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Stem cell therapy is a thriving topic of interest among researchers and clinicians due to
evidence of its effectiveness and promising therapeutic advantage in numerous disease
conditions as presented by novel biomedical research. However, extensive clinical
application of stem cells is limited by its storage and transportation. The emergence of
cryopreservation technology has made it possible for living organs, tissues, cells and even
living organisms to survive for a long time at deep low temperatures. During the
cryopreservation process, stem cell preparations are subject to three major damages:
osmotic damage, mechanical damage, and peroxidative damage. Therefore, Assessing
the effectiveness and safety of stem cells following cryopreservation is fundamental to the
quality control of stem cell preparations. This article presents the important biosafety and
quality control parameters to be assessed during the manufacturing of clinical grade stem
cell products, highlights the significance of preventing cryodamage. and provides a
reference for protocols in the quality control of stem cell preparations.
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1 INTRODUCTION

Stem cells are widely studied in the field of biology, and their potential in regenerative medicine and
therapy is receiving increasing attention (Krishnan et al., 2021). According to the National Institutes
of Health Research Administration’s Clinical Research Registry (https://www.clinicaltrials.gov/), as
of March 2021, a total of 1,216 mesenchymal stem cells (MSC) clinical research projects were
registered worldwide, with 251 in China, accounting for 20.7% of the global total. Stem cells have
been broadly classified as adult stem cells (ASCs) and Embryonic stem cells (ESCs) depending on
their origin (Pilbauerová and Suchánek, 2018). Stem cell preparations are various types of products
obtained by isolating and culturing stem cells from human tissues or healthy donor tissues. Stem cells
can be obtained from a variety of tissues such as bone marrow (Tajima et al., 2015), adipose (Yang
et al., 2010), umbilical cord (Katheria et al., 2020), umbilical blood (Gil-Kulik et al., 2020), skeletal
muscle (Schüler et al., 2021), dental pulp, placenta, amniotic fluid and amniotic membrane (Zare
et al., 2021). Stem cell therapy has evolved from basic laboratory research to progressive application
in difficult clinical conditions (Chu et al., 2020). Stem cell therapy is the process of implanting human
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stem cells of autologous or allogeneic origin into the human body
after in vitro manipulation for disease treatment. Such in vitro
manipulation includes processes such as isolation, purification,
expansion, modification of stem cells, establishment of stem cells
(lines), induction of differentiation, freezing (cryopreservation)
and recovery after freezing (Hao et al., 2020a). The cell
preparation techniques and treatment protocols are diverse,
complex and specific to each cell type. However, being a novel
biotherapeutic product, all stem cell preparations are subject to
similar developmental processes ranging from preparation, in vitro
testing, in vivo animal testing, to clinical trials and clinical
application via implantation into humans. At each stage of
development, relevant studies and quality control used must be
performed to ascertain cell quality, safety and biological effects.

Cryopreservation which is basically the storage of biological
materials at very low temperatures so as to conserve their viability
has become an integral technique in most experimental and
clinical protocols including stem cell transplantation (Hao
et al., 2020a). Reports obtained from assessing the benefits of
cryopreservation in stem cell therapy reveals that the process
preserves the quality of the cells from the point of collection,
transportation to final implantation without the loss of vital
anatomical and physiological properties. In the same vein, it
allows ample time for the screening of donors and recipients for
markers like human leukocyte antigen (HLA) which may
interfere with optimal therapeutic outcome.

Also, multiple passages during culturing and aging of stem cells
can lead to reduced cell differentiation potential and genetic
alterations (Martin-Piedra et al., 2014), of which
cryopreservation becomes the reliable technique to apply in
preventing these deleterious effects. None the less, cells are
susceptible to damage during freezing, and there are three main
types of freezing damage: mechanical damage, osmotic damage,
and oxidative damage (Pegg, 2015). Mechanical damage is the
irreversible damage to cellmembranes and organelles caused by the
formation of ice crystals from extracellular and intracellular solutes
in cells at low temperatures (Yang et al., 2017). When the

extracellular fluid freezes, there is an increase in solute
concentration, resulting in cell damage by osmotic dehydration.
This event is termed osmotic damage (Finger and Bischof, 2018).
On the other hand, oxidative damages are caused by reactive
oxygen species (ROS) generated during cryopreservation
(Evangelista-Vargas and Santiani, 2017). Ideally, avoiding these
undesirable effects is the aim of majority of research studies on
cryopreservation as these damages often lead to irreversible harm
ranging from the loss of vital functions to even cell death (Calmels
et al., 2003) (Figure 1). It is therefore extremely important to
explore the cryopreservation of stem cells and its preparations for
the establishment of medical cell or tissue banks and the
development of clinical regenerative medicine. It is also urgent
to develop new approaches for stem cell cryopreservation by
analyzing the mechanism underlying cell cryoinjury and
optimizing the existing deep cryogenic techniques and methods.

