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Abstract
This work is motivated by clinical trials in chronic heart failure disease, where treat-

ment has effects both on morbidity (assessed as recurrent non-fatal hospitalisations)

and on mortality (assessed as cardiovascular death, CV death). Recently, a joint frailty

proportional hazards model has been proposed for these kind of efficacy outcomes to

account for a potential association between the risk rates for hospital admissions and

CV death. However, more often clinical trial results are presented by treatment effect

estimates that have been derived from marginal proportional hazards models, that

is, a Cox model for mortality and an Andersen–Gill model for recurrent hospitalisa-

tions. We show how these marginal hazard ratios and their estimates depend on the

association between the risk processes, when these are actually linked by shared or

dependent frailty terms. First we derive the marginal hazard ratios as a function of

time. Then, applying least false parameter theory, we show that the marginal hazard

ratio estimate for the hospitalisation rate depends on study duration and on param-

eters of the underlying joint frailty model. In particular, we identify parameters, for

example the treatment effect on mortality, that determine if the marginal hazard ratio

estimate for hospitalisations is smaller, equal or larger than the conditional one. How

this affects rejection probabilities is further investigated in simulation studies. Our

findings can be used to interpret marginal hazard ratio estimates in heart failure trials

and are illustrated by the results of the CHARM-Preserved trial (where CHARM is the

‘Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity’

programme).

K E Y W O R D S
heart failure trials, joint frailty model, least false parameter, recurrent events, unexplained heterogeneity

1 INTRODUCTION

Many clinical trials comprise a non-fatal event type that can occur repeatedly, as primary or secondary endpoint. The analysis
of such recurrent event data is well established and there is a plenty of statistical models for treatment effect estimation (Cook
& Lawless, 2007; Kelly & Lim, 2000). However, in some situations the occurrence of a competing, terminal event must be
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considered, which precludes the occurrence of further recurrent events. Such kind of data particularly arise in clinical heart
failure trials where treatment effects both on mortality (assessed as cardiovascular death, CV death) and morbidity (assessed
as recurrent non-fatal hospitalisations) are to be evaluated (Zannad et al., 2013; Zanolla & Zardini, 2003). One example is
the CHARM-Preserved trial (where CHARM is the ‘Candesartan in Heart failure Assessment of Reduction in Mortality and
morbidity’ programme), a large multicentre trial in heart failure disease. Here treatment with the drug Candesartan did only
affect the hospitalisation rate, but not mortality (Yusuf et al., 2003).

The CHARM-Preserved trial is only one of many heart failure trials, where a composite of heart failure hospitalisations
(HFHs) and CV death was defined as the primary endpoint, with a time to first event analysis as primary analysis (Anker
et al., 2016). This procedure is criticised for a long time, as only a part of the data is integrated in the analysis (Anker &
McMurray, 2012). In order to capture the whole disease burden, alternative statistical approaches were suggested, for example
to simultaneously consider death and hospitalisations as events in Poisson or negative binomial regression (Rogers et al., 2012;
Rogers, Jhund, et al., 2014; Rogers, Pocock, et al., 2014). Hence, all available data are incorporated in the treatment effect
estimate. However, every approach of aggregating all the available information into a single summary measure for the treatment
effect does not differentiate between the treatment effects on mortality and morbidity (Ferreira-González et al., 2007). For this
reason statistical models that allow to investigate both the effect on mortality and the effect on the hospitalisation rate, are of
scientific interest.

Recently, a joint frailty regression model has been recommended to simultaneously evaluate treatment effects on HFHs and
CV death whilst accounting for a potential association between the two processes (Rogers, Yaroshinsky, Pocock, Stokar, &
Pogoda, 2016). Here a frailty term acts multiplicatively on both hazard rates, reflecting unexplained heterogeneity and inducing
an association between the two event processes. In heart failure trials a positive association in the sense that, even conditional
on covariates, a high hospitalisation risk comes along with a high mortality risk, seems plausible. Conditional on frailty, that
is, on the subject’s level, the joint frailty model implies a proportional hazards assumption for both risk processes (Huang &
Liu, 2007; Liu, Wolfe, & Huang, 2004; Rondeau, Commenges, & Joly, 2003; Rondeau, Mathoulin-Pelissier, Jacqmin-Gadda,
Brouste, & Soubeyran, 2007).

Even though the joint frailty model seems to reflect cardiovascular disease courses appropriately, in practice the effects on
morbidity and mortality are still more often quantified by means of marginal proportional hazards models, that is, by the Cox
model (Cox, 1972) for CV death and the Andersen–Gill model (Andersen & Gill, 1982) for the hospitalisation rate, respec-
tively. Marginally (i.e. on the population’s level), the proportional hazards assumption will be violated in the presence of a joint
frailty term and treatment effect estimates relying on marginal proportional hazards models are expected to differ from those
of conditional proportional hazards models (Aalen, Cook, & Røysland, 2015). Although results derived from joint frailty and
marginal models have been contrasted for single case studies (Rogers, Jhund, et al., 2014; Rogers, Pocock, et al., 2014; Rogers,
Yaroshinsky, et al., 2016), there exists no systematic investigation of the differences in effect estimates. However, this is strongly
needed not only for a proper interpretation of trial results but also for a careful planning of a clinical trial as power depends on
effect size. For this reason, we investigate analytically the properties of marginal model estimates in the situation where the
data-generating process actually corresponds to a joint frailty model.

In our derivations we use, that a maximum partial likelihood estimator (MPLE) in a misspecified proportional hazards model
converges with sample size to a least false parameter, that is, a weighted average of the marginal hazard ratios over time (Struthers
& Kalbfleisch, 1986). This result has already been used to investigate the consequences of non-proportional event-specific
hazards in multistate models (Grambauer, Schumacher, & Beyersmann, 2010) and of covariate omission (Bretagnolle & Huber-
Carol, 1988; Schmoor & Schumacher, 1997) or functional misspecification of covariates (Gerds & Schumacher, 2001) in the
Cox model. Furthermore, Henderson and Oman (1999) and Cécilia-Joseph, Auvert, Broët, and Moreau (2015) used Struther’s
results to study the effects of non-consideration of unobserved heterogeneity in univariate survival analysis. However, the theory
of least false parameters has not yet been applied to investigate the consequences of an association between the risk rates for
recurrent and terminal events on marginal treatment effect estimates and rejection probabilities for the recurrent event outcome.
This paper fills that gap: our findings explain the relation between marginal and joint frailty estimates, which is a relevant and
as yet unanswered question in heart failure trials. Thus, they can contribute to the ongoing debate on defining an appropriate
statistical model for recurrent hospitalisations and CV death (Anker et al., 2016).

The paper is organised as follows. In Section 2, we will introduce to the general framework of modelling recurrent events
in the presence of a terminating event. The marginal hazard ratios as a function of time are derived in Section 3. In Section 4,
we analytically derive results on the asymptotic marginal treatment effect estimates. In Section 5, these findings are related
to clinical trials, for example the CHARM-Preserved trial in chronic heart failure. Simulation studies for the investigation of
finite sample properties of the marginal analysis including rejection probabilities are given in Section 6. Finally, in Section 7 we
conclude with a discussion where clinical trial results are interpreted in the light of our new results.
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2 MODELS AND NOTATIONS

Let 𝐷 be the terminal event (death) time, 𝑀 be the number of recurrent events (hospitalisations) within [0, 𝐷], 𝑇1 < 𝑇2 < ⋯ <

𝑇𝑀 ≤ 𝑇0 = ∞ the corresponding recurrent event times and 𝐶 a censoring time. We are interested in the bivariate counting
process 𝑁(𝑡) = (𝑁1(𝑡), 𝑁2(𝑡))′ with elements

𝑁1(𝑡) =
𝑀∑
𝑘=0

𝐼(𝑇𝑘 ≤ 𝑡) and 𝑁2(𝑡) = 𝐼(𝐷 ≤ 𝑡) (1)

that are counting the events of the respective outcome over time. Let 𝑡− denote a time that is infinitesimally smaller than 𝑡.
For Δ > 0, the increment Δ𝑁𝑖(𝑡) = (𝑁𝑖(𝑡 + Δ)− −𝑁𝑖(𝑡−)) is the number of events occurring in the time interval [𝑡, 𝑡 + Δ) in
the respective process (𝑖 = 1, 2). Let further 𝑋 denote a 𝑝-dimensional vector representing known covariates and let 𝐻(𝑡) =
{𝑋,𝑁1(𝑡), 𝑁2(𝑡), 0 ≤ 𝑠 < 𝑡} represent the observed process history up to time 𝑡.

