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It has widely been thought that in the process of nerve regeneration

Schwann cells populate the injury site with myelinating, non–myelinating,

phagocytic, repair, and mesenchyme–like phenotypes. It is now clear that

the Schwann cells modify their shape and basal lamina as to accommodate

re–growing axons, at the same time clear myelin debris generated upon

injury, and regulate expression of extracellular matrix proteins at and around

the lesion site. Such a remarkable plasticity may follow an intrinsic functional

rhythm or a systemic circadian clock matching the demands of accurate

timing and precision of signalling cascades in the regenerating nervous

system. Schwann cells react to changes in the external circadian clock

clues and to the Zeitgeber hormone melatonin by altering their plasticity.

This raises the question of whether melatonin regulates Schwann cell activity

during neurorepair and if circadian control and rhythmicity of Schwann cell

functions are vital aspects of neuroregeneration. Here, we have focused on

different schools of thought and emerging concepts of

melatonin–mediated signalling in Schwann cells underlying peripheral

nerve regeneration and discuss circadian rhythmicity as a possible

component of neurorepair.
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Introduction

A wide body of research conducted over the last decades has demonstrated that

the circadian hormone melatonin (N-acetyl-5-methoxytryptamine) plays a

significant role in oligodendrogenesis (Breton et al., 2021), regulation of neural

stem cell proliferation (Gengatharan et al., 2021), peripheral nerve regeneration,

and re–myelination after injury of the central nervous system (Naseem and Parvez,

2014). Beneficial effects of melatonin on Schwann cell functions reported in vitro

and during nerve regeneration (Chang et al., 2014; Rateb et al., 2017; Moharrami

Kasmaie et al., 2019; Tiong et al., 2020; Gengatharan et al., 2021) imply that the

Schwann cells are sensitive to intrinsic/extrinsic clock alterations and render

rhythmicity as a possible factor of neurorepair. However, the experimental

evidence is scarce. In this review, we have explored the concept of

melatonin–mediated signalling in Schwann cells and circadian rhythmicity as a

component of nerve regeneration.
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The Schwann cells are peripheral glial cells that isolate the

axons by forming myelin sheaths (Figure 1), thus increasing the

axonal membrane resistance towards a greater action potential

propagation velocity. These peripheral glial cells are also

involved in the control and guidance of axonal growth and

regeneration (Jessen et al., 2015; Jessen and Mirsky, 2019b),

demyelination and debris scavenging through autophagy and

phagocytosis in the event of Wallerian degeneration (Jang et al.,

2016; Wong et al., 2017; Nazareth et al., 2021) (Figures 1–4),

maintenance of the micromilieu around an axon and its

regulation through reciprocal contacts (Bouçanova and

Chrast, 2020), synaptic transmission (Alvarez-Suarez et al.,

2020), and immunomodulation (Zhang et al., 2020). Due to

their remarkable developmental plasticity (Boerboom et al.,

2017; Castelnovo et al., 2017), apart from quiescent

myelinating or non–myelinating entities, the Schwann cells

represent a very heterogenous population, which can rapidly

trans– or de–differentiate into repair–, bridge–, phagocytic or

mesenchymal–like phenotypes in the case of nervous system

injury (see also Figures 2–4), thus guiding the re–growing

axons (Jessen and Mirsky, 2016) to their destination.

Multifunctional Schwann cells with myelinating and

non–myelinating properties have been found to

simultaneously ensheath different axonal types in intact

nerves of transgenic mice lacking the Fbxw7 component of

the E3 ligase (Harty et al., 2019). Interestingly, similar

myelinating/Remak Schwann cell hybrids can be found in

regenerating nerves of wild–type mice (Figure 4), suggesting

that this morphological transformation is fundamental for

regeneration. The ensheathing plasticity of the Schwann

cells seems to fluctuate in time and space and has important

implications for our understanding of circadian myelination

and myelin repair in both, the central and peripheral nervous

system.

FIGURE 1
Changes in myelin fibre profiles of the regenerating murine femoral nerve after transection. (A) Left: a transversal profile of an intact femoral
nerve. Arrows indicate the perineural sheath. Middle: a transversal profile of the proximal stump of the regenerating femoral nerve. Note the thick
perineurium (arrows), the enhanced angiogenesis and the degeneration of nervi nervorum after transection. Right: the distal stump of the transected
femoral nerve. Scale bar, 100 µm. (B) Left: the intact femoral nerve is composed of homogeneously distributedmyelinated and non–myelinated
fibres. Middle: sprouting in myelinated (myelinating Schwann cells, mSC) and non–myelinated (non–myelinating Schwann cells, nmSC) areas in the
regenerating proximal nerve stump. The thick perineurium (pn) and newly formed blood vessels (asterisks) are visible. Right: distally to the lesion site,
myelin decomposition occurs in variable forms within the Schwann cells. Scale bar, 30 µm. Staining: toluidine blue. Specimen: 75–nm–thin sections
of resin–embedded non-injured nerves versus injured nerves 10 days after transection in C57Bl6/J mice.
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Circadian clock in central glia and its
role in disease

Pioneering work based on transcriptomic studies in rodents

has revealed that many transcripts coding for proteins involved

in myelination, synthesis and maintenance of plasma membrane

components, e.g. opalin, plasmolipin and Qk, are upregulated in

the sleeping brain (Vivo and Bellesi, 2019). In turn, sleep

deprivation leads to an upregulation of pro–apoptotic and

pro–inflammatory markers such as the apoptotic chromatin

condensation inducer 1 (Acin1), heat shock protein family E

member 1 (HSPE1), and golgin subfamily A member 3

(GOLGA3), thus indicating an overall beneficial function of

sleep for myelin’s maintenance and turnover (Vivo and

Bellesi, 2019). Bellesi and colleagues have further shown that

the oligodendrocyte progenitor cells have phasic behaviour,

namely these cells proliferate during the REM phase of sleep

and differentiate during vigilance (Bellesi et al., 2013). However,

the mechanisms through which sleep acts in favour of

myelination have not been systematically studied, but the

neurotransmitters acetylcholine and noradrenaline have been

speculated as possible antagonistic regulators of

oligodendrocyte progenitor proliferation based on their

daytime–dependent secretion modes (Vivo and Bellesi, 2019).