Notwithstanding the enormous efforts and advancements in
cancer research, Cancer is persistently among the high mortality
diseases where the therapeutic efficacy of conventional
chemotherapeutics is limited by factors including toxic side
effects and the reoccurrence of tumor. To this end, researchers
are on deck seeking to discover better approaches in cancer
treatment. One of such is stem-cell based therapy which
capitalizes on the desirable features of various stem cells with
possible modifications to enhance their anti-tumor potential
(Han et al., 2018). In addition to being the active therapeutic
agents, stem cells can serve as drug carriers in targeted delivery
(Wang et al., 2018), be applied in immuno-modulation following
radio (chemo) therapy (Abraham et al., 2022), replace damaged
organs through tissue regeneration (Grayson et al., 2015), and
provide suitable models for research to aid better understanding
and development of novel cancer therapies (Jo H et al., 2021).

This paper summarizes the major cryodamages encountered
during the cryopreservation of stem cells and approaches used to
tackle them, discusses the factors responsible for cytotoxicity of
stem cell preparations in clinical applications, their biosafety
concerns and recent techniques used in quality evaluation.

FIGURE 1 | Cryopreservation induced stem cell damage. Parts of the figure are adapted from SMART–Servier Medical Art, Servier: https://smart.servier.com.
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This article also provides reference for the quality testing
protocols used in the quality control of stem cell preparations,
and suggests directions to consider for future quality control and
cryopreservation research.

2 CRYOPRESERVATION OF STEM CELLS

Cryoinjury is the irreversible damage that cells may suffer during
freezing or thawing process (Ross-Rodriguez et al., 2010), and is
mainly classified as osmotic damage, mechanical damage, and
oxidative damage. In osmotic damage, the extracellular ice
formed during slow freezing causes an osmotically driven
removal of water from the intracellular space. The resulting
hypertonicity is capable of causing cell death (Yousefian et al.,
2018). Mechanical and structural cell damage occurs when the
cells are cooled rapidly giving insufficient time for intracellular
fluid to exit the cells. As a result, the cell experiences detrimental
ice nucleation and recrystallization (Bakhach, 2009). Lastly,
Oxidative damage is the injury inflicted by ROS produced
during cryopreservation, often amounting to the oxidation of
lipids, proteins and nucleic acids (Chen and Li, 2020; Liu et al.,
2021a) (Figure 1).

Conventionally, the steps in stem cell cryopreservation are as
follows: the stem cells of interest are harvested, carefully washed
and resuspended in suitable media, then cryopreservation
solution containing one or more cryoprotectants (CPAs) is
then added (Wang et al., 2022). Till date, Dimethyl sulfoxide
(DMSO) is the CPA of choice in stem cell cryopreservation
commonly applied at a final concentration of 5–10% (v/v)
(Yamatoya et al., 2022). The vial containing the cells and
survival promoting additives is later frozen to −80°C using
controlled rate freezers usually operated at optimal cooling
rates of −1 to −3°C per minute. Finally, the frozen sample is
placed in a liquid nitrogen tank mostly at −196°C for long-term
preservation (Calmels et al., 2003). On demand, the stem cells are
unfrozen by rapid thawing in a in a 37°C water bath and the CPA
is removed before administration to patients. Adverse drug
reaction monitoring following stem cell implantation
procedures has documented some unwanted reactions
including symptoms like abdominal cramps, diarrhea, nausea,
flushing, and life-threatening events such as acute renal failure,
respiratory depression and cardiac arrhythmias (Shu et al., 2014).
Some of the observed adverse effects has been linked to toxicity
caused by traces of DMSO retained in the infusion (Ataseven
et al., 2017; Maral et al., 2018). Although the mechanisms
underlying the adverse effects from infusing cryopreserved
stem cell products are not completely unraveled, other
contributing factors besides the toxicity of DMSO include cell
aggregation and presence of apoptotic debris (Schlegel et al.,
2009), volume of infused suspension and presence of unnucleated
cells (Rohner et al., 2019), hypothermic condition of the cell
suspension, and electrolyte imbalance (Calmels et al., 2003).

