HLAminer
to perform in silico HLA typing, and lastly uses NetMHC to
predict neoantigens based on the gene fusions. Where the other
tools can work just with the DNA data, optionally also
integrating RNA data into their pipelines, INTEGRATE-neo
requires the use of both DNA and RNA. A tool suite named
pVACtools which includes pVACseq and INTEGRATE-Neo
among other tools to not only account for SNVs and small
indels but also include support for structural variants.

MuPeXI (54) like pVACseq requires the user to provide HLA
types, somatic variants and optionally gene expression estimates.
The tool predicts neoantigens from SNVs and indels. The tool
can use either WES or WGS data and optionally also RNA data
and have similar features to pVACseq. However, unlike
pVACseq, MuPeXI also offers i. a priority score to rank
peptides ii. a comprehensive search for self-similarity peptides
and lastly iii. besides being a downloadable command-line tool it
is also available as a webserver. Furthermore, this model
incorporates the use of NetMHCpan (69) in its pipeline
instead of NetMHC.

Epidisco (55) takes as input wild type DNA, tumor DNA and
tumor RNA sequencing data. The tool maps the normal and
tumor DNA samples to the human GRCh37 reference genome.
Epidisco, like many of the other tools mentioned works as a
wrapper around other existing tools, and also like many of the
other tools, Epidisco uses NetMHCpan in its pipeline. The tool
supports SNV and indel based neoantigen prediction. Epidisco
focuses on vaccine peptide selection, and generates a ranked list
of peptide candidates.

TIminer (50), like many of the other tools, is a tool which as
input requires a pre-existing set of variants derived from DNA.
The tool also incorporates NetMHCpan in its pipeline and unlike
other tools it is able to process raw RNA-seq data which may
obtain more information relevant for neoantigen prediction.
This tool, however, only supports neoantigen prediction
from SNVs.

OpenVax (56) is another pipeline which integrates the use of
NetMHCpan into its pipeline, however, it is also possible to
choose other MHC binding peptide predictors. The OpenVax
pipeline, unlike many of the other tools takes as input raw DNA
and RNA sequencing files. The OpenVax pipeline has also
included somatic variant calling tools in its pipeline which are
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capable of calling SNVs and indel variants. It has a ranking
function similar to MuPeXI, but with less features, namely MHC
class I affinity scores and RNA-seq read count based
variant expression.

NeoEpiScope (57) is another tool which can use NetMHCpan
in its pipeline. The tool in general uses MHCflurry or
MHCnuggets, however, NetMHCpan can also be used if
installed individually. Like many of the other tools,
NeoEpiScope requires as input a set of somatic variants and
supports SNV and indel based neoantigen prediction. The main
focus of this tools is to prioritize handling phased variants. To use
the phasing function, the user must submit patient haplotypes.

CloudNeo (58) is a tool developed for cloud computing,
created to eliminate the need for local infrastructure
investment in computation, data storage and transfer, while
also providing scalable computational capabilities for
neoantigen identification. CloudNeo is a wrapper like many of
the other tools which also utilizes NetMHCpan in its pipeline.
CloudNeo supports SNVs and indels for neoantigen prediction.
Although CloudNeo uses RNA data in its pipeline, it seemingly
only utilizes the RNA data for HLA typing, however, DNA data
can also be used for this purpose.

Neopepsee (51) is a tool which takes as input a list of somatic
mutations and raw RNA seq data. The tool focuses on non-
synonymous somatic mutations and works as a wrapper tool,
which uses tools such as NetMHCpan to predict MHC binding
affinity. For peptides with the highest binding affinity,
immunogenicity features are then calculated and fed into a
locally weighted naïve Bayes classifier. The idea with
Neopepsee is to use a classifier to decrease the amount of false-
positives that using only binding affinity would provide.

pTuneos (59) predicts and prioritizes candidate neoantigens
from SNVs and indels. The tool is a wrapper tool, which takes as
input raw WGS/WES tumor normal matched sequencing data
and optionally also tumor RNA-seq. The tool utilizes HLA class I
typing and NetMHCpan to predict binding affinity of normal
and mutant peptides, which is then run through a random forest
model to predict a T cell recognition probability. Finally they use
a scoring schema to evaluate whether a candidate neoepitope
that can be recognized by a T cell will be naturally processed and
presented. This can be used to prioritize the peptides based on
in vivo immunogenicity.

