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Geochemical discrimination has recently been recognised as a potentially useful proxy for identifying
tsunami deposits in addition to classical proxies such as sedimentological and micropalaeontological
evidence. However, difficulties remain because it is unclear which elements best discriminate between
tsunami and non-tsunami deposits. Herein, we propose a mathematical methodology for the geochemical
discrimination of tsunami deposits using machine-learning techniques. The proposed method can
determine the appropriate combinations of elements and the precise discrimination plane that best discerns
tsunami deposits from non-tsunami deposits in high-dimensional compositional space through the use of
data sets of bulk composition that have been categorised as tsunami or non-tsunami sediments. We applied
this method to the 2011 Tohoku tsunami and to background marine sedimentary rocks. After an exhaustive
search of all 262,144 (=2'%) combinations of the 18 analysed elements, we observed several tens of
combinations with discrimination rates higher than 99.0%. The analytical results show that elements such as
Ca and several heavy-metal elements are important for discriminating tsunami deposits from marine
sedimentary rocks. These elements are considered to reflect the formation mechanism and origin of the
tsunami deposits. The proposed methodology has the potential to aid in the identification of past tsunamis
by using other tsunami proxies.

tsunami deposit provides direct evidence of the inundation area of past tsunamis. A large number of

publications have described the diagnostic signatures and identification criteria for past tsunamis, includ-

ing evidence from sedimentology, geomorphology, stratigraphy, archaeology, anthropology, and macro-

and micropalaeontology''*. However, it is still difficult to identify tsunami deposits because the criteria thus far

determined are neither applicable nor sufficient due to the various origins, mechanisms, and temporal variation of

tsunami deposits. Although microfossils are considered one of the most useful signatures of tsunami deposits, not

all tsunami deposits contain microfossils***. In the 2011 Tohoku tsunami, distinctive sand deposits, which are

widely used criteria for a tsunami inundation area**’, extended to only 60% of the total inundation distance in the

Tohoku district'. This observation suggests that sand is deposited relatively early seaward, and thus, the sand
layer can only be used as a lower limit for the inundation area.

The geochemical discrimination of recent and past tsunami deposits is now recognised as a useful and
quantitatively tractable proxy, especially when other proxies cannot be used'"'*'°. Recent studies of modern
tsunami sediments have described the geochemical signatures of tsunami sediments for the 2004 Indian Ocean
tsunami'®'”?*, the 2009 South Pacific tsunami'® and the 2011 Tohoku tsunami'****. Sediment geochemistry has
been successfully used for the identification of past tsunami deposits together with other proxies''~'*>?¢~°. In
particular, it has been suggested that geochemical indicators can be useful in the identification of tsunami deposits
by aiding in the identification of the marine origin of fine-grained sediments beyond the limit of recognisable sand
deposition'>'. A large amount of high-dimensional data on bulk composition have been acquired during the
process of geological sampling by many researchers'; however, these data are not always used.

Despite the high potential of geochemistry for identifying past tsunami deposits, the geochemical proxy is still
not recognised as one of the standard proxies, which include sedimentological and micropalaeontological evid-
ence, most likely because the geochemical signature depends on both the source and the background mater-
ial'*"*!* In addition, the geochemical signature can be modified after its deposition by various physical and
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chemical processes, such as weathering and diagenesis®'. Thus, uni-
versal criteria for a geochemical proxy cannot be as fully established
as for other proxies. Instead, with geochemical analyses, it is very
important to establish the best discrimination criteria for each situ-
ation, taking the particular location and background composition for
each tsunami into consideration. Therefore, the development of
mathematical methodology is essential in establishing the most
appropriate criteria by using the available data sets at the maximum
extent.

In this study, we propose a mathematical methodology to establish
the criteria for the geochemical discrimination of the 2011 Tohoku
tsunami deposits and the background marine sediments using
machine-learning techniques. Machine learning is the science of
using computers for the automatic detection of patterns in data,
and this field has recently developed rapidly in association with the
rapid progress of computational capability’”. Machine-learning tech-
niques enable us to maximise the amount of useful knowledge and
information extracted from the available high-dimensional data and
to construct models for making predictions for the unknown data.
Two powerful techniques are used: one is a support vector machine
(SVM) classifier used for determining the appropriate decision plane
that categorises samples into tsunami deposits and non-tsunami
sediments™, and the other is a cross validation (CV) technique used
for evaluating the discrimination performance of the SVM for each
combination of elements used for discrimination™.