Predictably, decreasing the quantity of DMSO added during
cryopreservation would diminish unwanted side effects. CPAs can
be classified as permeable and non-permeable based on their ability
or inability to cross the cellular membrane. Generally, permeable

CPAs like DMSO are more toxic compared to non-permeable CPAs
at equivalent concentrations (Raju et al., 2021). Several studies have
shown that the inclusion of trehalose (Zhang et al., 2003), sucrose
(Pan et al., 2017), polyampholytes (Matsumura et al., 2010) and
antifreeze proteins (AFPs) (Shaliutina-Kolešová et al., 2019) during
cryopreservation can greatly reduce the working concentration of
DMSO, thereby reducing the cytotoxicity caused by DMSO. Another
potent strategy is to develop alternatives to DMSO which should
ideally prevent cryodamage and promote survival of the
cryopreserved material and concomitantly be biocompatible. CPAs
like trehalose and sucrose are suitable candidates as they were found
to promote cryopreservation outcome in hematopoietic stem cells by
maintaining the CD45+/34+ cell population and retaining cell
clonogenicity and viability (Rodrigues et al., 2008).

3 KEY ASPECTSOFQUALITY CONTROLOF
STEM CELL PREPARATION

Stem cell products should be generated in compliance with Good
Manufacturing Practices (GMP). There are no uniform global
guidelines for the production and clinical application of stem cell
products. The United States Food and Drug Administration
(USFDA), the European Medicines Agency (EMA), the Japanese
Pharmaceuticals and Medical Devices Agency (PMDA), and other
regulatory agencies currently provide GMPs to promote the safe use
of therapies for patients. In addition, China has successively proposed
general requirements for stem cells, which is applicable to stem cell
research and production (Hao et al., 2020a; Hao et al., 2020b; Zhang
et al., 2022). The following are the key aspects of quality control of
stem cell preparation summarized in Table 1.

3.1 Analysis of Cell Characteristics
Some important methods used to characterize and identify
stem cell types include short tandem repeat (STR) typing,
morphological examinations, identification of markers,
analysis of in vitro differentiation and teratoma formation
(Zhang et al., 2022). As made known by science, there is yet a
great number of undiscovered truths in stem cell research. For
instance, new stem cell markers are being identified which
could be beneficial in understanding and classifying stem
cells. Also, the variations observed in expression of stem
cell markers has been attributed to cell isolation and
culturing techniques, cell age, culture medium composition,
and stage of cell differentiation. Tapia et al. reports varied cell
differentiation and expression of stemness markers in human
induced pluripotent stem cells (hiPSCs) cells generated with
different reprogramming methods (Tapia and Schöler, 2016).
Also, the presence of certain growth factors and removal of
oxygen from the growth media has induced alterations in stem
cell markers (Hagmann et al., 2013).

3.2 Analysis of Biological Safety
3.2.1 Tumorigenicity
The tumorigenicity of stem cells is one of the main factors
hindering their clinical use (Yasuda and Sato, 2015). Tumors
can be generated through a number of pathways one of which is
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TABLE 1 | Routine quality evaluation techniques in stem cell quality control.

Quality
Assessed

Aim Parameter Assessed Method Requirements REF

Identity/Purity Comprehensive cellular
identification of different
donors and different types
of stem cells

Cell morphology Electron microscope Cells grown in 2D conditions shall
exhibit growth as colonies with
clear boundaries, high nuclear-
cytoplasmic ratios and uniform
morphology. Within each colony,
cell-cell contact should be tight.
Zhang et al. (2022)

Gherghiceanu and
Popescu (2010)

Genetics RT-qPCR, Flow cytometry ND Jo HY et al. (2021)
Single-Cell RNA Sequencing

Surface markers Flow cytometry Cell surface markers: ≥70.0% of
the cell population express any
two of the following genes:
SSEA3, SSEA4, TRA-1-60, TRA-
1-81, for example, TRA1-
81–positive rate ≥70.0% and
SSEA4–positive rate ≥70.0%;
intracellular markers: OCT4-
positive rate ≥70.0% and
NANOG-positive rate ≥70.0%

Jo HY et al., (2021),
Zhang et al. (2022)

Specific gene
expression products

WB ND Zhang et al. (2022)
RT-qPCR

Viability Testing for cell activity and
growth status

Survival rate Trypan blue staining Cell viability shall be ≥ 90% before
cryopreservation, and ≥60%
post-thaw.