The hazards of the two counting process components are defined as the instantaneous rates of occurrence for a recurrent and
for a terminal event, respectively, among individuals still alive and conditional on the process history:

𝑟𝑖(𝑡|𝐻(𝑡)) = lim
Δ↘0

𝑃
(
Δ𝑁𝑖(𝑡) = 1 |𝐻(𝑡), 𝐷 ≥ 𝑡

)
Δ

(𝑖 = 1, 2). (2)

Let 𝑌 (𝑡) = 𝐼(𝐷 ≥ 𝑡) be the at-risk-indicator. Then 𝑌 (𝑡)𝑟𝑖(𝑡|𝐻(𝑡)) (𝑖 = 1, 2) is the intensity of the respective counting pro-
cess component.

The processes 𝑁1 and 𝑁2 are by definition dependent, as no recurrent events occur after death. But also beyond that, there
might be an association between the event processes. To define that formally, consider the rate of the recurrent event process
given the process history and the terminal event time 𝐷 = 𝑠:

𝑟∗1(𝑡|𝐻(𝑡), 𝐷 = 𝑠) = lim
Δ↘0

𝑃
(
Δ𝑁1(𝑡) = 1 |𝐻(𝑡), 𝐷 = 𝑠

)
Δ

. (3)

Then 𝑟∗1(𝑡|𝐻(𝑡), 𝐷 = 𝑠) = 0 for 𝑡 ≥ 𝑠. We consider the two processes as ‘associated’, if the rate 𝑟∗1(𝑡|𝐻(𝑡), 𝐷 = 𝑠) does, for
𝑡 < 𝑠, depend on 𝑠. This means that a subject’s time of death is informative for its prior recurrent event rate.

The use of frailty variables, which represent risk factors that are not covered by the known covariates, has been proposed for
modelling such an association of the event processes (Huang & Liu, 2007; Liu et al., 2004; Rondeau et al., 2003, 2007). We will
first introduce a correlated frailty model, which is very flexible regarding the form of association. Thereafter we will consider
a joint frailty model, which is more restrictive with respect to the kind of dependency between the processes.

Instead of modelling the hazards 𝑟𝑖(𝑡|𝐻(𝑡)) directly, frailty models are modelling conditional hazards. In general, we may
think of positive random variables 𝑍 and 𝑊 , without making any assumptions on their joint distribution. The frailties 𝑍 and
𝑊 are assumed to be independent of the known covariates 𝑋. The conditional hazards are defined as follows:

𝜆1(𝑡|𝐻(𝑡), 𝑍) = lim
Δ↘0

𝑃
(
Δ𝑁1(𝑡) = 1 | 𝑍,𝐻(𝑡), 𝐷 ≥ 𝑡

)
Δ

𝜆2(𝑡|𝐻(𝑡),𝑊 ) = lim
Δ↘0

𝑃
(
Δ𝑁2(𝑡) = 1 |𝑊 ,𝐻(𝑡), 𝐷 ≥ 𝑡

)
Δ

.

(4)

The conditional hazards within the correlated frailty model are modelled as

𝜆1(𝑡|𝐻(𝑡), 𝑍) = 𝜆1(𝑡|𝑋,𝑍) = 𝑍𝜆10(𝑡) exp(𝛽′1𝑋)

𝜆2(𝑡|𝐻(𝑡),𝑊 ) = 𝜆2(𝑡|𝑋,𝑊 ) = 𝑊 𝜆20(𝑡) exp(𝛽′2𝑋).
(5)

In the correlated frailty model 𝜆10(𝑡), 𝜆20(𝑡) and 𝛽1, 𝛽2 are unspecified baseline hazard rates and regression coefficient vectors
for the two event processes. The model contains a proportional hazards assumption on the subject’s level (i.e. for the conditional
hazards) and the censoring time 𝐶 is assumed to be independent. The association between the two event processes is solely
captured by the dependency between the two frailty variables – meaning that the process history (except for covariates) is
excluded from the conditional hazards and that 𝑁1(𝑡|𝑋,𝑍) is a Poisson process. The processes 𝑁1 and 𝑁2 are associated on
the marginal level, as shown in Appendix A.1.
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Without pre-specification of the joint distribution of the frailties 𝑍 and 𝑊 , model (5) is not identifiable. For this reason,
further assumptions, for example 𝑊 = 𝑍 or 𝑊 = 𝑍𝛼 with 𝑍 having a particular distribution were discussed (Huang & Liu,
2007; Liu et al., 2004; Rondeau et al., 2003, 2007). Conveniently, a gamma or a log-normal distribution with mean 𝐸(𝑍) = 1
and variance Var(𝑍) = 𝜃 is used for that purpose.

Below we will mainly focus on the case𝑊 = 𝑍𝛼 . In line with other authors (see Huang & Liu, 2007; Liu et al., 2004; Rondeau
et al., 2003, 2007) we will refer to that model as joint frailty model:

𝜆1(𝑡|𝑋,𝑍) = 𝑍𝜆10(𝑡) exp(𝛽′1𝑋)

𝜆2(𝑡|𝑋,𝑍) = 𝑍𝛼𝜆20(𝑡) exp(𝛽′2𝑋).
(6)

Both the frailty variance 𝜃 and the 𝛼-parameter determine the degree of association between the two event processes. The
frailty variance is additionally a measure for the correlation between subsequent recurrent event times.

3 MARGINAL HAZARDS IN THE CORRELATED FRAILTY MODEL

As mentioned before, the hazard functions 𝑟1(𝑡|𝐻(𝑡)) and 𝑟2(𝑡|𝐻(𝑡)), which are defined in (2), are not modelled explicitly within
the correlated frailty model. However, for a particular distribution of 𝑍 and 𝑊 , they are implicitly given by

𝑟1(𝑡|𝐻(𝑡)) = 𝑟1(𝑡|𝑋) = 𝐸𝑍

(
𝜆1(𝑡|𝑋,𝑍)

)
𝑟2(𝑡|𝐻(𝑡)) = 𝑟2(𝑡|𝑋) = 𝐸𝑊

(
𝜆2(𝑡|𝑋,𝑊 )

)
.

(7)

As we introduced 𝜆1(𝑡|𝑋,𝑍) and 𝜆2(𝑡|𝑋,𝑊 ) as the conditional hazards, we will call 𝑟1(𝑡|𝑋) and 𝑟2(𝑡|𝑋) the marginal hazards
from now on. If the two event processes are associated according to the correlated frailty model (5), the marginal hazards are in
general not proportional anymore, as shown below for both endpoints. Due to selection effects, a time-constant treatment effect
on the subject’s level will become time-dependent on the population’s (marginal) level. In the following, we will briefly derive
the marginal hazards and their ratios as a function of time. Thereby, we will focus on the situation of a two-arm randomised
controlled trial (RCT). Hence, we consider 𝑋 to be a binary 𝐵𝑖𝑛(1, 𝑝) distributed covariate indicating the treatment group. The
results will afterwards be used to investigate how regression coefficient estimation is affected, if the estimation relies on (in
general misspecified) marginal proportional hazards models.

For the derivation of the marginal hazards we will use the Laplace transform of the distribution of a random variable𝑈 , which
is defined as

𝑈 (𝑠) = 𝐸(exp(−𝑠𝑈 )) = ∫ exp(−𝑠𝑢)𝑓𝑈 (𝑢) d𝑢 (8)

with 𝑓𝑈 being the probability density function of 𝑈 . The first derivative of 𝑈 is given by

′
𝑈
(𝑠) = d

d𝑠 ∫ exp(−𝑠𝑢)𝑓𝑈 (𝑢) d𝑢 = ∫ −𝑢 exp(−𝑠𝑢)𝑓𝑈 (𝑢) d𝑢. (9)

If the two risk processes are associated according to the correlated frailty model (5), the marginal hazards are given by

𝑟1(𝑡|𝑋) = 𝜆10(𝑡) exp(𝛽1𝑋) ⋅ 𝐸(𝑍|𝑋,𝐷 ≥ 𝑡) (10)

𝑟2(𝑡|𝑋) = 𝜆20(𝑡) exp(𝛽2𝑋) ⋅ 𝐸(𝑊 |𝑋,𝐷 ≥ 𝑡) (11)

with conditional expectations being dissolved as

𝐸(𝑍|𝑋,𝐷 ≥ 𝑡) =
∫ ∞
0 ∫ ∞

0 𝑧 exp
(
−𝑤 exp(𝛽2𝑋)Λ20(𝑡)

)
𝑓𝑍,𝑊 (𝑧,𝑤) d𝑤 d𝑧

𝑊

(
exp(𝛽2𝑋)Λ20(𝑡)