In this study, we focused the geochemical discrimination on dis-
cerning the 2011 Tohoku tsunami deposits from the background
marine sediments. However, a single use of a geochemical proxy
cannot definitively identify the tsunami deposits, as is the case with
other proxies". Integration of all the available proxies is required for
the precise identification of past tsunami deposits. Moreover, at pre-
sent, the results of the analysis cannot contribute to the discrimina-
tion between tsunami deposits and other marine inundation events
such as high-energy storm events. The discrimination between a

a b

tsunami event and a storm event is very important because these
events have largely different risk profiles, but both create very serious
problems®”?%***"_ However, the subtle differences in the geochem-
istry of deposits resulting from the physical and chemical processes
of these two types of events can potentially be detected by applying
the proposed method to discriminate between these two types of
high-energy events in a specific area.

Results

We used 129 samples of the deposits from the March 11, 2011,
Tohoku tsunami. Samples were taken along the coastline from
Kuji City, Iwate Prefecture, via Miyagi Prefecture, to Minami-
Soma City, Fukushima Prefecture, from April to August 20117
(Fig. la). Many tsunami deposits were sampled from a depth of
0.5-5 cm underground; these deposits consisted primarily of mud
and sand, ranging from silt to coarse sand. In the stricken region, the
tsunami deposits were sampled only from well-preserved locations,
such as inundation points and basements in surviving buildings,
because much of the sediment was disturbed by the removal of rub-
ble. Although we cannot deny the possibility of a slight modification
of the geochemical pattern by diagenesis and/or leaching by rainfall,
Chague-Goft and co-workers reported that the geochemical sig-
nature was still retained in most sediment samples seven months
after the 2011 Tohoku tsunami'*. The details of the sampling and
analytical methods will be discussed in the Methods section.

For the non-tsunami sediments, we used 75 samples of rock and
soil, including sand, silt, and the shell-bedding layer, sampled from
various Neogene marine sedimentary layers distributed in the inland
area and the coastal area of the Tohoku district. These samples were
taken from Plio-Pleistocene-age sediments along the Pacific coast-
line, especially in the Sendai Plane (Tatsunokuchi Formation), which
had been deposited in shallow and embayment degree under mostly
reduced conditions™*'. Siltstone and mudstone were mainly com-
posed of quartz, feldspar, and montmorillonite with additional
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Figure 1| (a) Sampling locations of 2011 Tohoku tsunami deposits*
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. The locations of the tsunami samples are indicated by red circles. This figure was

generated using MATLAB. (b) Scatter diagrams of whole-rock compositions. The horizontal axis is Si, and the vertical axes are the elements named at the
top of each diagram. Red circles indicate the tsunami deposits, and blue squares indicate the non-tsunami sediments. The unit wt% indicates weight

percent oxides.
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arsenopyrite, pyrite, and gypsum as accessory minerals. Several con-
temporaneous heterotopic sedimentary facies of the Tatsunokuchi
Formation are distributed in NE Japan. These marine sediments
contain relatively high amounts of arsenic and cadmium, which
cause current soil contamination along the Pacific coast and
hinterland*.

In this study, data analyses were conducted using the bulk com-
positions of the following 18 major elements and heavy-metal ele-
ments: Na, Mg, Al Si, K, Ca, Ti, Mn, Fe, V, Cr, Ni, Sb, Cu, Zn, As, Cd,
and Pb. These heavy-metal elements were selected because they are
important to environmental pollution and thus are commonly ana-
lysed in sediment samples. For some elements (e.g., Fe, Mn, and V),
the distribution areas of tsunami and non-tsunami sediments over-
lap, which indicates that precise discrimination would be difficult
using only a single element (Fig. 1b).