Kamalifar et al. (2020),
Zhang et al. (2022)MTT

Telomerase activity PCR, High-resolution optical
tweezers

ND Patrick et al. (2020)

Cell proliferation rate MTT ND Kamalifar et al. (2020)
Cell cycle Flow cytometer,

Fluorescence Detection
ND Fendrik et al. (2019)

Clone forming efficiency Trypan blue staining ND Dutta et al. (2011)
Flow cytometer

Organelle activity Catalase activity ND Liu et al. (2021b)
Membrane potential
Naþ/Kþ-ATPase, Ca2þ/
Mg2þ-ATPase

Integrity of
mitochondrial DNA

ND ND Yahata et al. (2017)

Exosomes TEM and immunoblotting ND Ain et al. (2018)

Sterility Testing for the presence of
mycoplasma, bacterium
and fungi

Mycoplasma; bacterium;
fungi

Turbidity testing,
Chemosensitivity testing,
MALDI-TOF MS

Negative Golay et al. (2018), Hao
et al. (2020b), Hartnett
et al. (2021)

Adventitious
viruses

The viruses to detect
should be evaluated case
by case by risk analysis

HBV、HCV、HCMV、
HIV、HSV、TP, etc

PCR, Cytopathic effect Negative Hao et al. (2020b),
Fernandez-Muñoz et al.
(2021)

Endotoxins Elimination of the effects of
endotoxins

Endotoxins Limulus amebocyte lysate <2 EU/ml Guo et al. (2011)
Nomura et al. (2018)

Tumorigenicity
Avoiding Tumors from
Stem Cell Therapy

Animal experiments In vivo tumor formation assay
in athymic mice

ND Gowing et al. (2014)

Tumorigenic
transformed cells

ND ND Sato et al. (2019)

Karyotype Resuscitating and culturing
samples for 48–72 h prior to
cell harvesting and
karyotyping.

46, XY, or 46, XX. Andrews et al. (2017);
Hao et al. (2020b),

CGH array CGH ND Andrews et al. (2017)
Colony-forming assays
in soft agar

ND ND Fernandez-Muñoz et al.
(2021)

migration rate Scratch test ND Matluobi et al. (2018)
(Continued on following page)
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the malignancy of stem cells induced during proliferation and
differentiation (Miyawaki et al., 2017). Additionally, teratomas
can originate from undifferentiated stem cells, especially for
human induced pluripotent stem cells (hiPSCs) (Yuan, 2015).

3.2.2 Sterility
The microbial contamination of stem cell products (Hartnett
et al., 2021) including bacterial, fungal, mycoplasma and bacterial
endotoxin contaminations is responsible for a significant number
of adverse reaction cases (Golay et al., 2018). Therefore,
microbiological testing prior to clinical application is pertinent
for preventing unwanted effects. The recently developed and
frequently applied BacT/Alert 3D automated culture system is
one of the innovations to aid fast and efficient sterility testing; it
requires short incubation period and does not differ significantly
from pharmacopeial methods in terms of detection capacity
(England et al., 2019). Rapid mycoplasma detection methods
include nucleic acid amplification technology and mycoplasma
metabolic enzyme activity detection (Zhang et al., 2022).

3.2.3 Pathogenic Factors
A combination of in vivo and in vitro methods should be used to
test for human- and animal-derived specific pathogenic factors
based on the characteristics of each stem cell preparation. If
bovine serum has been used, testing for bovine-derived specific
viruses shall be performed; if pig-derived materials such as
trypsin are used, testing for at least pig-derived microviruses
shall be performed (Zhang et al., 2022).

3.3 Analysis of Biological Activity
The biological effectiveness of various types of stem cells can
be basically categorized based on their ability to induce
differentiation, immunomodulatory ability and tissue

regeneration (Li et al., 2021). Biological potency assay
include: secretion of relevant bioactive substances
(Matluobi et al., 2018) (e.g., recombinant proteins,
glycoproteins or lipoproteins, growth factors, enzymes and
cytokines), extracellular matrix/structures, cellular
interactions (e.g., immune activation or inhibition),
migration differentiation or self-renewal potential of cells
(Hao et al., 2020a). To evaluate the immune activity of
stem cells, (a combination of) methods like quantitative
ribonucleic acid (RNA) analysis, marker assays, secreted
protein analysis and immune cell response analysis have
been suggested. Furthermore, instrumentations such as
immunofluorescence staining, morphological observation,
flow cytometry analysis and electrophysiological analysis
are applicable in this respect (Rohner et al., 2019).