Of note, the arousal stimulator noradrenalin, whose

concentration in brain peaks during daytime, has been shown

to induce oxidative stress and apoptosis in cultured

oligodendrocyte progenitors (Khorchid et al., 2002), whereas

acetylcholine that is elevated during the wake state and REM

sleep, has been shown to promote mitotic expansion of

oligodendrocyte progenitors (Paez-Gonzalez et al., 2014;

Bellesi, 2015). The observed effects depend possibly on

circadian oscillations in the noradrenergic and cholinergic

nuclei—in fact, the noradrenalin concentration seems to

FIGURE 2
Schwann cells at work—ultrastructural patterns of myelin decomposition in the distal stump of a transected murine femoral nerve. (A) A
degenerating axon amidst compacted myelin within the Schwann cell cytoplasm. Multiple proteolytic vesicles are visible in the cytoplasmic rim. A
basal lamina (arrows) and collagen (co) isolate the Schwann cell from the extracellular matrix. (B) Ovoid figures of partially degraded myelin and
peripheral vesicular fusion at multiple sites. The nucleus (nu) of the Schwann cell is visible. (C) A multitude of cytoplasmic vesicles and a few
compartments of degraded myelin. The basal lamina (arrows) is an important border, which isolates the dynamic cell interior from the surrounding.
(D) Decomposition of a huge mass of myelin within a myelinating Schwann cell. (E) Portioning and proteolytic degradation of myelin (concentric
myelin lamellae are visible). (F) Star–like appearance of the basal lamina (arrows) harbouring the processes of the Schwann cells in the cross–section,
also known as “Büngner’s band.” This structure is able to accommodate and guide re–growing axons; nu—nucleus. Staining: osmium tetroxide,
potassium (III) hexacyanoferrate and post–contrasting with lead nitrate and uranyl acetate. Specimen: 55–nm–thin sections of resin–embedded
distal nerve stumps, 10 days after transection performed in C57Bl6/J mice. Scale bar, 2 µm.
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follow a 24–hour cycle in the prefrontal cortex (Julia M. L.

Menon et al., 2019), the noradrenergic locus caeruleus neurons

have been shown to exhibit a circadian rhythm with a maximum

impulse activity during the period of vigilance (González and

Aston-Jones, 2006). Analogously, the cholinergic neuronal

populations have displayed a rhythm with maximal expression

of acetylcholine during the active period (Kametani and

Kawamura, 1991; Takase et al., 2007; Takase et al., 2009; Hut

and van der Zee, 2011). It is very likely that oscillations of

catecholamines co–regulate the circadian clock in

oligodendrocytes. Indeed, circadian dysregulation has been

associated with myelination disorders in the central nervous

system, i.e. enhanced risk of multiple sclerosis correlated with

mutations in ARNTL/BMAL1 and CLOCK circadian genes

(Lavtar et al., 2018), owing to the regulatory role of the

ARNTL gene in oligodendrogenesis (Huang et al., 2020).

Patients suffering from multiple sclerosis have had a higher

risk of sleeping disorders (Najafi et al., 2013; Tonetti et al.,

2019), and an imbalanced melatonin secretion rhythm

(Damasceno et al., 2015). The pituitary axis as well as

melatonin have been hypothesised to be involved in the

pathogenesis of multiple sclerosis, possibly by regulating

proliferation and maturation of oligodendrocytes in a

circadian manner (Olivier et al., 2009; Ghareghani et al.,

2017). Rhythmicity based on the light–dark–cycle (circadian

rhythm) is a property exhibited by almost all organisms on

FIGURE 3
Ultrastructure of non-myelinated fibre bundles in a non–injured nerve and in a regenerating proximal nerve stump. (A) Multiple
non–myelinated axons (ax) hosted by a non–myelinating Schwann cell. Each axon is well separated from the others (B) andmore than 40 axons can
form a so–called “Remak bundle” (C); nu—nucleus. (D) A single non-myelinating Schwann cell uses its lamellipodia to accomodate axonal sprouts of
different calibres (asterisks), but no myelination occurs. Note the difference between the Schwann cell basal lamina of the intact (B) and an
injured nerve (E), arrows indicate the electron-dense basal lamina. (F)More than 50 irregularly shaped axonal sprouts (asterisks) can be tightly packed
within a non–myelinating Schwann cell. The Schwann cell pseudopodia appear electron–denser than sprouts. Staining: osmium tetroxide,
potassium (III) hexacyanoferrate and post–contrasting with lead nitrate and uranyl acetate. Specimen: 55–nm–thin sections of resin–embedded
proximal nerve stumps, 10 days after transection performed in C57Bl6/J mice. Scale bar, 500 nm.
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Earth. At microscopic scale in form of a cell–autonomous pace,

rhythmicity has been documented in hypothalamic neurons of

the suprachiasmatic nucleus and somatomotoneurons (Herr

et al., 2018), visceromotoneurons (Kelly et al., 2020),

astrocytes (Brancaccio et al., 2019), fibroblasts (Hida et al.,

2017), myocytes (Perrin et al., 2015), and immune cells

(Annamneedi et al., 2021). Various studies have reported cell

morphology changes occurring in a circadian manner in neurons

(Jasinska et al., 2020) and fibroblasts (Hoyle et al., 2017), and

active variations in subcellular morphology, e.g. mitochondrial

architecture (Sardon Puig et al., 2018). Both, the circadian

cyclicity and cell cycle, have been understood to be

intertwined (Johnson, 2010; Masri et al., 2013). Interestingly,

fluctuations in the cytosolic calcium concentration in fibroblasts

seem to follow oscillations in the transcription levels of clock

genes (Wilkaniec et al., 2016). Moreover, circadian rhythmicity

has been suggested to underly tissue homeostasis and

regeneration (Paatela et al., 2019). In this constellation, we

became interested in whether melatonin and circadian rhythm

are relevant for peripheral nerve regeneration and homeostasis

concerning Schwann cells, the functional relatives of

oligodendrocytes.

Circadian oscillations in peripheral
nerve homeostasis

Some physiological parameters of nerve function, such as

conduction velocity, may vary during the day or alter upon

disruption of the circadian cycle. There are reports stating that

the nerve conduction velocity depends on the circadian clock

(Ferrario et al., 1980; Montagna et al., 1985). In particular, the

sensory fibre conduction velocity has been found to follow a

diurnal rhythm (Montagna et al., 1985). According to Ferrario

and colleagues, the circadian rhythm in nerve fibre conduction

velocities turned out to differ in the sensory and motor fibres

(Ferrario et al., 1980). Montagna and colleagues could also

observe a circadian trend in the sensory fibre conduction velocity

FIGURE 4
Schwann cells multitasking at the proximal stump of the injured femoral nerve. (A) In the field of view: four myelinating Schwann harbouring
well–preservedmyelin lamellae around the injured axons (ax) and at the same time accommodating axonal sprouts (asterisks). (B) The newly formed
myelin around the injured axons can vary in its compactness (arrows indicate densely formed lamellae); co—collagen; nu—nucleus. (C)Hyperplastic
cells: a giant non-myelinating Schwann cells abundant in sprouts (asterisks) adjoining a myelinating Schwann cell. Note that the myelinating
Schwann cell contains two separated myelinated axons (one of a remarkable irregularity), a few cytoplasmic sprouts (asterisks) and proteolytic
vesicles (arrows). (D)While re–shaping the myelin structure and compactness (arrows) around the injured axon (ax), a myelinating Schwann cell can
concomitantly host more than 10 axonal sprouts (asterisks). (E) A Schwann cell sheddingmyelin (arrows) while still preserving the axon (ax) and at the
same time carrying a sprout (asterisk). Note the abundancy of mitochondria within the axon. In the vicinity: another myelinating and two non-
myelinating Schwann cells; nu—nucleus. (F) Hyperplasticity in confined space: arrows indicate densely formed myelin lamellae; asterisks highlight
sprouts; arrows indicate mylein shedding. Staining: osmium tetroxide, potassium (III) hexacyanoferrate and post-contrasting with lead nitrate and
uranyl acetate. Specimen: 55–nm–thin sections of resin–embedded proximal nerve stumps, 10 days after transection performed in C57Bl6/J mice.
Scale bar, 1 µm.