The package antigen.garnish (60) is an wrapper tool in R,
utilizing NetMHCpan among others for peptide MHC binding
in its pipeline. It predicts neoantigens from SNVs and indels.
Besides MHC binding it also takes hydrophobicity, comparison
of MHC binding affinity between mutated and non-mutated
counterpart, and dissimilarity into account. Furthermore, the
tool also calculates a TCR recognition probability based on
the dissimilarity.

NeoPredPipe (61) is another tool which incorporates
NetMHCpan into its pipeline. Like many of the other tools the
user has to submit files regarding patient haplotypes and SNVs
and indels. NeoPredPipe unlike the other tools provides the
opportunity of neoantigen prediction on multi-region
sequencing data and also asses the intra-tumor heterogeneity,
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which is done based on multi-region samples, where the
neoantigen burden is reported for clonal, subclonal and shared
variants. NeoPredPipe furthermore also predicts the likelihood
of TCR recognition. This based on the probability of the mutant
epitopes ability to bind to MHC I molecules and the epitopes
similarity to pathogenic peptides.

TSNAD (62) is a tool which earlier had netmhcpan integrated
in its pipeline, however, in their version 2.0, which was updated
in 2019, they replaced NetMHCpan with the earlier mentioned
DeepHLAPan to predict binding of the mutant epitopes to MHC
I molecules. TSNAD works by, like many of the other tools by
integrating multiple tools into its pipeline. The tool takes as input
raw read of tumor normal DNA pairs. The sequences can either
be mapped to GRCh37 or GRCh38. In the updated version, raw
RNA-seq data can optionally be added to help filter neoantigens.
The tool supports neoantigen prediction from SNVs and indels.

DeepAntigen (52) is a deep sparse neural network model
based on group feature selection (DNN-GFS). Uniquely this
model bases its predictions on the DNA loci of the neoantigens
in a 3D genome perspective. The authors discovered that the
DNA loci of the immunonegative and immunopositive MHC
class I neoantigens have distinct spatial distributions. The model
uses preprocessed WES and messenger RNA-seq for calling
somatic mutations and estimating gene expression. The model
also takes as input Hi-C (77) data (captures chromosome
conformation) for 3D genome information. However, this
method can only predict neoepitopes from non-synonymous
point mutations and 9 mer peptides.

EDGE (66) is a commercial platform for neoantigen
identification. The EDGE model is a neural network trained on
HLA peptide mass spectrometry data and RNA-seq data from
various human tumors. The model uses HLA class I type and
sequence, RNA and peptide sequencing data or peptides
generated from somatic variant calling data to predict
neoantigens. Although the model does not incorporate TCR
binding, it is still to a certain extent able to capture T cell
recognition with the addition of RNA expression.
DISCUSSION

In recent years, the number of computational tools for epitope and
neoepitope prediction has exploded. In many cases, these tools
combine the results of other methods, using different heuristic
approaches, to perform their predictions. Unfortunately, the
amount and quality of available data make it difficult to decide
which of these approaches are sound, and which are not. As an
example, many of the currently existing epitope and neoepitope
prediction methods are mainly focusing on MHC presentation.
This is because, from a quantitative point of view, MHC binding is
the most selective step. According to Yewdell et al. around 1 in 200
peptides bind to MHC class I with an affinity strong enough (500
nM or lower) to induce a immune response (78). Other studies,
such as Sette et al. (79), also indicated an MHC affinity threshold
of 500 nM to be associated with T cell recognition of HLA class I
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bound peptides. Moreover, MHC binding is considered necessary
but not sufficient for a molecule to be immunogenic: in general
only the minority of epitopes predicted are immunogenic (80–82).
However, this paradigm has been challenged on many occasions.
In particular for neoepitopes, there is not a general consensus
on the fact that a strong MHC binding is connected to
immunogenicity. A recent study by Bjerregaard et al. (83),
supports the theory that strong binders are immunogenic. Their
study indicated that immunogenic neopeptides bind significantly
stronger compared to non-immunogenic peptides and that they in
general bind with a strong affinity. However, Duan et al. (49)
deemed binding affinity scores alone, especially from NetMHC, as
not being an effective predictor of tumor rejection and
immunogenicity. In fact, in their study they noticed that the
epitopes that did elicit tumor protection were in general not
strong MHC class I binders. They therefore created an
algorithm which subtracts the predicted NetMHC scores of
unmutated counterpart peptides from the NetMHC scores of
the mutated peptides. This setup is referred to as the differential
agretopicity index (DAI). The idea is that this can reflect to which
degree the binding of mutated peptides differ from their
unmutated counterparts (49). Even this score, however,
performed poorly for identifying effective neoepitopes (84).
Similar indications have also been made by (85) and (86), where
it was shown that not only peptides predicted as strong binders but
also peptides predicted as weak binders or non-binders are capable
of initiating a T cell response. At the current stage, there’s no clear
consensus on the importance of MHC binding for identifying
dominant epitopes and neoepitopes. Further studies will be
needed to decide if and how the threshold of 500 nM routinely
being used as a threshold for peptide selection should
be reconsidered.