For MSCs, regardless of their origin, the differentiation ability of
multiple cell types (e.g., adipocytes, chondrocytes, osteoblasts, etc.)
should be tested in vitro to determine their multipotency of cell
differentiation (Lee et al., 2015). For undifferentiated ESCs and
iPSCs, the pluripotency of cell differentiation must be measured by
their ability to form embryoid bodies in vitro or teratomas in severe
combined immunodeficiency disease (SCID) mice model (Li et al.,
2013). In addition to this, biological effects tests relevant to
confirming the intended therapeutic activity of stem cells should
be performed as specific biological activity assays.

4 FUTURE RESEARCH AND DIRECTIONS
FOR QUALITY CONTROL

4.1 Efficient Cryopreservation Solutions
The use of efficient and low toxicity cryopreservation protocols to
reduce cryogenic damage would guarantee the effectiveness of

TABLE 1 | (Continued) Routine quality evaluation techniques in stem cell quality control.

Quality
Assessed

Aim Parameter Assessed Method Requirements REF

Potency Determining the biological
effectiveness of stem cell
preparations in relation to
therapy

Tri-lineage differentiation
potential

ND ND Fernandez-Muñoz et al.
(2021)

Cytokines MB-FIA ND Sane et al. (2018)
Differentiation potential ELISA, RT-PCR ND Matluobi et al. (2018)
Specific genes and
proteins

WB, ELISA ND Kang et al. (2019)

DNA Fingerprint To distinguish the origin of
stem cells after
transplantation

DNA Fingerprint STR, VNTR ND Blau et al. (1999)

Stem cell-
related genes

To assist in assessing the
activity and effectiveness of
stem cells

Anti-oncogene PCR ND Huang et al. (2013)
Proto-oncogene PCR ND Daekee et al. (2019)
Stem cell-related genes
(Oct3/4, Nanog, Sox2)

PCR, NGS ND Mendes Oliveira et al.
(2018)
Daekee et al. (2019)

Culture medium Removal of residual
ingredients

Bovine serum protein,
antibiotics, cytokines

ELISA ND Zhang et al. (2011)

ND: Not determined, VNTR: variable number of tandem repeats, ELISA: enzyme linked immunosorbent assay, PCR: Polymerase chain reaction, WB: Western blot, CGH: Comparative
Genomic Hybridization, RT-PCR: reverse transcription PCR, MB-FIA: Magnetic-bead fluorescent immunoassays, MS: mass spectroscopy,MALDI-TOF: Matrix-assisted laser desorption/
ionization-time of flight MS, NGS: next generation sequencing, TEM: transmission electron microscopy, HBV: Hepatitis B Virus, HCV: Hepatitis C Virus, HCMV: Human Cytomegalo virus,
HIV: Human immunodeficiency virus, HSV: Herpes simplex virus, TP: treponema pallidum.
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stem cell preparation applications post-thaw. Since different
cryoprotectants have different protection mechanisms, a
mixture of cryoprotectants is usually used to maximize cell
survival (Tao et al., 2020). The combination of cryoprotectants
can reduce the concentration of a single CPA used, thus reducing
cytotoxicity (Elliott et al., 2017). The addition of trehalose
(Yamatoya et al., 2022), sucrose (Shu et al., 2014),
polyampholytes (Maral et al., 2018) and antifreeze proteins
(Shaliutina-Kolešová et al., 2019) during cryopreservation can
greatly minimize the required amount of DMSO, thereby
reducing cytotoxicity.

4.2 Elimination of Residual Undifferentiated
Stem Cells
Residual undifferentiated hiPSCs pose tumorigenic risk, and
methods to eliminate these undifferentiated hiPSCs are crucial
to ensuring safety (Blum and Benvenisty, 2008). The introduction
of suicide genes (Yagyu et al., 2015), addition of plasma-activated
medium (Matsumoto et al., 2016), cell sorting using antibodies
against hiPSC surface antigens11 and, the use chemical inhibitors
(Ben-David et al., 2013) are useful techniques for separating
undifferentiated stem cells. Nevertheless, none of these
methods have attained application in clinical grade stem cell
production due to high cost, low specificity and retainment of
residue in the final product (Mao et al., 2017). Consequently,
researchers are beset with the task of discovering new effective
ways to eliminate undifferentiated hiPSCs. In this light, Takunori
et al. presented in 2018 evidence supporting the ability of high
L-alanine concentrations to selectively eliminate undifferentiated
hiPSCs through a novel pathway (Nagashima et al., 2018).