Frontiers in Cell and Developmental Biology frontiersin.org05

Klymenko and Lutz 10.3389/fcell.2022.999322

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.999322


(Montagna et al., 1985). In contrast, the diurnal variations of the

motor fibre conduction velocity found by Ferrario and colleagues

(Ferrario et al., 1980) could not be reproduced in a recent study

(Vishwakarma and Yadav, 2020). These discrepancies might be

partially based on differences in sampling, as Vishwakarma and

Yadav have employed a larger sample size than Ferrario et al.

Interestingly, Maehara and colleagues have concluded that the

motor fibre conduction velocity tended to decrease in rats kept at

a reverted light–at–night cycle (Maehara et al., 1985). These

combined findings reveal that the sensory nerve conduction

velocity may follow a circadian trend and/or depend on the

circadian cycle. Obviously, the time point of measurement is a

critical factor to consider when studying circadian oscillations in

peripheral nerve homeostasis.

Circadian rhythm in peripheral nerve
injury

The chronobiological component of nerve homeostasis may

greatly influence the success of neurorepair therapies. Thus, Zhu

and colleagues have demonstrated that daytime therapy employing

pulse electromagnetic field has improved sciatic nerve regeneration

in rats far better than nocturnal therapy (Zhu et al., 2017). Rateb

and colleagues have shown thatmelatonin treatment has improved

peripheral nerve regeneration in rats, in particular, nocturnal

treatment with melatonin has led to better results than the

daily applications (Rateb et al., 2017). Another study has come

to a similar conclusion, when applying melatonin to rats with

injured sciatic nerves at night (Moharrami Kasmaie et al., 2019).

Kaya and colleagues have shown that disruption of the circadian

cycle could influence nerve regeneration—rats which had been

kept at a normal 12 h light/dark cycle under treatment with

melatonin during daytime have responded to the therapy better

than rats which had been kept at inverted light–at–night cyclicity

and treated at night (Kaya et al., 2013). In conclusion, external

Zeitgeber clues provided by a light source at distinct time points

entail different grades of peripheral nerve regeneration. Could this

be explained by assuming a circadian rhythm of Schwann cell

functions in the process of regeneration? Rateb and colleagues

could prove that rats with a sciatic nerve injury under pulsed

electromagnetic field therapy had higher number and area of

myelinated axons, lower g–ratio and higher S100 expression in

the regenerated nerves when treated during daytime compared to

night treatments (Rateb et al., 2017). Furthermore, nocturnal

application of melatonin has led to an increased myelination

and S100 immunoreactivity in crushed sciatic nerves compared

to the daily application, whereas there was no difference between

both groups in immunoreactivity against the

Neurofilament–200 protein (Moharrami Kasmaie et al., 2019).

In contrast, no regenerative difference has been observed between

animal groups treated with curcumin either during the day or

night (Moharrami Kasmaie et al., 2019). Kaya and colleagues have

stated that after sciatic nerve injury the density and thickness of

myelinated fibres were higher in animals treated with melatonin

and kept at a normal illumination cycle than in the animals treated

with melatonin and kept at an inverted cycle, yet no quantification

and statistical analysis have been provided by the authors (Kaya

et al., 2013). It becomes clear that the Schwann cells react

differentially to treatment times and circadian rhythm

alterations in vivo (see Figure 5), and their response may vary

depending on the given therapy. Rateb et al. and Moharrami

Kasmaie et al. have tried to explain the better results of the

nocturnal melatonin application by an additive effect of the

endogenous and exogenous melatonin concentrations (Rateb

et al., 2017; Moharrami Kasmaie et al., 2019). Since the

nocturnal concentration of melatonin is approximately

3–10 times higher than the daily one (Odaci and Kaplan,

2009), the nocturnal application of the exogenous melatonin

would be reinforced by the physiological peak of melatonin at

night, thus leading to enhanced effects on regeneration according

to Rateb et al. and Moharrami Kasmaie et al. (Rateb et al., 2017;

Moharrami Kasmaie et al., 2019). However, this explanation

becomes incoherent, when one considers the concentration

ranges of melatonin application versus endogenous melatonin

levels. This can be plausibly demonstrated with a few simple

calculations.

Following the experimental design from the study of

Moharrami Kasmaie et al., 2019, a 200 g rat injected

intraperitoneally with 10 mg/kg of melatonin would receive

2 mg of melatonin. If we account for 74% bioavailability of

melatonin after an intraperitoneal injection (Yeleswaram et al.,

1997), the resorbed amount of melatonin would then be 1.48 mg.

According to the formula BV � 0.06 × BM + 0.77, where BV is

the total blood volume and the BM is the body mass of a rat (Lee

and Blaufox, 1985), the blood volume of a 200 g rat would be

12.77 ml. Thus, the final concentration of the exogenously

applied melatonin in a blood volume of 12.77 ml would be

0.11589 mg/ml or 115.89 × 106 pg/ml. According to Wolden-

Hanson and colleagues, the diurnal physiological melatonin

concentration in rat serum is 20 pg/ml, at night it rises to

50 pg/ml (Wolden-Hanson et al., 2000). Hence, the total

nocturnal concentration of exogenous and endogenous

melatonin (115.89 × 106 pg/ml + 50 pg/ml) compared to the

total concentration of diurnal endogenous and exogenous

melatonin (115.89 × 106 pg/ml + 20 pg/ml) would negligibly

deviate by 2.58 × 10−5%. Based on these calculations, we assume

that at the given microgram range of applied melatonin the

contribution of the pico–range variability provided by the

physiological oscillations of endogenous melatonin is minimal.

Therefore, this negligible additive effect cannot lead to the

observed differences between neuroregeneration upon

nocturnal and diurnal melatonin application. What is the

reason for an increased responsiveness of regenerating nerves

to melatonin treatment at night? A plausible argument is the

circadian variation of melatonin degradation in the body.
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Elimination of melatonin occurs mostly through hepatic

metabolisation with cytochrome P450 enzyme CYP1A2 (see

also Figure 5), followed by glucuronidation or sulfatidation

(Tordjman et al., 2017). In fact, the CYP1A2–mediated

turnover has a circadian trend (Chen et al., 2020b)—in

humans, CYP1A2 activity is minimal in the evening (Perera

et al., 2013). This and other studies have proposed that

expression of some hepatic cytochrome P450 enzymes is

controlled by the circadian clock (Lu et al., 2013; Zhang T.

et al., 2018; Deng et al., 2018; Lin et al., 2019).