For our first task, we considered the multi-dimensional composi-
tional space defined by the bulk compositions and then determined
the decision hyperplane, which divides the samples into tsunami
deposits and non-tsunami sediments. This type of problem is known
as supervised classification in the fields of machine learning and
pattern recognition®>. In supervised classification, the available
labelled data (those for which the class is known) are regarded as
the training problem of the supervisor and are used to determine the
decision hyperplane that best classifies the data. In this study, we
used N-dimensional bulk compositional data x, labelled as either
tsunami or non-tsunami sediment, to determine a linear decision
hyperplane in the N-dimensional compositional space: w * x + b
= 0, where w is the weight vector that determines the slope of the
hyperplane and b is the bias, as shown in Fig. 2a. For this classifica-
tion, we used a powerful supervised-clustering method, the SVM,
which was developed during the 1990s*.
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For effective discrimination, we must determine the best elements
to use and those that can be ignored; thus, the discrimination per-
formance of the hyperplane obtained by the SVM was evaluated for
each combination of elements. It is important to note that the inten-
ded aim of the discrimination method is not to analyse the available
known data but, rather, for new unknown samples of the 2011
Tohoku tsunami, which have not yet been classified as tsunami or
non-tsunami deposits.

We calculated the discrimination rate for unknown samples using
CV, which is a versatile and simple evaluation technique for machine
learning®. In the CV method, the discrimination rate for unknown
data is precisely and objectively calculated using only the available
data, the labels of which are already-known. The available data set is
divided into two subsets as follows: one subset is for the training of
the learning model (in this case, the discrimination plane), and the
other is for the evaluation of the classification capability for the
trained model. In other words, we first analyse one part of the data
as if it were unknown data and then evaluate the discrimination rate.
When we choose to use or not use all combinations of elements from
N elements, the number of subsets is 2V, including the null set (using
no elements). Thus, the analyses were conducted for all 262,144 (2'%)
combinations of elements.

We first present the results for the 7 major elements (Na, Mg, Al,
Si, K, Ca, and Fe), which each constitute greater than 1wt% of the
earth’s crust (Fig. 3a, c-e). Most combinations of these elements had
a discrimination rate of approximately 80-90% (Fig. 3a). The highest
discrimination rate was 91.2%, which was achieved for the three-
element combination of [Mg, Si, Ca]. Fig. 2a, b shows that many of
the tsunami deposits are distributed on the high-Ca side of the
decision plane, whereas the non-tsunami sediments are on the
low-Ca side. Alternatively, the lowest discrimination rate, 62.9%,
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Figure 2 | Determination of the appropriate decision hyperplane. (a) Decision hyperplane in the compositional space for the combination [Mg, Si, Ca]
with the highest discrimination rate among the combinations of 7 major elements. (b—d) The scatter diagrams of test data for discrimination using a
support vector machine (SVM) for [Mg, Si, Ca] (b), all 18 elements (c), and the optimal 11 elements (d). The discrimination rates are 91.2%, 95.6%, and
100%, respectively. The horizontal axis is Si, and the vertical axis is w * x + b for each combination of elements.
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Figure 3 | Results of the cases using (a, c-€) the major 7 elements (128 cases) and (b, f-h) all 18 elements (242,144 cases). (a, b) Histograms of the
discrimination rates. (¢, f) Combinations of elements used or not used and the slope of the decision plane for each element. The elements not used are
shown in black, and the slope of the decision plane w for each element is illustrated by a colour map in which red indicates positive and blue indicates
negative. For comparison, the slope of w is obtained for the case in which each composition is linearly transformed with its average and variance set
to 0 and 1, respectively. (d, g) Number of elements used. (e, h) Discrimination rates. In (c—e) and (f~h), horizontal axes are the ranking of the
discrimination rates in descending order. All 128 cases using the major 7 elements are shown in (c—e), whereas only the top 50 cases with discrimination

rates higher than 98.5% are shown in (f-h).

was achieved using only a single element, [Fe]. The discrimination
rate of the case using no elements (null set) was 63.3%, which is
nearly equal to the proportion of the tsunami samples of the total
(129/204 = 63.2%). This result occurs because the decision hyper-
plane was randomly drawn using no information about the elemental
composition. Fig. 3¢ shows that Na, Mg, and Ca appear frequently in
combinations that have high discrimination rates, which indicates
that these elements are important in the discrimination of tsunami
deposits. Alternatively, Al, Si, K, and Fe are dispersed in higher- to
lower-ranking combinations, indicating that they are comparably
unimportant elements. Notably, the specific combinations of [Mg,
Ca] and [Si, Ca] are important because they frequently appear in
combinations that have high discrimination rates.