) (12)

𝐸(𝑊 |𝑋,𝐷 ≥ 𝑡) = −
′
𝑊

(
exp(𝛽2𝑋)Λ20(𝑡)

)
𝑊

(
exp(𝛽2𝑋)Λ20(𝑡)

) . (13)
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Here Λ20(𝑡) = ∫ 𝑡

0 𝜆20(𝑠) d𝑠 denotes the cumulative baseline hazard for mortality. Details of these derivations are given in
Appendix A.2. In the special case of 𝑊 = 𝑍 the numerator in (12) simplifies to −′

𝑊
(exp(𝛽2𝑋)Λ20(𝑡)) so that (12) and

(13) coincide.
Using (10)–(13), the marginal hazard ratios for the two endpoints are given by

𝑟1(𝑡|𝑋 = 1)
𝑟1(𝑡|𝑋 = 0)

= exp(𝛽1) ⋅
𝐸(𝑍|𝑋 = 1, 𝐷 ≥ 𝑡)
𝐸(𝑍|𝑋 = 0, 𝐷 ≥ 𝑡)

= exp(𝛽1) (14)

⋅
𝑊

(
Λ20(𝑡)

)
⋅ ∫ ∞

0 ∫ ∞
0 𝑧 exp

(
−𝑤 exp(𝛽2)Λ20(𝑡)

)
𝑓𝑍,𝑊 (𝑧,𝑤) d𝑤 d𝑧

𝑊

(
exp(𝛽2)Λ20(𝑡)

)
⋅ ∫ ∞

0 ∫ ∞
0 𝑧 exp

(
−𝑤Λ20(𝑡)

)
𝑓𝑍,𝑊 (𝑧,𝑤) d𝑤 d𝑧

𝑟2(𝑡|𝑋 = 1)
𝑟2(𝑡|𝑋 = 0)

= exp(𝛽2) ⋅
𝐸(𝑊 |𝑋 = 1, 𝐷 ≥ 𝑡)
𝐸(𝑊 |𝑋 = 0, 𝐷 ≥ 𝑡)

= exp(𝛽2) (15)

⋅
𝑊

(
Λ20(𝑡)

)
⋅ ′

𝑊

(
exp(𝛽2)Λ20(𝑡)

)
𝑊

(
exp(𝛽2)Λ20(𝑡)

)
⋅ ′

𝑊

(
Λ20(𝑡)

) .
Both marginal hazard ratios can be dissected into the product of the conditional hazard ratio and a deviation factor. Again, in

the special case of 𝑊 = 𝑍, the deviation factors in the hazard ratios of both endpoints coincide. The deviation factors of both
endpoints depend on the frailty distributions, on the covariate-effect 𝛽2 on the terminal event rate and on the cumulative baseline
terminal event rate Λ20(𝑡). As the latter is a function of time, the marginal hazard ratios are time-dependent in contrast to the
time-constant conditional hazard ratios,

𝜆1(𝑡|𝑋 = 1, 𝑍)
𝜆1(𝑡|𝑋 = 0, 𝑍)

= exp(𝛽1) and
𝜆2(𝑡|𝑋 = 1,𝑊 )
𝜆2(𝑡|𝑋 = 0,𝑊 )

= exp(𝛽2). (16)

It is worth mentioning that the deviation between the marginal and the conditional hazard ratio over time is independent of
the regression coefficient 𝛽1 and the cumulative baseline hazard Λ10(𝑡) that describe the recurrent event process. This holds for
both endpoints (recurrent and terminal).

4 ASYMPTOTICS OF MARGINAL HAZARD RATIO ESTIMATES

We will now derive asymptotic characteristics of marginal parameter estimates (log-hazard-ratio estimates) that erroneously rely
on marginal proportional hazards models, when in fact the proportional hazards assumption holds on the conditional (subject’s)
level. Thus, instead of model (5), an Andersen–Gill model for the recurrent events and a Cox model for the terminal event is
assumed. Both do not include the frailty variables𝑍 and𝑊 . As before, we consider a two-arm RCT setting with𝑋 being binary.
Under the Andersen–Gill and Cox modelling assumptions, regression coefficients are estimated by maximum partial likelihood
estimators (MPLEs) (Andersen & Gill, 1982; Cox, 1972).

Let 𝑇𝑖1 < 𝑇𝑖2 < ⋯ < 𝑇𝑖𝑀𝑖
≤ 𝑇𝑖0 = ∞ denote the recurrent event times, 𝐶𝑖 the right-censoring time, 𝐷𝑖 the time of death and

𝑋𝑖 the binary covariate for the 𝑖th of 𝑛 subjects. The MPLEs relying on the marginal models are given by

𝛽1 = argmax
𝜷∈ℝ

𝐿1(𝛽) with 𝐿1(𝛽) =
𝑛∏
𝑖=1

∏
𝑗∶𝑇𝑖𝑗<𝐶𝑖

exp(𝛽𝑋𝑖)∑
𝑘∈𝑅(𝑇𝑖𝑗 ) exp(𝛽𝑋𝑘)

(17)

𝛽2 = argmax
𝜷∈ℝ

𝐿2(𝛽) with 𝐿2(𝛽) =
∏

𝑖∶𝐷𝑖<𝐶𝑖

exp(𝛽𝑋𝑖)∑
𝑘∈𝑅(𝐷𝑖) exp(𝛽𝑋𝑘)

. (18)



1390 TOENGES AND JAHN-EIMERMACHER

𝑅(𝑡) is the set of subjects being at risk at time 𝑡, that is, 𝑅(𝑡) = {𝑘 | (𝐷𝑘 ∧ 𝐶𝑘) ≥ 𝑡}. In the Andersen–Gill estimator 𝛽1, death
is handled as independent censoring.

As shown by Struthers and Kalbfleisch (1986), the MPLE’s 𝛽1 and 𝛽2 converge (in probability) to some least false parameters
𝛽∗1 and 𝛽∗2 , respectively. By applying Struther and Kalbfleisch’s general results to our situation, the least false parameter 𝛽∗

𝑖

(𝑖 = 1, 2) can be identified as being the unique solution of the parameter integral equation 𝑔𝑖(𝑠) = 0 with

𝑔𝑖(𝑠) = ∫
𝑡𝑚𝑎𝑥

0

�̄�(0)(𝑡)�̄�(1)(𝑡)
�̄�(0)(𝑡) + �̄�(1)(𝑡) exp(𝑠)

[
𝑟𝑖(𝑡|𝑋 = 1) − exp(𝑠)𝑟𝑖(𝑡|𝑋 = 0)

]
d𝑡 . (19)

Here 𝑡𝑚𝑎𝑥 denotes the maximum of observation times. In addition, �̄�(𝑘)(𝑡) denotes the probability that a randomly selected
subject belongs to treatment group 𝑘 ∈ {0, 1} and is still at risk at time 𝑡, that is,

�̄�(𝑘)(𝑡) = 𝑃 (𝑋 = 𝑘)𝑆(𝑡|𝑋 = 𝑘)𝑃 (𝐶 > 𝑡) . (20)

In the following, we apply (19) to investigate the asymptotic behaviour of marginal estimates for various settings. Thereby
we will focus on the Andersen–Gill estimator 𝛽1, as the properties of the Cox estimator 𝛽2 in the presence of unexplained
heterogeneity are already well investigated by other authors (see Cécilia-Joseph et al., 2015; Henderson & Oman, 1999; Schmoor
& Schumacher, 1997).