The lack of experimental data is also among the causes of
another potential problem. The datasets that are used to train
these models are often very redundant: they contain many
epitopes that are either identical or very similar. If not
properly managed, redundancy can cause the tools to overfit:
this means that their actual prediction accuracy on new data will
be worse than the one reported in the publications. As a general
suggestion, we encourage the users to check that the tools they
are using take redundancy into account, for example by
performing homology reduction procedures (87), rather than
basing their choice on a purely numerical comparison of the
accuracies reported in the papers.

A potentially very important but much less studied area is
PTMs. Different PTMs exist such as phosphorylation,
ubuiquitinylation, glycosylation, methylation, citrullination, to
name a few. PTMs have been thought to be potential neoepitope
candidates. This is based on the theory that peptides with
aberrant PTMs have not been exposed to the immune system
and thus potentially not subject to central tolerance. It has been
shown that PTM self-antigens are capable of escaping central
tolerance and being recognized by the immune system (88).
Aberrant PTMs have been discovered in multiple cancers.
Increased levels of glycans have for example been observed in
Frontiers in Immunology | www.frontiersin.org 8
cancers such as breast cancer (89, 90). However, identifying
glycosylation sites as well as other PTM sites is not an easy task.
In general mass spectrometry is often not capable of identifying
less abundant proteins, due to its low sensitivity, thus capturing
PTM information can be difficult due to the general
low abundance.

Another lesser explored avenue are neoantigens derived from
generally considered non-coding regions of the genome. Since
they are less explored and studied, they are less utilized for
analysis. Despite this, Laumont et al. (43) showed in their recent
study that non-coding regions were possibly a considerable
source of neoantigens.

There are still many events which are partially or completely
disregarded by the current prediction models but can affect
peptide binding and T cell recognition. Some examples include
PTMs, local environment, self-similarity, clonality, and non-
coding derived peptides. Moving forward, a tool which covers
as many different neoepitope causing events as possible would be
ideal. Another open question is whether some genomic
aberrations are more effective than others for attacking the
cancer cells. This begs the question of whether this is a
generalized property or inherently specific for individual
cancers, thus impairing the effectiveness of one-fits-all models.

Some of the tools presented in this review have been used in
developing therapies that are being tested in ongoing clinical and
pre-clinical trials. To mention a few, the development of
neoantigen targeted personalized cancer treatments for cancers
such as melanoma (91), glioblastoma (92) and non-small cell
lung cancer (93) have been showing promising results. In
particular, the use of tools that rely heavily on mhc binding
prediction has propelled the discovery of candidates for test and
use in targeted personalized immunotherapy in these studies.
Even though these trials had encouraging results, they have also
met some limitations in regards to the efficiency of the targeted
immunotherapy, indicating that we are still in the early stages of
development for neoepitope prediction tools. We envision that a
growing amount of evidence on neoepitopes and on the ability of
different tools to predict them will have a major impact on the
development of better epitope and neoepitope prediction tools,
and in turn help guide future immunotherapies.
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