An alternative school of thought considers that the

permeability of the perineurium may increase at night and

allow more melatonin to penetrate into the neural interstitium,

where the hormone can unfold its pro–regenerative effects.

There is an indication that nerve permeability depends on the

circadian cycle (Maehara et al., 1985). The authors have studied

permeability changes in peripheral nerves of rats kept in normal

vs reversed light–dark cycle (Maehara et al., 1985). Curiously,

the animals kept at an inverted cycle, when treated with lead

acetate, accumulated more lead in their nerves than the group

under normal illumination cycle (Maehara et al., 1985). These

findings imply a variable permeability of the blood–nerve

barrier throughout the day. Furthermore, permeability

variations have been reported also for the blood–brain

barrier (Zhang S. L. et al., 2018; Cuddapah et al., 2019;

Zhang et al., 2021). Hence, chronopharmacology may

become an important factor in clinical practice, when

optimizing drug application schedules related to times at

which the particular drug can cross the blood–nerve barrier,

thus yielding optimal therapeutic outcome. Interestingly, in

patients suffering from neuropathic pain the pain intensity

tends to maximise in the evening (Gilron et al., 2013).

Moreover, peripheral diabetic neuropathy seems to occur

more often in equatorial, subequatorial or tropical countries

(e.g. Egypt, Saudi Arabia), when compared to locations with

more temperate climate, restricted illumination, and shorter

days in northern latitudes (e.g. United Kingdom, Germany,

Belgium) (Azmi et al., 2019). The link between circadian

rhythmicity and neuropathic conditions suggests that

external light clock variations and time can influence nerve

physiology and repair, thus pushing the frontiers towards

precision in treatment.

FIGURE 5
Interplay between Schwann cell plasticity and circadian clock during nerve regeneration. The Schwann cells undergo a remarkable
transformation during nerve regeneration upon injury. Variations in light’s intensity due to circadian changes or disruption result in an altered activity
of the suprachiasmatic nucles and melatonin concentration levels, to which the Schwann cells can respond selectively via their melatonin receptors
(MT1/2). Degradation of melatonin by CYP1A2 or changes in blood–nerve barrier’s permeability are regulatory mechanisms allowing a certain
amount of melatonin to penetrate the regenerating nervous tissue and to reach the Schwann cells within. MT1/2 may play a role as “chronosensors”
to melatonin changes and induce internal clock changes, which allow the Schwann cells to unfold a complex morphology, where multiple events
(sprouting, myelin re–assembling, proteolysis, depletion, degradation, and sorting) occur simmulatneously.
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However, there are still considerable limitations of existing

data on the chronopharmacological component of nerve

regeneration therapy and further in–depth studies need to be

carried out. Key experiments establishing a relevant connection

between circadian rhythm and peripheral nervous system repair

after injury would be feasible in mouse models deficient in major

clock genes such as PER, CRY or BMAL1. Of note, enhanced risk

of multiple sclerosis has been associated with variations in the

circadian genes ARNTL/BMAL1 and CLOCK (Lavtar et al.,

2018), likely due to the regulatory role of the ARNTL gene in

oligodendrogenesis (Huang et al., 2020). Therefore, one could

expect that clock–gene mutations may influence the myelination

process by Schwann cells in the periphery as well. Unfortunately,

there is a gap in the literature concerning peripheral nerve

regeneration in clock gene knock–out mouse strains. The

comparison between the native nerve ultrastructure in such

mouse strains vs wild–type controls in combination with

genome–wide association studies would be an essential step

towards closing this gap.

Does an intrinsic circadian rhythm
indwell the Schwann cells?

The first published observations indicating that Schwann

cells may possess an intrinsic rhythm were made in 1959. In a

time lapse–cinematographic study, cultured Schwann cells have

been observed to contract rhythmically approximately every

4 min (Pomerat, 1959). Several other authors have also

documented Schwann cell motility in monocultures, acutely

dissected nerves, and dorsal root ganglion explants (Ernyei

and Young, 1966; Cravioto and Lockwood, 1968; Dubois-

Dalcq et al., 1981; Forman et al., 1986). The cell undulations

have been relatively constant in duration, although the intervals

between the undulations had varied between 2 and 18 min, thus

lacking any stringent periodicity (Ernyei and Young, 1966;

Cravioto and Lockwood, 1968; Dubois-Dalcq et al., 1981;

Forman et al., 1986). It has been found that the time point of

movement and intervals between undulations depend on the

culturing conditions for Schwann cells (Dubois-Dalcq et al.,

1981; Forman et al., 1986). Dubois-Dalcq and colleagues have

further confirmed that Schwann cell undulations are relatively

constant in duration and of a certain nature as compared to

sporadic perineural fibroblast movements (Dubois-Dalcq et al.,

1981). In spite of the apparent lack of synchronicity between the

cells and the variable periodicity between the Schwann cell

undulations, the movement duration and the number of

movements per unit of time had remained rigorously constant

(Dubois-Dalcq et al., 1981). Similarly, Forman and colleagues

have also noted that regardless of the culturing media, the

distribution of Schwann cell pulse durations over time had

stayed constant (Forman et al., 1986). It is important to

mention in this respect that the cell culture is a simplistic

model and lacks therefore oscillating humoral components of

the living organism affecting the cellular clock, such as

melatonin. In addition to that, minimal interference from

variables such as unwanted light contamination, pH and

medium osmolarity shift, or cell confluency may lead to cell

clock dyssynchronisation (Beaulé et al., 2011). Differences in

sampling and selection of the particular cell entity may also lead

to variable results. For instance, cultured suprachiasmatic

neurons are still able to express clock genes (Beaulé et al.,

2011), whereas other cell types such as NIH–3T3 cells and

astrocytes may dampen their circadian properties over the

time in culture and require co–cultured suprachiasmatic slices

to re–activate their clock (Prolo et al., 2005; Li et al., 2008).

Perhaps, similar conditions are required for cultured Schwann

cells to maintain or re–wind their circadian clock.