4.1 No treatment effect on mortality (𝜷𝟐 = 𝟎)
First of all, we will make some weak assumptions regarding censoring and baseline hazards: we will assume that the baseline
hazards 𝜆10(𝑡) and 𝜆20(𝑡) are continuous functions which implies that the marginal hazard 𝑟1(𝑡|𝑋 = 𝑘) and the marginal survival
function 𝑆(𝑡|𝑋 = 𝑘) are likewise continuous. By further assuming censoring to be continuous on (0, 𝑡𝑚𝑎𝑥), we obtain �̄�(𝑘)(𝑡) to
be continuous on (0, 𝑡𝑚𝑎𝑥). After Cauchy’s mean value theorem there exists a 𝑡∗ ∈ (0, 𝑡𝑚𝑎𝑥) so that

0 =
[
𝑟1(𝑡∗|𝑋 = 1) − exp(𝛽∗1 )𝑟1(𝑡

∗|𝑋 = 0)
]
∫

𝑡𝑚𝑎𝑥

0

�̄�(0)(𝑡)�̄�(1)(𝑡)
�̄�(0)(𝑡) + �̄�(1)(𝑡) exp(𝛽∗1 )

d𝑡 . (21)

As the integral is strictly positive, we obtain

𝛽∗1 = log
(
𝑟1(𝑡∗|𝑋 = 1)
𝑟1(𝑡∗|𝑋 = 0)

)
. (22)

So the least false parameter 𝛽∗1 is in the value range of the logarithmised marginal hazard ratio over the interval (0, 𝑡𝑚𝑎𝑥).
If the treatment has no effect on mortality, that is, 𝛽2 = 0, the marginal hazard ratio is constant over time and coincides with the

conditional hazard ratio exp(𝛽1) as is evident from (14). Applying (22) shows that the Andersen–Gill estimator asymptotically
coincides with the conditional treatment effect for recurrent events, that is,

𝛽∗1
(22)
= log

(
𝑟1(𝑡∗|𝑋 = 1)
𝑟1(𝑡∗|𝑋 = 0)

)
𝛽2=0= 𝛽1 (23)

as the latter equation is true for all 𝑡 according to (14). This is illustrated in Figures 2–4 and in Table 3 for various settings in
a joint gamma frailty model. But the result generally holds in every kind of correlated frailty model. Even though the marginal
hazards 𝑟1(𝑡|𝑋 = 1) and 𝑟1(𝑡|𝑋 = 0) do not correspond to the their conditional counterparts 𝜆1(𝑡|𝑋 = 1, 𝑍) and 𝜆1(𝑡|𝑋 = 0, 𝑍),
their respective ratios are equal. If treatment has no effect on mortality, the selection due to unexplained heterogeneity affects
the treatment and the control group in the same way, resulting in a still proportional time course of the marginal hazards. Hence
this is in fact the only situation, where the proportional hazards assumption is not violated on the marginal level. However, it
should be underlined, that the processes are associated even if 𝛽2 = 0.

4.2 Joint frailty model
The least false parameter 𝛽∗1 can be derived by numerically solving 𝑔1(𝑠) = 0 (see formula (19)) after specifying the correlated
frailty model. To characterise the marginal treatment effect estimate for recurrent events more in detail, we will consider the
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F I G U R E 1 Marginal hazards and hazard ratios in a joint gamma frailty model with frailty variance 𝜃 = 1, association parameter 𝛼 = 0.8,

constant subject-specific hazards (Weibull scale parameters 𝜆1 = 3 and 𝜆2 = 0.178, Weibull shape parameters 𝜈1 = 1 and 𝜈2 = 1) and treatment

being protective both for hospitalisations and for mortality (exp(𝛽1) = exp(−0.5) = 0.607, exp(𝛽2) = exp(−0.3) = 0.741). (a) Marginal hazards for

recurrent events in the treatment and control group. (b) True: marginal hazard ratio for recurrent events. Estimate: hazard ratio estimate exp(𝛽∗1 )
resulting from a marginal Andersen–Gill analysis after administrative censoring at time point 𝑡

joint frailty model (i.e. 𝑊 = 𝑍𝛼 , see formula (6)) from now on. We will show results for a gamma-distributed frailty 𝑍 with
mean 𝐸(𝑍) = 1 and variance Var(𝑍) = 𝜃. However, subsequent results do qualitatively not change if a log-normal distribution
is adopted (results not shown). Furthermore, we will consider a 1:1 allocation ratio and administrative censoring after 𝑡𝑚𝑎𝑥 time
units. The subject-specific hazards are assumed to originate from Weibull distributions. Thereby the conditional baseline hazard
for the 𝑖th endpoint (1 = recurrent, 2 = terminal) is given by 𝜆𝑖0(𝑡) = 𝜆𝑖𝜈𝑖𝑡

𝜈𝑖−1 , with 𝜆𝑖 being the scale parameter and 𝜈𝑖 being
the shape parameter. The latter determines, if the hazard is decreasing (𝜈𝑖 < 1), constant (𝜈𝑖 = 1) or increasing (𝜈𝑖 > 1) over time.

Figure 1a shows the time course of the marginal recurrent event hazards for the situation where both processes are positively
associated (𝛼 = 0.8), meaning that patients with a high mortality risk also have a high risk for recurrent events and vice versa.
We further consider that treatment is protective with regard to both endpoints (𝛽1 < 0, 𝛽2 < 0) and that the conditional baseline
hazards for both endpoints are constant over time. At the time point of randomisation (𝑡 = 0), treatment and control group do not
differ with regard to the distribution of the frailty variables. Due to dropouts of frail patients, the marginal hazard is decreasing
over time in both groups. But as selection effects differ between the groups (𝛽2 < 0), that decrease is non-proportional. Hence,
the marginal hazard ratio corresponds to the conditional one only at time point 0 and is afterwards increasing over time, as
shown as ‘True’ in Figure 1b. It is further demonstrated that the estimated marginal hazard ratio exp(𝛽∗1 ) at time point 𝑡𝑚𝑎𝑥 = 𝑡

is a weighted average of the marginal hazard ratios over the interval (0, 𝑡), shown as ‘Estimate’ in Figure 1b. For this reason, the
marginal hazard ratio estimate depends on the length of follow-up.

In the following we focus on the evaluation of the estimate 𝛽∗1 after a fixed follow-up period of 𝑡𝑚𝑎𝑥 = 2 time units. In each
of Figures 2–4, the difference (𝛽∗1 − 𝛽1) between the marginal treatment effect estimate (after two time units of follow-up) and
the conditional treatment effect is shown in dependence of various parameters of the joint frailty model.

First, we will focus on situations where 𝛽∗1 and 𝛽1 coincide: this is the case if either 𝛽2 = 0 (Figures 2b, 3 and 4) or 𝛼 = 0
(Figure 4b) or 𝜃 = 0 (Figures 3 and 4). It has already been shown analytically in Subsection 4.1 that 𝛽∗1 = 𝛽1, if treatment has no
effect on mortality (𝛽2 = 0). If 𝛼 = 0, the joint frailty model reduces to a model with inter-individual heterogeneity in recurrent
events but without an association between recurrent and terminal event rates. In this situation, the Andersen–Gill estimator is
consistent for the regression parameter (i.e. 𝛽∗1 = 𝛽1), as shown by other authors (Lin, Wei, Yang, & Ying, 2000; Liu, 2014).
There is likewise no association if 𝜃 = 0 because then the submodel for recurrent events reduces to an Andersen–Gill model and
of course 𝛽1 is estimated consistently by the Andersen–Gill estimator in that situation.

Next, we will take a closer look at parameters that do not affect the difference (𝛽∗1 − 𝛽1): the scale parameter 𝜆1 of the
conditional recurrent event hazard, which mainly determines how many recurrent events are expected within the trial time, has
this property. This can easily be derived analytically, as 𝜆1 can be extracted as a factor in (19) and thus does not affect the solution
of 𝑔1(𝑠) = 0. The second parameter not influencing the difference (𝛽∗1 − 𝛽1) is 𝛽1 itself, as illustrated in Figure 2 (however, an
analytical proof for that result is lacking). Accordingly, results in Figures 3 and 4 do not depend on 𝛽1, which is for that reason
no longer specified there.
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frailty model with frailty variance 𝜃 and association parameter 𝛼 = 0.8. Note: Subject-specific hazards are constant (Weibull scale parameters 𝜆1 = 3
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0.3 in (c) at the end of follow-up. Subjects are censored administratively after 𝑡𝑚𝑎𝑥 = 2 time units
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F I G U R E 4 Asymptotic difference between the marginal treatment effect estimate 𝛽∗1 and the conditional treatment effect 𝛽1 in a joint gamma

frailty model with frailty variance 𝜃 and association parameter 𝛼. Note: Subject-specific hazards are constant (Weibull scale parameters 𝜆1 = 3 and

𝜆2 = 0.178, Weibull shape parameters 𝜈1 = 1 and 𝜈2 = 1), resulting in a conditional survival probability of 𝑆(2|𝑋 = 0, 𝑍 = 1) = 0.7 at the end of

follow-up. Subjects are censored administratively after 𝑡𝑚𝑎𝑥 = 2 time units
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T A B L E 1 Event numbers and (unadjusted) treatment effect estimates of the CHARM-Preserved trial according to Rogers, Pocock, et al. (2014)

and Yusuf et al. (2003)

Hazard ratio (95% CI)
Placebo Candesartan Marginal Conditional

Number of patients 1,509 1,514

Total follow-up years 4,374.03 4,424.62

Number of CV deaths 170 170 0.99 (0.80, 1.22) 0.96 (0.73, 1.26)
Total number of heart failure hospitalisations 547 392 0.71 (0.57, 0.88) 0.69 (0.55, 0.85)

Marginal treatment effect estimates rely on the Cox model (CV death) or the Andersen–Gill model (heart failure hospitalisations). Conditional treatment effect estimates

rely on a joint gamma frailty model.