This method may contribute to the development of a low-cost,
safe, and practical method to eliminate residual undifferentiated
hiPSCs.

4.3 The Integrity of Mitochondrial DNA in
Pluripotent Stem Cells
Mitochondrial DNA mutations occur at a high rate, causing several
debilitating and life-threatening diseases like Kearns–Sayre syndrome
and Pearson syndrome (Greaves and Taylor, 2006). According to
Prigione et al., pluripotency caused mitochondrial DNA mutations
originally absent from the parent PSCs (Prigione et al., 2011).
Furthermore, fluctuations in the number of mitochondrial copies
have been detected during prolonged culturing of iPSCs isolated from
donors presenting with different maladies like lactic acidosis,
mitochondrial myopathy, encephalopathy and stroke-like episodes
(Gherghiceanu and Popescu, 2010). These reports confirm the need
to conduct more research geared at identifying other implacable
factors, understanding the mechanism (s) behind these DNA
alterations and also to assess the integrity of mitochondrial DNA
and genomic DNA before the use of stem cells in humans.

4.4 New Cytogenetic Techniques
Presently, an array of sensitive cytogenetic tools such as
fluorescent in situ hybridization, comparative genomic

hybridization, Giemsa (GTG) karyotyping and whole
genome sequencing have been developed to assess the
genomic integrity of stem cells (Rohani et al., 2018). Single-
cell genome sequencing can rapidly and efficiently detect
genetic heterogeneity in large cell samples (Bardy et al.,
2016). Single-cell RNA-seq has been used in combination
with electrophysiology to evaluate the activity of human
iPSCs derived neurons (Bardy et al., 2016). Similarly, single
cell sequencing has been applied in the long-term monitoring
of trends in cancer development, progression and diversity
among populations (Navin, 2015). A collaborative paper
published by the International Stem Cell Banking Initiative
point out the importance of stem cell genetic integrity, and also
mention that other cytogenetic techniques like FISH, SKY,
CGH arrays, and whole-genome sequencing would be useful to
identify information that GTG karyotyping cannot acquire
(Andrews et al., 2015). It is unclear how essential it is to
perform more thorough epigenetic screening of pluripotent
stem cells prior to clinical application. Report of variable loss
of genomic imprinting across lines in iPSCs suggest that
standardized epigenetic quality control tests would be
beneficial (Pasque et al., 2018).

5 CONCLUSION

Quality control of stem cells and stem cell-based medicines have
received widespread attention, and the development of
cryopreservation technology has provided a technical guarantee
for the application of stem cell preparations. Themain risks faced by
patients with stem cell preparations are the occurrence of allergic or
immune reactions, the formation of tumors, and the occurrence of
microbial contamination. These risk-posing factors should be
eliminated or reduced to tolerable limits in the preclinical stages
by extensive in vivo/in vitro evaluation to improve the efficacy and
safety of stem cells. To ensure the safety and efficacy of stem cell
products, each batch of stem cell preparation shall meet the existing
stem cell quality requirements covering cell identification, viability
and growth activity, purity and homogeneity, sterility testing and
mycoplasma testing, detection of endogenous pathogenic factors,
endotoxin testing, abnormal immunological response,
tumorigenicity, biological potency testing, residual amount of
culture medium and other added components. These strict
standards of quality control must be adhered to before stem cells
can be used for clinical applications, and such standards must be
harmonized and monitored globally to ensure uniformity in the
grade of clinically applicable stem cell products. Advanced
techniques like single-cell genome sequencing of large samples
may provide better understanding of genomic integrity in stem
cell lines. Also, these evaluations should be conducted post-
cryopreservation during the formulation and testing phases to
ensure there is no cryodamage. Furthermore, cryopreservation
protocols should be reviewed and tailored to each stem cell,
putting into key consideration its efficacy and safety. In any
case, more clinical resources and research studies should be
targeted at further optimizing the quality control of stem cells
before venturing further into application of stem cell therapies.
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