An indirect evidence for an intrinsic cycle in Schwann cells

has come from studies on bone marrow reorganisation revealing

the non–myelinating Schwann cells as regulators of the

hematopoietic stem cell activity by keeping the hematopoietic

stem cells in a hibernating state, from which they can switch to

active proliferation, for example, after a haemorrhage (Yamazaki

et al., 2011). Considering the fact that a portion of stem cells in

the bone marrow remains dormant and awakens, only if

necessary, around every 145 days according to simulations by

Wilson and colleagues (Wilson et al., 2008), this phenomenon of

switching between active and dormant state resembles an

infradian cycle that could perhaps be controlled by a similar

cycle in Schwann cells. It has been also reasonably assumed that

light intensity changes in terms of photoperiodicity may have a

direct impact on Schwann cells’ activity. According to Vera and

colleagues, however, the Schwann cells do not seem to possess a

light–sensitive protein machinery that could influence them,

since light irradiation of Schwann cells had not led to any

morphological, proliferatory or metabolic alterations (Diaz

Vera et al., 2021). Intriguing findings have been described in a

chemotherapy–induced peripheral neuropathy model, as

according to Kim and colleagues the mechanical threshold in

paclitaxel–induced neuropathic pain has shown circadian

oscillations in rats, with a minimal pain tolerance observed

during the inactivity phase (daytime for rats). Furthermore,

the authors have reported oscillating expression levels of the

key clock genes BMAL1 and PER2 in satellite cells from cultured

dorsal root ganglia explants, with PER2 being expressed stronger

in satellite cells than in neurons (Kim et al., 2020). These results

imply that satellite glial cells have a circadian clock. Taking into

account reported similarities in the transcriptomic landscape,

morphology and shared ontogenetic origin from the neural crest

(Jessen and Mirsky, 2019a; Milosavljević et al., 2021), the

ganglionic satellite glial cells have been hypothesised to

represent an arrested developmental stage within the Schwann

cell lineage (George et al., 2018). This is further supported by the

finding that ganglionic satellite cells can differentiate into

Schwann cells (Sundaram et al., 2021). Several attempts have
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been made to transcriptionally profile the Schwann cells

(Franssen et al., 2008; Ulrich et al., 2014; Arthur-Farraj et al.,

2017; He et al., 2018; Silva et al., 2019; Chen et al., 2021; Brosius

Lutz et al., 2022). According to the transcriptional profiling of

The Sciatic Nerve Atlas by Gerber and colleagues, single–cell

RNA sequencing has revealed that Schwann cells express PER1,

PER2, PER3, CRY, CRY2, ARNTL, and ARNTL2 genes in a

dynamic manner over the course of the early postnatal

development (Gerber et al., 2021). Obviously, the Schwann

cells can respond to external clock input changes (see

Figure 5) and the collective experimental evidence implies that

the Schwann cells might be equipped with a “time–sensitive

protein machinery.” The melatonin receptors can be sensors for

melatonin oscillations upon external clock changes. However,

further investigations are necessary to test this hypothesis.

Melatonin’s effects on
neuroregeneration

Recent studies using various lesion models of the central and

peripheral nervous system have indicated melatonin–induced

neuroprotective effects occurring in a dose–dependent manner

and unfolding their full magnitude at supraphysiological

concentrations around 50 mg/kg in a (systemic) long–term

administration (Gül et al., 2005; Shokouhi et al., 2008; Atik et al.,

2011; Li et al., 2014). Systemic intraperitoneal administration of

melatonin in mice after facial nerve injury has been shown to

preserve the thickness of myelin sheaths, whereas given

electrophysiological parameters of nerve conduction that included

the latency and amplitude of the compoundmuscle action potentials

have remained unaltered (Tuna Edizer et al., 2019). Edizer and

colleagues have also observed reduced immunohistochemical

reactivity to collagen III and V in the treated nerve as well as

minimal immune infiltration and normal structure of axons and

neurofilaments (Tuna Edizer et al., 2019); for more details see

Table 1. Of note, also topically applied melatonin has been found

to support regeneration, yet not at the same level of magnitude as to

when the hormone had been administered systemically (Tuna

Edizer et al., 2019). It is noteworthy in this context that

subcutaneous melatonin injection has been found to significantly

improve Schwann cell proliferation andmigration as well (Pan et al.,

2021). Similar histomorphological findings were obtained when

applying melatonin to injured nerves in other studies, but the

electrophysiological parameters contradicted the data of Edizer

and colleagues. Atik and collaborators have observed the

occurrence of a thinner epineurium and better organisation of

the reduced endoneural collagen at the proximal stump of the

dissected sciatic nerve, less distinctive de–myelination and loss of

axons distally; additionally, the authors have recorded shorter

compound muscle action potential latencies, higher amplitudes

and conduction velocities of the axion potentials in a damaged

nerve treated with melatonin when compared to the control group

(Atik et al., 2011). Similarly, Qian and colleagues have described

higher nerve conduction velocities and improved morphological

parameters (thicker myelin sheaths, higher regenerated axonal area,

myelinated axon number and diameter) in rats treated with an

implanted melatonin/polycaprone nerve guidance conduit in

comparison to rats that had received a polycaprone implant

without melatonin (Qian et al., 2018). Guo and colleagues have

found shorter compound muscle action potential latencies when

treating rats with melatonin after brachial plexus nerve–root

avulsion injury—the motoneuron survival rate and motor

endplate regeneration was enhanced (Guo et al., 2019). Other

scientists have observed fewer neuromas in rats treated with

melatonin following a neurorrhaphy of transected sciatic nerves

(Turgut et al., 2005). Surprisingly, an elevated collagen content and

macroscopic neuroma formation were detected in injured sciatic

nerves of pinealectomised rats, demonstrating that melatonin

deficiency hinders an adequate nerve regeneration, whereas

exogenously supplied melatonin alleviated the described effects

(Turgut et al., 2005). Further studies have also determined that

melatonin improves neuroregeneration in rats after a sciatic nerve

lesion (Kaya et al., 2013; Rateb et al., 2017; Moharrami Kasmaie

et al., 2019). However, in the majority of reported studies melatonin

has been applied systemically, which may cause global and complex

effects making conclusion on melatonin–promoted regeneration

difficult. Hence, local application of melatonin to peripheral nerves,

i.e., via intraneural injections or polymer tube nerve reconstruction

grafts filled with the therapeutic substance (see Jakovcevski et al.,

2022), deems to be a more appropriate application method. Indeed,

Zhang and colleagues have applied locally melatonin into the

lesioned area of the injured sciatic nerves and found improved

myelination and regeneration (Zhang et al., 2022).

Could the neuroregeneration promoting effects of melatonin

be reinforced if the hormone were to be used as a component of a

complex therapy combining multiple drugs? In this respect, some

work groups have reported that peripheral nerve injury

treatment is more efficient, when melatonin had been

combined with other substances. For example, melatonin and

chondroitin sulfate ABC have maximised the positive outcome in

rats after a brachial plexus nerve–root avulsion injury, when

compared to single melatonin or chondroitin sulfate ABC

therapy (Guo et al., 2019). Chen and colleagues have

proposed to use melatonin coupled to magnetite (Fe3O4)

nanobeads for a controlled sequential drug release, thereby

relying on the finding that pure Fe3O4 nanobeads had

promoted peripheral nerve regeneration (Chen X. et al., 2020).