Now we focus on parameters that determine the absolute difference |𝛽∗1 − 𝛽1| between the marginal treatment effect estimate
and the conditional treatment effect. An increase in the frailty variance 𝜃 (Figures 3 and 4) and an increase in the absolute value
of the association parameter |𝛼| (Figure 4) result in an increase of that absolute difference. In addition, increasing the mortality
risk during follow-up leads to the same result (Figure 3). As illustrated in Figure 2, the absolute difference further depends on
the ratio 𝜈1∕𝜈2 between the shapes of the baseline hazards. The larger the 𝜈1∕𝜈2 ratio, the less recurrent events can occur before
death and the more the marginal treatment effect estimate deviates from the conditional treatment effect.

In particular, the treatment effect on mortality 𝛽2 and the association parameter 𝛼 determine, if the marginal treatment effect
estimate 𝛽∗1 is smaller, equal or larger than the conditional treatment effect 𝛽1, that is, they specify the sign of the difference
(𝛽∗1 − 𝛽1). This becomes apparent in Figure 4: if 𝛼 > 0, the difference is positive in case of 𝛽2 < 0 and negative in case of 𝛽2 > 0
(Figure 4c). For the special situation of 𝛼 = 1, an analytical proof for that finding is given in Appendix A.3. The effects turn
around for 𝛼 < 0, that is, the difference is negative in case of 𝛽2 < 0 and positive in case of 𝛽2 > 0 (Figure 4a). The latter scenario
is however less reasonable for heart failure trials. So let us have a look at particular situations that might be most realistic in heart
failure trials: here a positive association (𝛼 > 0) seems reasonable because patients with a high hospitalisation rate will probably
die earlier than patients who are rarely in need for hospitalisation. In addition, most heart failure drugs either have a protective or
negligible effect on mortality (𝛽2 ≤ 0). So in these settings, the marginal treatment effect estimate is larger than the conditional
treatment effect (𝛽∗1 ≥ 𝛽1). Hence, a conditional (joint frailty) analysis of the data will result in an estimate that favours treatment
more compared to a marginal (Andersen–Gill) analysis. To illustrate that, we will consider the joint frailty setting that is shown in
Figure 4c (𝛼 = 0.8, 𝜃 = 1) in greater detail: if 𝛽2 = −0.5, the difference of interest is given by (𝛽∗1 − 𝛽1) = 0.045. Hence in case of
𝛽1 = −0.3 the marginal estimate is 𝛽∗1 = −0.3 + 0.045 = −0.255. As already emphasised before, the parameter 𝛽1 itself does not
affect the deviation of 𝛽∗1 from 𝛽1. Hence in case of 𝛽1 = −0.02, the marginal estimate is given by 𝛽∗1 = −0.98 + 0.045 = 0.025.
This example shows that there may exist situations, in which even the direction does not match between the marginal estimate
and the conditional treatment effect. Generally said, it may happen that sign(𝛽∗1 ) ≠ sign(𝛽1), corresponding to a misjudgement
of the treatment effect direction for recurrent events.

5 APPLICATIONS

The ‘Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity’ (CHARM) programme comprised three
independent, randomised clinical trials that evaluated the benefit of Candesartan as a supplementary therapy in patients with
chronic heart failure. The CHARM-Preserved trial focussed on heart failure patients with preserved ejection fraction (defined as
>40% left ventricular ejection fraction). A total of 3,023 patients met the inclusion criteria and were randomised to receive either
Candesartan or Placebo in addition to the recommended standard therapy. The median follow-up was 36.6 months. Regarding
the primary endpoint of the trial, a composite of CV death and HFHs that was evaluated by a time to first event analysis, no
treatment benefit could be shown (Rogers, Pocock, et al., 2014; Yusuf et al., 2003).

Table 1 shows results on CHARM-Preserved that were reported in Rogers, Pocock, et al. (2014) and Yusuf et al. (2003).
As apparent, CV death did not differ between the two groups. But patients in the Candesartan group had fewer HFHs com-
pared to the Placebo group, which is reflected by a HFH hazard ratio of 0.71 in a marginal analysis (Andersen–Gill model)
and of 0.69 in a conditional analysis with the joint gamma frailty model. We used our findings from Section 4 to derive the
expected marginal hazard ratio estimates, thereby varying the frailty variance, and compare these with the observed estimates.
For that, formula (19) is applied with parameters, which match the situation in CHARM-Preserved (see Table 2). Thereby we
assumed an association parameter of 𝛼 = 0.8, as published joint frailty results from other heart failure trials (CHARM-Added,
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T A B L E 2 Expected marginal hazard ratio estimates in joint gamma frailty models that reflect the situation of the CHARM-Preserved trial

(using constant baseline hazards with rates that match the observed event numbers and administrative censoring after 𝑡𝑚𝑎𝑥 = 3.05 years follow-up)

Parameters joint gamma frailty model
Expected marginal model
estimates

𝜽 𝜶 𝐞𝐱𝐩(𝜷𝟏) 𝐞𝐱𝐩(𝜷𝟐) 𝝀𝟏𝟎(𝒕) 𝝀𝟐𝟎(𝒕) 𝐞𝐱𝐩(𝜷∗
𝟏 ) 𝐞𝐱𝐩(𝜷∗

𝟐 )
0 0.8 0.69 0.96 0.125 0.039 0.6900 0.9600

1 0.8 0.69 0.96 0.125 0.039 0.6912 0.9613

2 0.8 0.69 0.96 0.125 0.039 0.6921 0.9624

3 0.8 0.69 0.96 0.125 0.039 0.6929 0.9633

4 0.8 0.69 0.96 0.125 0.039 0.6936 0.9641

5 0.8 0.69 0.96 0.125 0.039 0.6942 0.9648

CHARM-Alternative) suggest that heterogeneity might be greater with respect to HFHs than for mortality (Rogers et al., 2016).
We can conclude that our results can well explain that there are only slight differences between marginal and conditional esti-
mates in CHARM-Preserved: in the presence of a negligible treatment effect on the terminal event (CV death), the hazard ratio
estimates for recurrent events (HFHs) from marginal and conditional models nearly coincide (see 𝛽2 = 0 from Subsection 4.1).

As in CHARM-Preserved, also in many other heart failure trials the randomised treatment groups differ only slightly in their
risk for CV death (Zheng et al., 2018). Therefore, marginal and conditional hazard ratio estimates are supposed to coincide in
these trials. HFHs and CV death are also the outcomes of interest in type 2 diabetes studies. Opposite to heart failure trials,
substantial treatment effects for CV death were shown here (Schnell, Rydén, Standl, & Ceriello, on behalf of the D&CVD
EASD Study Group, 2017). For example, we consider the EMPA-REG trial (Zinman et al., 2015) that reported marginal hazard
ratios of 0.65 for HFHs and 0.62 for CV death with a median observation time of 3.1 years. Note that the reported marginal
HFH hazard ratio estimate is derived from a Cox analysis (time to first HFH) only and may therefore not exactly match to the
(Andersen–Gill) estimate investigated in this paper. Following our findings, in this trial the conditional hazard ratio estimate
for HFHs ought to be smaller than the marginal one, that is, exp(𝛽1) < exp(𝛽∗1 ) = 0.65, if the rates for HFHs and CV death
are positively associated (𝛼 > 0, 𝜃 > 0, see Subsection 4.2). However, as conditional estimates are not published, an empirical
verification cannot be provided at this point.

6 SIMULATION STUDY

As differences between marginal and conditional hazard ratio estimates may also affect the rejection probability of the corre-
sponding two-sided statistical Z-test (based on the Andersen–Gill estimate in combination with its robust standard error) for
evaluation of the null hypothesis 𝐻0 ∶ 𝛽1 = 0, we performed simulations to investigate this effect. Data were simulated accord-
ing to a joint gamma frailty model with association parameter 𝛼 = 0.8. We consider administrative censoring after 𝑡𝑚𝑎𝑥 = 2 time
units. As before, the conditional baseline hazards for the two processes (1 = recurrent, 2 = terminal) originate from Weibull dis-
tributions with scale parameters 𝜆1, 𝜆2 and shape parameters 𝜈1, 𝜈2. In all scenarios, the cumulative baseline hazard for recurrent
events at the end of follow-up is Λ10(2) = 6, corresponding to six expected recurrent events during follow-up if no terminal event
was present. This is achieved both in a setting with a constant baseline hazard (𝜆1 = 3, 𝜈1 = 1, see Figure 5 and Table 3) and a
setting with a decreasing baseline hazard (𝜆1 = 4.24, 𝜈1 = 0.5, see Table 3) for recurrent events. Furthermore, we always con-
sider a constant baseline mortality hazard (𝜆2 = 0.178, 𝜈2 = 1), corresponding to a probability of 𝑆(2|𝑋 = 0, 𝑍 = 1) = 0.7 to
survive the follow-up.