When using all 18 elements in various combinations, the mode
value of the peak performance is approximately 92-94% (Fig. 3b).
Overall, the proportions of combinations with high discrimination
rates are higher than those that used only the 7 major elements.
This tendency for higher discrimination rates when using 18 elements
reflects that more information can be derived from using more ele-
ments. For example, there were 44 combinations with discrimination
rates higher than 99.0%, accounting for 0.017% of all combinations
(Fig. 3f-h). The highest discrimination rate was 100.0%, which was
achieved by two combinations, using either 11 or 12 elements: [Al, Ca,
Ti, Mn, Cr, Sb, Cu, Zn, As, Cd, Pb] and [Mg, Al, Ca, Ti, Mn, Cr, Sb,
Cu, Zn, As, Cd, Pb] (Fig. 2d). Alternatively, the lowest discrimination

rate was 57.3%, achieved when using the four elements [Al Ti, Fe, Cr];
there were 76 combinations with a discrimination rate lower than
63.3%. In addition to Ca, several other elements, such as Cr, Cd,
and Pb, were important for precise discrimination (Fig. 3f). The com-
binations with discrimination rates higher than 99.0% included [Al,
Ca, Ti, Mn, Cr, Sb, Cu, Cd, Pb] and [Ca, Fe, Cr, Cd, Pb].

Discussion

In general, the discrimination rate increases with the number of
elements used for discrimination. This observation is consistent with
our intuitive sense that as the amount of known information
increases. However, the best discrimination was not attained by
using all 18 elements, which was only 95.6%, corresponding to
10,250th place (Fig. 2d). This phenomenon is known as overfitting,
which is a very familiar concept in information science for classifica-
tion and prediction problems. When the number of explanatory
parameters is sufficiently greater than the number of samples or
when the prediction model is too complex for the data sets, even
though a model may classify training data very well, the classification
and prediction capability may fail for unknown data sets*. Thus, to
avoid overfitting, it is important to select the appropriate combina-
tions of elements based on a data-driven approach that formulates a
prediction model by utilising the available data sets to the maximum
extent.
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We also conducted classical multivariate analyses, such as cor-
relation analysis, principal component analysis (PCA) and cluster
analysis (Fig. S2-4). We can find that the behaviours of several
sets of elements resemble each other using the correlation analysis
(Fig. S2). Based on the variance and covariance structure, the PCA
is able to extract the important low-dimensional subspace from
the high-dimensional geochemical data (Fig. S3). The cluster
structure of geochemical data can be extracted by the cluster
analysis (Fig. S4). These multivariate analyses are very useful in
capturing the statistical structure of geochemical data sets.
However, these analyses cannot utilise the label data for tsunami
or non-tsunami sediments. For discriminating between tsunami
and non-tsunami sediments, the proposed method has a very large
advantage over the previous multivariate methods because it uti-
lises labelled (supervised) data. In addition, the proposed method
can obtain the most important combination of elements using an
exhaustive search, which aids in understanding the geochemical
process of tsunami sediments.

A high content of Na, Mg, and Ca is important for a precise
discrimination, and these elements were previously identified as
important in identifying tsunami deposits’>**. This key role is in
accordance with the fact that these elements are abundant in sea
water and marine sediments derived from bioclasts and shell hash.
The slopes of the elements Si and Al, which are the main components
in sediment, are either positive or negative, which contributes to the
precise discrimination for a wide range of compositions of sand and
mud. The slopes of the elements Fe and Ti are negative, which indi-
cates that the low content of these elements may be used as an
indicator for tsunami deposits. Similar observations have been
reported for the 2011 Tohoku-oki tsunami deposits in the central
part of the Sendai Plain by Chagué-Goff et al.'*. These results are in
agreement with the observation that Fe and Ti have lower concen-
trations in seawater than in freshwater*’ and have been used as indi-
cators for the terrestrial origin of sediments®.

For the minor elements, the weights of Cr, Cu, and Pb are positive,
whereas those of Sb and Cd are negative. Tsuchiya et al. proposed a
possible scenario for the 2011 Tohoku tsunami in which several of
the heavy-metal elements, including As, originated from marine
sediments deposited due to mining in the Tohoku district®. A similar
process has been reported for the 2004 Indian Ocean tsunami'’: The
high amounts of heavy-metal elements in tsunami sediments most
likely originated from marine sediments containing the anthro-
pogenic heavy metal'”*'. In a future study, we intend to more fully
investigate the origin of these tsunami sediments and the mechan-
isms that produce the concentrated elements.