Zhang and colleagues have used combined melatonin with

adipose tissue–derived stem cells, and showed that this

combined therapy delivers better results than therapy with

melatonin alone (Zhang et al., 2022). However, it remains

unclear whether such a combined melatonin therapy would be

an option for human patients. Still, we are not able to predict how

drug interactions would influence the regenerative outcome,

regarding the scare literature dealing with such topics.
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Considering the effects of melatonin on the expression of

various collagen types in injured nerves, we next raised the

question of how melatonin might influence reorganisation of

the extracellular matrix and perhaps the basal lamina around the

Schwann cells.

Melatonin modulates the
extracellular matrix composition and
may regulate assembling of Schwann
cells’ basal lamina

The findings that melatonin downregulates collagen in

injured nerves (Turgut et al., 2005; Atik et al., 2011; Tuna

Edizer et al., 2019) lead to the conclusion that melatonin

affects the reorganisation of the extracellular matrix (ECM),

see also Table 1. The ECM is a scaffold that gives each tissue

the mechanical properties of elasticity and solidity (Rosso et al.,

2014; Belin et al., 2017), and creates a microenvironment that

influences the intercellular connectivity and communication

(Kim et al., 2011; Valiente-Alandi et al., 2016; Sapir and Tzlil,

2017), the integration of new cells into the tissue and their

adhesion (McMillen and Holley, 2015; Gkretsi and

Stylianopoulos, 2018), and co–determines the fate of cell

differentiation and function (Sainio and Järveläinen, 2020).

Further tasks of the ECM in the nervous system include

formation of Ranvier nodes (Frischknecht et al., 2014), control

of neural plasticity (Frischknecht et al., 2014; Dzyubenko et al.,

2016), assistance in axonal pathfinding and guidance

(Roumazeilles et al., 2018), myelination (Eldridge et al., 1989),

and development of the neuromuscular junctions (Chan et al.,

2020). Moreover, the ECM modulates the activity of Schwann

cells (Chernousov et al., 2008) and axonal growth (Myers et al.,

2011; Song and Dityatev, 2018). One of the Schwann cell

TABLE 1 Effects of melatonin on Schwann cells in the scenario of nerve regeneration.

General effects on Schwann cells

Event Effect References

Proliferation ↑ Chang et al. (2014); Tiong et al. (2020); Pan et al.
(2021); Govindasamy et al. (2022)

De–differentiation ↑ (Tiong et al. (2020); Govindasamy et al. (2022)

Migration ↑ Pan et al. (2021)

Extracellular matrix

Collagen ↓ Atik et al. (2011); Tuna Edizer et al. (2019)

Matrix metalloproteinases ?

Chondroitin sulfate proteoglycans ↓ Krityakiarana et al. (2016)

FAK, p-FAK(Tyr576/577, Tyr397) ↑ Govindasamy et al. (2022)

RedOx status and inflammation

SOD, catalase, GPX ↑ Sayan et al. (2004); Chang et al. (2008); Erol et al.
(2008)

NO–synthase ↓ Uyanikgil et al. (2017)

TNF–α, IL–1β, IL–6 ↓ Rateb et al. (2017)

Transcription and signalling

MT1 ↑ (RT4 cells treated with 1–5 μM melatonin, injured
animals treated with 1 and 10 mg/kg melatonin)

Chang et al. (2014); Tiong et al. (2020)

MT1, MT2 ↓ (RT4 cells treated with 10 μM melatonin) Tiong et al. (2020)

GDNF ↑ Tiong et al. (2020)

SHH, Gli1 ↑ Pan et al. (2021)

BDNF ↑ Hashimoto et al. (2008)

Ras, p–B–Raf, p–C–Raf ↑ Tiong et al. (2020)

p–SAPK–JNK(p54)/SAPK–JNK(p54);
p–SAPK–JNK(p46)/SAPK–JNK(p46); p–p38/p38

↓/↑; ↓/↑; ↓/↑

p–ERK(p44)/ERK(p44); p–ERK(p42)/ERK(p42) ↑/↓; ↑/↓ Chang et al. (2014); Tiong et al. (2020); Stazi et al.
(2021)

SOX2 ↑ Tiong et al. (2020); Govindasamy et al. (2022)

pNF-κB ↑ Govindasamy et al. (2022)

IKK-α ↑

↑(upregulation), ↓ (downregulation), = (no effect), ? (unclear).
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organelles, the Golgi apparatus, plays a crucial role in production

of a major part of the ECM proteins. The cell organelle provides

specific post–translational modifications and guides the

substances by means of vesicular transport to secrete them

into the interstitial space (Unlu et al., 2014; Hellicar et al., 2022).

Collagen is an abundant component of the ECM—the

molecule is important for formation of the ECM, as in

absence of collagen, ECM assembly is impaired, and this in

turn, disrupts the myelination process (Podratz et al., 2001;

Mouw et al., 2014). Several studies have described that the

Schwann cells produce collagen type V, which inhibits axonal

outgrowth on the one hand, but promotes Schwann cell

migration and association with axonal sprouts on the other

(Chernousov et al., 2000; Chernousov et al., 2001). Vitale and

colleagues have reported that Schwann cells express collagen type

VI, while differentiating into mature myelinating phenotypes,

thus being no longer dependent on neuregulin (Vitale et al.,

2001). Subsequent investigations have unveiled that collagen VI

regulates peripheral myelination by setting a limit to the

thickness of the myelin sheaths, especially regarding the fact

that collagen VI knock–out mice have displayed

hypermyelination (Chen P. et al., 2014). Of note, artificial

ECMs, including the collagen–based ones, have been

employed to promote guided nerve regeneration (Georgiou

et al., 2013; Gu et al., 2014). These collective findings suggest

that the interplay between the Schwann cells and ECM is

essential for neuroregeneration.

Could melatonin regulate this interplay and change the

chemical and biomechanical properties of the ECM? If true,

such an assumptionmay partially explain the effects of melatonin

on neurorepair. A number of studies from recent years have

shown repeatedly that melatonin reduces dramatically the

expression of collagen, and thus, glial scar formation in an

injured nerve, thereby enabling the successful neurite

regrowth and consecutive muscular reinnervation (Turgut

et al., 2005; Atik et al., 2011; Tuna Edizer et al., 2019).

Interestingly, extraneural alterations in the production of

ECM under the influence of melatonin have been described in

other tissues—melatonin has turned out to upregulate the levels

of collagen II, collagen X and aggrecan in chondrogenic

mesenchymal stem cells (Gao et al., 2014), and increase the

expression of glycoproteins, fibronectin and laminin in several

cancer cell lines (Sung et al., 2016). However, melatonin

treatment has reduced the production of collagen,

hydroxyproline, laminin and hyaluronan in hepatic tissue,

thus alleviating tetrachlormethane–induced fibrosis (Hong

et al., 2009) and tissue scarring in pinealectomised rats

(Drobnik and Dabrowski, 1996).