In all scenarios shown in Figure 5 and in half of the scenarios shown in Table 3, no treatment effect on the recurrent event rate is
present (i.e. 𝛽1 = 0). Here the rejection probability of the test corresponds to its type I error probability. The test is exact if 𝛽2 = 0
and anticonservative if 𝛽2 ≠ 0. In the latter case, the rejection probability under𝐻0 increases with sample size (Figure 5) because
the Andersen–Gill estimator 𝛽1 converges in probability to 𝛽∗1 ≠ 𝛽1 = 0, while its robust standard error 𝑆𝐸(𝛽1) converges in
probability to 0. Besides 𝛽2, the rejection probability under 𝐻0 is of course also affected by all the additional joint frailty
parameters that determine how much 𝛽∗1 deviates from 𝛽1 = 0 (see Subsection 4.2). For example, it increases by increasing the
frailty variance 𝜃 (Figure 5, Table 3) and by switching from a constant to a decreasing baseline hazard for recurrent events
(Table 3). Table 3 further shows scenarios with an existing treatment effect on the recurrent event rate (𝛽1 = −0.5). Here the
rejection probability of the test corresponds to its power. In these selected scenarios, the null hypothesis is rejected almost for
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F I G U R E 5 Simulation results (10,000 simulated datasets, each with 𝑛 subjects): rejection probability of a two-sided Z-test (based on the

Andersen–Gill estimate in combination with its robust standard error) for 𝐻0 ∶ 𝛽1 = 0. Note: Data were simulated from a joint gamma frailty model

with frailty variance 𝜃, association parameter 𝛼 = 0.8 and treatment effect 𝛽1 = 0. Subject-specific hazards are constant (Weibull scale parameters

𝜆1 = 3 and 𝜆2 = 0.178, Weibull shape parameters 𝜈1 = 1 and 𝜈2 = 1), resulting in a conditional survival probability of 𝑆(2|𝑋 = 0, 𝑍 = 1) = 0.7 at

the end of follow-up. Subjects are censored administratively after 𝑡𝑚𝑎𝑥 = 2 time units

certain. The reason for this is that both baseline recurrent event rate and treatment effect were chosen to be relatively large.
However, power would be rather poor in scenarios where 𝛽∗1 = 0 but 𝛽1 ≠ 0.

Furthermore, the simulation results of Table 3 confirm the effects that were already observed in the numerical findings shown
in Figures 2–4: the difference (𝛽1 − 𝛽1) is zero in case of 𝛽2 = 0, while being positive for 𝛽2 < 0 and negative for 𝛽2 > 0. These
directions of deviation are caused by the positive association of 𝛼 = 0.8 (compare with Figure 4c). In addition, the magnitude
of the difference (𝛽1 − 𝛽1) is not affected by the treatment effect 𝛽1 itself (compare with Figure 2), but is increasing with the
frailty variance 𝜃 (compare with Figures 3 and 4). The difference is smaller in the scenario with a decreasing subject-specific
recurrent event hazard because here a subject has on average more recurrent events before death may terminate its follow-up
compared to the scenario with a constant recurrent event hazard (compare with Figure 2a).

Although this paper is primarily dealing with the recurrent event endpoint, Table 3 also shows estimates and rejection prob-
abilities of a marginal analysis for the terminal event (using the Cox model). Of course, the difference (𝛽2 − 𝛽2) is not affected
by parameters that solely refer to recurrent events, for example the treatment effect 𝛽1 and the shape of the hazard for recur-
rent events. But the difference is increasing with the frailty variance 𝜃 and strongly depends on 𝛽2: although 𝛽2 = 𝛽2 in case of
𝛽2 = 0, 𝛽2 is always shifted towards zero (relative to 𝛽2) in case of 𝛽2 ≠ 0. Importantly, the Cox analysis is keeping the type I error
despite unobserved heterogeneity. These results are in line with those of other authors who already investigated the behaviour of
Cox model estimation in the presence of unobserved heterogeneity (see Cécilia-Joseph et al., 2015; Henderson & Oman, 1999;
Schmoor & Schumacher, 1997).

In each scenario shown in Table 3, we see slight differences between 𝛽1 (or 𝛽2), that is, the result obtained by simulation,
and 𝛽∗1 (or 𝛽∗2 ), that is, the result obtained by numerically solving 𝑔1(𝑠) = 0 (or 𝑔2(𝑠) = 0). These differences may be due to
asymptotics and/or slight numerical imprecision.

7 DISCUSSION

In the present paper, we derive the properties of marginal hazard ratio estimates for a recurrent event in the presence of an
associated terminal event. Our findings are answering the up to now unresolved question if, why and how terminal events will
affect marginal hazard ratio estimates for recurrent events. These results will contribute to a proper interpretation of marginal
hazard ratios that are commonly presented from clinical trials. An important field of applications are clinical studies in heart
failure, which have motivated our research: although the rate of hospitalisations due to heart failure disease will most probably
be associated with the risk of CV death, the treatment effect on the hospitalisation rate is often quantified by the Andersen–Gill
model – an approach that is assuming proportional hazards on the marginal level.

We have derived the least false parameter 𝛽∗1 that is consistently estimated by the Andersen–Gill estimator in a correlated frailty
model by applying theory on misspecified proportional hazards models (Struthers & Kalbfleisch, 1986). Within the correlated
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T A B L E 3 Simulation results (10,000 simulated datasets, each with 1,000 subjects) for a marginal analysis of data from a joint gamma frailty

model with association parameter 𝛼 = 0.8, frailty variance 𝜃 and treatment effects 𝛽1 (recurrent events) and 𝛽2 (mortality)

Simulation parameters Recurrent events Terminal event
𝜷𝟏 𝜷𝟐 𝜽 𝜷𝟏 − 𝜷𝟏 𝜷∗

𝟏 − 𝜷𝟏 𝑺𝑬(𝜷𝟏) rp 𝜷𝟐 − 𝜷𝟐 𝜷∗
𝟐 − 𝜷𝟐 𝑺𝑬(𝜷𝟐) rp

(a) 𝜆1 = 3 and 𝜈1 = 1
0.0 −0.5 1.0 0.045 0.045 0.070 0.100 0.037 0.036 0.139 0.912

0.0 −0.5 2.0 0.076 0.077 0.094 0.130 0.063 0.063 0.147 0.850

0.0 0.0 1.0 0.000 0.000 0.071 0.052 0.002 0.000 0.125 0.053

0.0 0.0 2.0 −0.001 0.000 0.094 0.049 0.001 0.000 0.132 0.051

0.0 0.5 1.0 −0.066 −0.067 0.072 0.155 −0.053 −0.055 0.115 0.974

0.0 0.5 2.0 −0.111 −0.111 0.094 0.224 −0.089 −0.092 0.122 0.927

−0.5 −0.5 1.0 0.043 0.045 0.072 1.000 0.034 0.036 0.140 0.916

−0.5 −0.5 2.0 0.077 0.077 0.095 0.994 0.063 0.063 0.147 0.850

−0.5 0.0 1.0 −0.002 0.000 0.073 1.000 −0.001 0.000 0.125 0.048

−0.5 0.0 2.0 0.000 0.000 0.096 0.999 0.001 0.000 0.132 0.051

−0.5 0.5 1.0 −0.068 −0.067 0.074 1.000 −0.054 −0.055 0.115 0.976

−0.5 0.5 2.0 −0.111 −0.110 0.096 1.000 −0.091 −0.092 0.122 0.920

(b) 𝜆1 = 4.24 and 𝜈1 = 0.5
0.0 −0.5 1.0 0.029 0.029 0.069 0.073 0.037 0.036 0.139 0.912