Recent studies suggest that geochemical proxies have great
potential in identifying historical and palaeotsunami deposits for
postdepositional processes such as leaching and weathering'**.
With our discrimination method, we can consider many elements,
which may contribute to a better discrimination. Thus, by apply-
ing our method to data from a historical tsunami for which there
is concrete sedimentological evidence, we might be able to deter-
mine a set of important elements that will be robust to such
postdepositional processes. Because chemical composition and
its post-depositional changes may vary according to the origin
of tsunami sediments and locality, spatial information and several
proxies, including sedimentology and palaeontology, are recom-
mended for use in more precise discrimination. Following the
2004 Indian Ocean tsunami and the 2011 Tohoku tsunami, many
researchers have investigated past tsunami deposits all over the
world, including analyses of the chemical compositions of the
deposits. Notably, many samples have been investigated using
chemical scanning techniques. This study can contribute to the
analysis of these enormous chemical data sets. Additionally, the
proposed method can be widely used for high-dimensional geo-
chemical data sets, regardless of the target.

Methods

Chemical analysis. During the chemical analysis preparation, samples were air dried,
gravel and organic matter were removed, and the samples were then divided into
tsunami sediments with a grain size smaller than 2 mm using a fine (2 mm) sieve. The
whole-sample compositions were analysed using an energy dispersive X-ray
fluorescence spectrometer (ED-XRF), Epsilon 5, manufactured by PANalytical. More
detailed descriptions of these samples and the chemical analysis have been published

previously®®#>*,

Support vector machine (SVM). A two-class classification problem was considered
here for the discrimination of tsunami and non-tsunami sediments. We used N-
dimensional compositional data as the input feature vectors and output labels as
being from tsunami or non-tsunami sediments. This procedure was performed for
samples i = 1, ..., M as

(x:,t)eRY x {+1; —1}, (1)

where x; represents the N-dimensional input vector and t; represents the output label,
tsunami (+1) or non-tsunami (—1), for sample i. The SVM determines the decision
function f: R — {+1; —1}, called the maximal margin hyperplane. In this study, we
considered a linear decision function:

f(x)=sgn(wx+b), )

where sgn(x) is the signum function that gives —1 when x < 0 and +1 whenx > 0, w
is the weight vector which determines the slope of the hyperplane, and b is the bias. By
definition, the maximal margin hyperplane maximises the distance between itself and
the boundaries of the two objective classes. The boundary of a class is defined by
several input vectors x;s, called support vectors. The hyperplane determined by the
SVM s not only the farthest from the two training-data classes, but it is also robust for
unknown data sets.

Cross-validation (CV). CV is a versatile and easy evaluation technique for
determining the generalisation capability of the trained model in the case that we do
not have a sufficient amount of available data. The generalisation capability is the
prediction capability for unknown data. Because we apply the discrimination
function not to available data but to unknown data sets in actual situations, we must
obtain the discrimination function with a high generalisation capability. In the CV
method, the available data set is divided into two subsets as follows: one subset is for
the training of the learning model, and the other is for the evaluation of classification
capability for the trained model. In other words, we regard a part of the data sets as
unknown data and then evaluate the prediction capability for unknown data.

In this study, we evaluated the decision function obtained by SVM using 10-fold
CV. The K-fold CV method divides the available data set into K subsets: C;, ..., Cx.
The parameters of the decision function, wand b, are trained using all the data sets,
which are included in the K — 1 subsets, and then the prediction capability is eval-
uated by the number of misclassifications when using the trained decision function.
The trained and evaluated cycles are repeated for all K combinations, and the gen-
eralisation capability is calculated as the mean of all K combinations. Therefore, the
CV error (CV E) is calculated as follows:

CVE= %ZZE(&JM":‘)) )

k=1 ieCy

where E(t;, f—(x;)) is the function that gives O for true or 1 for false discrimination for
sample i for the decision function trained by all subsets other than subset k. Because
the CV E is divided by the number of all samples M, it is the ratio of the misclassified
data to all data. In this study, we defined the discrimination rate (%) as (1 — CV E) X
100.
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