Melatonin seems to affect the composition of the ECM also

by modulating the expression of proteases. Although hardly

detectable in tissue, expression and activation of the matrix

metalloproteases (MMPs) begins upon injury of the nervous

system (Bellayr et al., 2009). The MMPs destroy the blood–nerve

and blood–brain barrier, cleave and remodel the proteins of the

ECM to allow a higher grade of permissibility for inflammatory

cells, and modulate nociception (Shubayev et al., 2006; Reinhard

et al., 2015; Rempe et al., 2016; Zhao et al., 2020; Deng et al.,

2021). MMPs have been shown to control proliferation and

phenotypic status (Chattopadhyay and Shubayev, 2009; Kim

et al., 2012; Lu et al., 2020), migration (Mantuano et al., 2008)

and myelination behaviour (Wang et al., 2019) of Schwann cells.

In injured nerves, MMP–2 (gelatinase A, or 72 kDa type IV

collagenase), MMP–3 (stromelysin–1) and MMP–9 (gelatinase

B, or 92 kDa type IV collagenase) have been found upregulated

(La Fleur et al., 1996; Kherif et al., 1998; Remacle et al., 2018), and

the Schwann cells were proven to be the source of MMPs

(Chattopadhyay and Shubayev, 2009; Oliveira et al., 2010).

Additionally, the tissue inhibitor of metalloproteinase 1

(TIMP–1), which has been speculated to act as a protective

agent for the basal membrane of Schwann cells, has been

found upregulated in injured nerves (La Fleur et al., 1996).

Liu and colleagues have also shown that nerve injury induces

expression of TIMP–1 and activation of spinal glia and suggested

that short–term inhibition of proteolysis through

TIMP–1 enables growth of axons into the central nervous

system at Redlich–Obersteiner’s zone (Liu et al., 2015).

However, melatonin seems to predominantly inhibit

proteases rather than activate them. For instance, melatonin

has been demonstrated to inhibit MMP–9 in a mouse model

of cerebral ischemia (Tai et al., 2010). Qin and colleagues have

shown that melatonin protects the blood–brain barrier through

upregulation of TIMP–1 in pericytes and regulation of the

NOTCH/NF–κB pathway (Qin et al., 2019). Furthermore,

melatonin has reduced the expression of MMP–9 in a human

gastric adenocarcinoma cell line and another mechanism of

MMP–inhibition through a direct interaction of melatonin

with Pro421 and Ala191 at the catalytic centre of MMP–9 has

been found (Rudra et al., 2013). Melatonin has been shown to

also inhibit MMP–13 in prostatic cancer, thereby possibly

attenuating metastasis (Wang et al., 2021). The hormone has

also stimulated release of the tissue factor pathway inhibitor from

the endothelium (Kostovski et al., 2011), and suppressed the

proteolytic cascades of blood coagulation, thus reducing the risk

of thrombosis (Wirtz et al., 2008). Melatonin has stimulated the

proteolytic cleavage of β–amyloid precursor protein with A

Disintegrin And Metalloproteinase domain 10 and 17 (ADAM

10, ADAM 17).

In peripheral nerves, the effects of melatonin on MMP’s

expression and activity have not been studied so far. Melatonin

has been proven to downregulate chondroitin sulfate

proteoglycans after spinal cord injury (Krityakiarana et al.,

2016). Chondroitin sulfate proteoglycans are known for their

inhibitory effects on neurite growth (Jin et al., 2018), and their

degradation unmasks the Schwann cell’s basal lamina and

promotes axo–glial interactions (Kuffler et al., 2009).

Treatment with MMPs has resulted in degradation of
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chondroitin sulfate proteoglycans and unmasking the laminin of

the Schwann cells’ basal lamina to allow for axo–glial interactions

(Kuffler et al., 2009). In this context, one could assume that

degradation of chondroitin sulfate proteoglycans in

melatonin–treated nerves (Krityakiarana et al., 2016) could

depend on activation of the proteases with melatonin, in

contrast to other tissue types where melatonin inhibits the

MMPs. However, melatonin seems to inhibit proteases’

activity across the entire organism, as it was discussed in the

previous paragraph.

In summary, melatonin clearly alters the composition and

biomechanical properties of the ECM, thus making the

peripheral nerve tissue less stiff and enabling regenerating

axons to invade the endoneurium and to reinnervate their

targets. Since the Schwann cell basal lamina also belongs to

the extracellular space and consists of similar components as the

endoneurium, it is a possible scenario that the basal lamina is

altered in the Schwann cells exposed to melatonin. The Schwann

cells produce the components of their own basal lamina,

including different types of collagen (Chernousov et al., 2000;

Chernousov et al., 2001; Vitale et al., 2001), NCAM, α2–, α6–,
α7–, β1–, and β4–integrins (Roche et al., 1997; Tsiper and

Yurchenco, 2002), α2–, α4–, and α5–laminins, β–dystroglycan
(Previtali et al., 2003), and L1 (Wood et al., 1990). However, some

elements of Schwann cells’ basal lamina are not expressed by the

cells themselves, despite the pericellular localisation of those

ECM molecules, but rather the fibroblasts of the perineural

sheath contribute to the formation of the basal lamina as well

(Obremski et al., 1993). Moreover, the molecular composition of

the basal lamina is a determinant for Schwann cells’ development

and axo–glial interaction in radial sorting and myelination

(Wood et al., 1990; Obremski et al., 1993; Court et al., 2006;

Urbanski et al., 2016). The basal lamina is important for Schwann

cell contractility and spreading, and defects in the basal lamina

can affect the differentiation and proliferation of Schwann cells

(Grove et al., 2007; Grove and Brophy, 2014). Although the

expression of collagen changes in the regenerating peripheral

nerves, it is not always a component of the basal lamina, but

rather a constituent of the endoneurium. Whether the

ultrastructure of Schwann cells’ basal lamina is changed in the

regenerating nerve, has not been reported yet. However, this does

not rule out the possibility that melatonin can influence the

composition of the basal lamina. Interestingly, according to

Govindasamy and colleagues, melatonin could regulate the

focal adhesion kinase (FAK) in Schwannoma cells and thereby

control their proliferation and differentiation status

(Govindasamy et al., 2022). FAK can interact with laminins in

Schwann cells’ basal lamina (Chernousov et al., 2008). The kinase

is alos involved in the radial sorting process (Grove et al., 2007;

Grove and Brophy, 2014). FAK–deficiency has led to reduced

motility and spreading of the Schwann cells during regeneration

and therefore, inability to ensheath axons, which resulted in

premature differentiation of the Schwann cells (Grove and

Brophy, 2014). However, in adult FAK knock–out mice the

basal lamina was formed normally, indicating that FAK

function is dispensable for the mature differentiated Schwann

cells (Grove and Brophy, 2014). It seems that FAK function is

essential only during development or regeneration, when the

Schwann cells de–differentiate and resemble an immuature

phenotype. Could melatonin integrate into the

neuroregeneration process and regulate the basal lamina/

Schwann cell contact via FAK, thereby supporting

remyelination? An important aspect of the regenerative

process is the disintegration of injured tissue. This event is

accompanied by inflammation and oxidative stress. Could

melatonin affect these processes?