0.0 −0.5 2.0 0.049 0.050 0.092 0.086 0.063 0.063 0.147 0.850

0.0 0.0 1.0 0.001 0.000 0.069 0.052 0.002 0.000 0.125 0.053

0.0 0.0 2.0 −0.001 0.000 0.091 0.048 0.001 0.000 0.132 0.051

0.0 0.5 1.0 −0.041 −0.043 0.069 0.097 −0.053 −0.055 0.115 0.974

0.0 0.5 2.0 −0.070 −0.070 0.091 0.121 −0.089 −0.092 0.122 0.927

−0.5 −0.5 1.0 0.028 0.029 0.070 1.000 0.034 0.036 0.140 0.916

−0.5 −0.5 2.0 0.049 0.050 0.093 0.998 0.063 0.063 0.147 0.850

−0.5 0.0 1.0 −0.001 0.000 0.071 1.000 −0.001 0.000 0.125 0.048

−0.5 0.0 2.0 0.000 0.000 0.093 1.000 0.001 0.000 0.132 0.051

−0.5 0.5 1.0 −0.043 −0.043 0.071 1.000 −0.054 −0.055 0.115 0.976

−0.5 0.5 2.0 −0.069 −0.070 0.093 1.000 −0.091 −0.092 0.122 0.920

Subject-specific hazards originate from Weibull distributions with scale parameters 𝜆1, 𝜆2 and shape parameters 𝜈1, 𝜈2. We consider constant subject-specific mortality

hazards (𝜆2 = 0.178, 𝜈2 = 1) in combination both with (a) constant (𝜆1 = 3, 𝜈1 = 1) and (b) decreasing (𝜆1 = 4.24, 𝜈1 = 0.5) subject-specific recurrent event hazards.

Subjects are censored administratively after 𝑡𝑚𝑎𝑥 = 2 time units. The table shows the estimates (𝛽𝑖), the robust standard errors (𝑆𝐸(𝛽𝑖)) and rejection probabilities (rp)

resulting from the simulation of a marginal model analysis. In addition, the asymptotically valid least false parameters (𝛽∗
𝑖
, numerical calculation) are shown.

frailty model, an association between the recurrent and the terminal event process is induced by correlated random effects 𝑍
and 𝑊 . It implies the assumption of proportional hazards with treatment effects 𝛽1 (recurrent events) and 𝛽2 (terminal event)
on the subject’s level. Moreover, it assumes the subject-specific counting process for the recurrent events to be of Poisson type.
On the marginal level, the proportional hazards assumption does in general not hold anymore, leading to a misspecification
of the Andersen–Gill model. We have shown that the least false parameter is implicitly defined by the true underlying data-
generating process, that is, it depends on parameters of the correlated frailty model (treatment effects, baseline hazards, frailty
distributions). In addition, the asymptotic estimate strongly depends on the censoring distribution including especially the length
of follow-up. Using these derivations we proved that the Andersen–Gill estimator asymptotically coincides with the conditional
(i.e. subject-specific) treatment effect, if the treatment does not affect mortality. Further results were obtained numerically
for the case of a joint frailty model, where the frailties affecting the two processes have a deterministic dependency: here we
have shown that the sign of the difference (𝛽∗1 − 𝛽1) is, amongst others, determined by the treatment effect on mortality 𝛽2.
Moreover, our results suggest that the size of the difference (𝛽∗1 − 𝛽1) is not affected by the treatment effect 𝛽1 itself. In particular,
a misjudgement of the treatment effect direction on recurrent events is possible, that is, sign(𝛽∗1 ) ≠ sign(𝛽1). In this paper,
we focussed on the gamma frailty as it is most widely applied (Wienke, 2010). Equal conclusions are obtained when a log-
normal frailty is applied. To investigate other frailty distributions, further numerical investigations or simulation studies could
be performed.
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Some authors use the term ‘bias’ for describing deviations of marginal model estimates from conditional ones. As both
approaches have different purposes depending on the aim of the study, differences between marginal and conditional model
estimates are not a matter of bias. Marginal estimates provide an information about the treatment effect on the population’s
level, whereas conditional models, which account for the association by using frailty terms, are intended for the assessment of
a treatment effect on the subject’s level.

As pointed out by Bretagnolle and Huber-Carol (1988), Schmoor and Schumacher (1997) and Aalen et al. (2015), omission
of relevant covariates in a usual Cox analysis for a survival outcome leads to non-causal treatment effect estimates despite
randomisation. In the present paper, we transfer these concepts to the analysis of recurrent events and show that the same issue
arises in the assessment of a treatment effect on recurrent events if an associated terminal event is present. If the treatment affects
mortality, a constant conditional hazard ratio (i.e. on the subject’s level) translates to a time-dependent marginal hazard ratio
(i.e. on the population’s level), resulting in a time-dependent marginal hazard ratio estimate exp(𝛽∗1 ). However, if treatment does
not affect mortality, unobserved risk factors that affect both endpoints, remain balanced over time between the survivors in the
treatment and the control group. Hence, the marginal treatment effect estimate coincides with the conditional treatment effect
despite an association between the processes.

Recently, Rogers et al. (2016) recommended to evaluate future heart failure trials by using a joint frailty model. The authors
performed simulations to study the behaviour of different marginal treatment effect estimates for the recurrent event endpoint,
when informative dropouts according to a joint frailty model occur. Our findings extend these simulation results by providing
numerical solutions for the Andersen–Gill estimates. Our analytical results are supported by clinical data of the CHARM-
Preserved heart failure trial. Here the Andersen–Gill estimate does only slightly differ from the joint frailty estimate for the
recurrent events because mortality seems to be unaffected by the Candesartan treatment (Rogers, Pocock, et al., 2014; Yusuf
et al., 2003). Nowadays, lots of heart failure drug trials fail to show a treatment effect on mortality (Zheng et al., 2018), suggesting
that marginal and conditional treatment effect estimates for the hospitalisation rate would coincide – provided the assumptions
of a joint frailty model hold. Our results can also be applied for diabetes trials where cardiovascular outcomes such as HFHs
and CV death are also of interest (Schnell et al., 2017). Furthermore, the findings presented here are relevant for the analysis of
safety data in randomised clinical trials, where the treatment effect on the rate of recurrent, adverse events is of interest (Allignol,
Beyersmann, & Schmoor, 2016; Hengelbrock, Gillhaus, Kloss, & Leverkus, 2016; Schmoor, Bender, Beyersmann, Kieser, &
Schumacher, 2016). In that context, treatment discontinuation (e.g. due to death) represents the terminal event that is probably
associated with the risk of adverse events.

In a recent article, Putter and van Houwelingen critically discussed the use of frailties in multistate models to account for
possible associations between transition times. They have pointed out that deviations from the modelling assumptions can be
absorbed by the frailty term in terms of estimating an increased frailty variance (Putter & van Houwelingen, 2015). Consequently,
it can be difficult to disentangle (true) heterogeneity and violations of the modelling assumptions when applying the joint frailty
model. Besides assuming proportional hazards on the subject’s level, a further crucial assumption of this model is that the
subject-specific hazards for both endpoints only depend on time, but not on the history of recurrent events. This is questionable
and the model could be improved by allowing for event dependency on the subject’s level. However, such complex models will
result in identifiability problems, as it is difficult, if not impossible, to distinguish between event dependency and unexplained
heterogeneity in the data.

As aforementioned, several potential pitfalls have to be considered when treatment effects are assessed by more and more
complicated models. Therefore, simpler marginal models may be preferred and we need to be able to interpret their estimates, if
the underlying data-generating processes are rather complex. We contribute to the interpretation of the Andersen–Gill estimate
for the treatment effect on the recurrent event rate, if informative dropouts due to an associated terminal event are present.
Our results complement previous articles reporting on treatment effect estimation in a misspecified Andersen–Gill model: Lin
et al. (2000) and Liu (2014) showed that marginal and conditional treatment effects coincide, if unexplained heterogeneity,
but no associated terminal event is present. Cheung, Xu, Tan, Cutts, and Milligan (2010) analysed asymptotic properties of
the Andersen–Gill estimator in a model with unexplained heterogeneity and event dependency, again without considering an
associated terminal event. To complete the picture, a straightforward next step would be to characterise the estimator’s properties
if the data-generating process contains both informative dropouts and event dependency, probably reflecting the most realistic
scenario in heart failure trials.
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APPENDIX

A.1 Associated processes in the correlated frailty model

𝑟∗1(𝑡|𝐻(𝑡), 𝐷 = 𝑠) = 𝑟∗1(𝑡|𝑋,𝐷 = 𝑠)

= lim
Δ↘0

∫ ∞
0 𝑃

(
Δ𝑁1(𝑡) = 1|𝑋,𝑍 = 𝑧,𝐷 = 𝑠

)
⋅ 𝑓𝑍|𝑋,𝐷=𝑠(𝑧) d𝑧

Δ

=

{
0, 𝑡 ≥ 𝑠

∫ ∞
0 𝜆10(𝑡) exp(𝛽′1𝑋) ⋅ 𝑧 ⋅ 𝑓𝑍|𝑋,𝐷=𝑠(𝑧) d𝑧, 𝑡 < 𝑠

=

{
0, 𝑡 ≥ 𝑠

𝜆10(𝑡) exp(𝛽′1𝑋)𝐸(𝑍|𝑋,𝐷 = 𝑠), 𝑡 < 𝑠.

As 𝑍 and 𝐷 are dependent (via 𝑊 ), the conditional expectation 𝐸(𝑍|𝑋,𝐷 = 𝑠) depends on 𝑠. Consequently the rate
𝑟∗1(𝑡|𝐻(𝑡), 𝐷 = 𝑠) does, for 𝑡 < 𝑠, depend on 𝑠. This is considered as an association of the processes throughout the paper.

https://doi.org/10.1002/bimj.201800133
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A.2 Marginal hazards in the correlated frailty model: Derivations

Derivation of marginal hazards in the correlated frailty model (for binary 𝑋) as given in (10) and (11):

𝑟1(𝑡|𝑋) = 𝐸𝑍 (𝜆1(𝑡|𝑋,𝑍))

= lim
Δ↘0

∫ ∞
0 𝑃

(
Δ𝑁1(𝑡) = 1|𝑋,𝑍 = 𝑧,𝐷 ≥ 𝑡

)
⋅ 𝑓𝑍|𝑋,𝐷≥𝑡(𝑧) d𝑧

Δ

= ∫
∞

0
𝜆10(𝑡) exp(𝛽1𝑋) ⋅ 𝑧 ⋅ 𝑓𝑍|𝑋,𝐷≥𝑡(𝑧) d𝑧

= 𝜆10(𝑡) exp(𝛽1𝑋) ⋅ 𝐸(𝑍|𝑋,𝐷 ≥ 𝑡)

𝑟2(𝑡|𝑋) = 𝐸𝑊 (𝜆2(𝑡|𝑋,𝑊 ))

= lim
Δ↘0

∫ ∞
0 𝑃

(
Δ𝑁2(𝑡) = 1|𝑋,𝑊 = 𝑤,𝐷 ≥ 𝑡

)
⋅ 𝑓𝑊 |𝑋,𝐷≥𝑡(𝑤) d𝑤

Δ

= ∫
∞

0
𝜆20(𝑡) exp(𝛽2𝑋) ⋅𝑤 ⋅ 𝑓𝑊 |𝑋,𝐷≥𝑡(𝑤) d𝑤

= 𝜆20(𝑡) exp(𝛽2𝑋) ⋅ 𝐸(𝑊 |𝑋,𝐷 ≥ 𝑡).

Let 𝑆(𝑡|𝑋) and 𝑆(𝑡|𝑋,𝑊 = 𝑤) denote the marginal and the conditional survival function, respectively. Let further Λ20(𝑡) =∫ 𝑡

0 𝜆20(𝑠) d𝑠 denote the cumulative baseline hazard for mortality. Using these notations, we can now derive the conditional
expectation of 𝑍 appearing in the marginal hazard formula for the recurrent events (10):

𝐸(𝑍|𝑋,𝐷 ≥ 𝑡) = ∫
∞

0
𝑧𝑓𝑍|𝑋,𝐷≥𝑡(𝑧) d𝑧

= 1
𝑆(𝑡|𝑋) ∫

∞

0 ∫
∞

0 ∫
∞

𝑡

𝑧𝑓𝑍,𝑊 ,𝐷|𝑋(𝑧,𝑤, 𝑠) d𝑠 d𝑤 d𝑧

= 1
𝐸𝑊 (𝑆(𝑡|𝑋,𝑊 )) ∫

∞

0 ∫
∞

0 ∫
∞

𝑡

𝑧𝑓𝐷|𝑋,𝑍=𝑧,𝑊 =𝑤(𝑠)𝑓𝑍,𝑊 (𝑧,𝑤) d𝑠 d𝑤 d𝑧

= 1
∫ ∞
0 𝑆(𝑡|𝑋,𝑊 = 𝑤)𝑓𝑊 (𝑤) d𝑤 ∫

∞

0 ∫
∞

0
𝑧𝑆(𝑡|𝑋,𝑊 = 𝑤)𝑓𝑍,𝑊 (𝑧,𝑤) d𝑤 d𝑧

=
∫ ∞
0 ∫ ∞

0 𝑧 exp
(
−𝑤 exp(𝛽2𝑋)Λ20(𝑡)

)
𝑓𝑍,𝑊 (𝑧,𝑤) d𝑤 d𝑧

∫ ∞
0 exp

(
−𝑤 exp(𝛽′2𝑋)Λ20(𝑡)

)
𝑓𝑊 (𝑤) d𝑤

=
∫ ∞
0 ∫ ∞

0 𝑧 exp
(
−𝑤 exp(𝛽2𝑋)Λ20(𝑡)

)
𝑓𝑍,𝑊 (𝑧,𝑤) d𝑤 d𝑧

𝑊

(
exp(𝛽2𝑋)Λ20(𝑡)

) .

Here we used that the marginal survival function can be expressed in terms of the Laplace transform, that is 𝑆(𝑡|𝑋) =
𝑊 (exp(𝛽2𝑋)Λ20(𝑡)). Analogously, we can derive the conditional expectation of 𝑊 appearing in the marginal hazard formula
for the terminal event (11):

𝐸(𝑊 |𝑋,𝐷 ≥ 𝑡) = ∫
∞

0
𝑤𝑓𝑊 |𝑋,𝐷≥𝑡(𝑤) d𝑤

= 1
𝑆(𝑡|𝑋) ∫

∞

0 ∫
∞

𝑡

𝑤𝑓𝑊 ,𝐷|𝑋(𝑤, 𝑠) d𝑠 d𝑤
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= 1
𝑊

(
exp(𝛽2𝑋)Λ20(𝑡)

) ∫
∞

0 ∫
∞

𝑡

𝑤𝑓𝐷|𝑋,𝑊 =𝑤(𝑠)𝑓𝑊 (𝑤) d𝑠 d𝑤

= 1
𝑊

(
exp(𝛽2𝑋)Λ20(𝑡)

) ∫
∞

0
𝑤𝑆(𝑡|𝑋,𝑊 = 𝑤)𝑓𝑊 (𝑤) d𝑤

=
∫ ∞
0 𝑤 exp

(
−𝑤 exp(𝛽2𝑋)Λ20(𝑡)

)
𝑓𝑊 (𝑤) d𝑤

𝑊

(
exp(𝛽2𝑋)Λ20(𝑡)

)
= −

′
𝑊

(
exp(𝛽2𝑋)Λ20(𝑡)

)
𝑊

(
exp(𝛽2𝑋)Λ20(𝑡)

) .
A.3 Direction of deviation for the marginal treatment effect estimate in a joint gamma frailty model

with 𝜶 = 𝟏
Here we provide a proof regarding the sign of the difference (𝛽∗1 − 𝛽1) for the special situation of a joint gamma frailty model with
association parameter 𝛼 = 1. As shown by other authors (see, e.g. Wienke, 2010), the Laplace transform of a gamma distribution
(with mean 1 and variance 𝜃) and its derivative are given by

𝑍 (𝑠) = (1 + 𝜃𝑠)−
1
𝜃 and ′

𝑍
(𝑠) = −(1 + 𝜃𝑠)−

1
𝜃
−1
,

respectively. Using (14) for the special case of 𝑊 = 𝑍, the marginal hazard ratio for the recurrent event endpoint simplifies to

𝑟1(𝑡|𝑋 = 1)
𝑟1(𝑡|𝑋 = 0)

= exp(𝛽1)
1 + 𝜃Λ20(𝑡)

1 + 𝜃 exp(𝛽2)Λ20(𝑡)

⎧⎪⎨⎪⎩
≤ exp(𝛽1) ∀𝑡 ⇔ 𝛽2 > 0
= exp(𝛽1) ∀𝑡 ⇔ 𝛽2 = 0 .
≥ exp(𝛽1) ∀𝑡 ⇔ 𝛽2 < 0

The sign of the treatment effect on mortality determines, in which direction the marginal hazard ratio deviates from the
conditional one for every time-point during follow-up. Applying (22) results in

𝛽∗1 ≤ 𝛽1 ⇔ 𝛽2 > 0

𝛽∗1 = 𝛽1 ⇔ 𝛽2 = 0

𝛽∗1 ≥ 𝛽1 ⇔ 𝛽2 < 0.