Anti–oxidative and
anti–inflammatory effects of
melatonin on neuroregeneration

The pro–regenerative potential of melatonin depends

partially on its antioxidative (Reiter et al., 2016) and

immunomodulatory effects (Hardeland, 2018). Melatonin acts

via distinct mechanisms, which include the inhibition of

oxidative and activation of anti–oxidative enzymes; e.g.

melatonin induces an upregulation of the superoxide

dismutase (SOD), catalase and glutathione peroxidase (GPX)

in peripheral nerves (Sayan et al., 2004; Chang et al., 2008; Erol

et al., 2008) and the central nervous system (Limón-Pacheco and

Gonsebatt, 2010; Pandi-Perumal et al., 2013). Additionally, the

hormone inhibits the NO–synthase in peripheral nerves

(Uyanikgil et al., 2017) and reduces the expression levels of

the pro–inflammatory cytokines TNF–α, IL–1β, IL–6 in

peripheral nerves (Rateb et al., 2017), the central nervous

system (Haddadi and Fardid, 2015) or systemically in the

serum (Sánchez-López et al., 2018). However, in an

experimental model of encephalomyelitis, melatonin has been

shown to upregulate expression of IL–10 (Chen et al., 2016) and

could prevent inflammatory response in the muscle tissue after

exhaustive exercises (Beck et al., 2015). The above mentioned

anti–oxidative enzymes are involved in the scavenging of free

radicals (Gałecka et al., 2008) inducing oxidative damage in

mitochondria (Guo et al., 2013), peroxidation of proteins and

lipids in the biomembranes and also specifically in the myelin

sheaths (Ravera et al., 2015), protein aggregation, and to a total

breakdown of the cellular function (Höhn et al., 2014). The

antioxidative effects of melatonin in nerve injury may depend on

the expression of parkin, which stimulates mitophagy, thus

reducing the generation of reactive oxygen species or radicals

(Li et al., 2022).

Melatonin has been found to alleviate mitochondrial

dysfunction and to preserve myelin by supporting

remyelination in an experimental model of multiple sclerosis

(Kashani et al., 2014). The hormone has also prevented
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mitochondrial damage induced by oxidative stress in

hyperglycaemic conditions through upregulation of the

antiapoptotic marker Bcl2, and upregulation of NF–κB,
mammalian target of rapamycin (mTOR) and

Wingless–related integration site (Wnt) pathways in Schwann

cells (Tiong et al., 2019). Additionally, melatonin has acted

radioprotectively (Farhood et al., 2019). Therefore, melatonin’s

employment in therapy of radiation–induced peripheral

neuropathy has been speculated as a method of choice for

oncopatients (Dheyauldeen et al., 2019). According to those

data, melatonin could improve sciatic nerve conduction

parameters, elevate total protein concentration and upregulate

the SOD and catalase’s activity in rat sciatic nerves when injected

intraperitoneally after irradiation.

In summary, melatonin prevents oxidative stress–induced

damage in nerves and preserves the myelin in case of exposure to

radiation, re–perfusion trauma following ischemia or

inflammatory response. This effect is based on the free radical

scavenging activity of melatonin through stimulation of

antioxidative enzymes, whose chaperone–like functions allow

to preserve the structural and functional integrity of proteins and

lipids in the biomembranes and cytosol. The described events

demand a precise signalling control provided by the melatonin

receptors.

Melatonin membrane receptor
signalling in Schwann cells

Two types of melatonin membrane receptors, MT1 and

MT2, have been discovered in mammals (Dubocovich and

Markowska, 2005). Chang and colleagues have stated that the

Schwann cells express both melatonin receptors, with

MT1 expression higher than MT2 in cultured Schwann

cells isolated from rat musculocutaneous nerves and

RSC96 cells (Chang et al., 2014). Immortalised RT4–D6P2T

rat Schwann cells have been shown to express MT1 and

MT2 receptors at similar levels (Tiong et al., 2020).

Schwann cells have reacted to melatonin treatment at low

concentrations with increased MT1 expression, thus

suggesting a dominating role of MT1 over MT2 in

proliferation and de–differentiation (Chang et al., 2014).

Contrariwise, high–dosed melatonin has suppressed the

expression of both receptors (Tiong et al., 2020). Stazi and

colleagues have also shown that the MT1 expression rises in

the Schwann cells and decreases in the axons upon sciatic

nerve injury, indicating that the MT1 receptor may be more

relevant than the MT2 isoform in neurorepair mediated by

melatonin (Stazi et al., 2021). MT1 and MT2 are G–protein

coupled receptors associated to Gi/o–proteins, additionally

the MT1 receptor can be coupled to a Gq–type protein

(Reppart et al., 1996). Activation of the melatonin receptors

triggers a set of intracellular signalling responses that lead to

an inhibition of the protein kinase A, MT2 is additionally able

to inhibit the guanylyl cyclase (GC) (Masana and Dubocovich,

2001; Tosini et al., 2014). Chen and colleagues have stated,

that the MT1 receptor can also provide signals through the

coupled Gs protein in HEK 293 cells (Chen L. et al., 2014). To

this extent, melatonin receptors recruit further downstream

messengers, cascades and transcription factors, thereby

involving other pathways such as PI3K/PKCζ/c–Raf/MEK/

ERK (Chen et al., 2020a), PKC (Soto-Vega et al., 2004), Ca2+/

CaMKs (Fukunaga et al., 2002; Turjanski et al., 2004), PI3K/

Akt (Kong et al., 2008), Sirt1/FOXO1 (Tocharus et al., 2014),

SHH (Pan et al., 2021), Hippo (Lo Sardo et al., 2017); for a

schematic overview of the pathways see Figure 6; see also

Table 1.

Are the melatonin receptors
important for Schwann cell function
and neurorepair?

Melatonin deficient pinealectomised rats have had a

significantly reduced number of axons and thinner myelin

sheaths in sciatic nerves, and restitution of melatonin

normalised these parameters (Turgut et al., 2005). Similar

phenomena have been observed in pinealectomised

chicken—in the sciatic nerve, partial degeneration and

vacuolisation of myelin sheaths could be observed (Turgut

et al., 2010). The majority of the inbred mouse strains are

either melatonin–deficient or secrete the hormone at an

insufficient concentration due to the mutated enzyme

machinery required for melatonin synthesis, and also the

daily concentration of melatonin varies between the strains

(Vivien-Roels et al., 1998). For example, the C75Bl6/J strain is

melatonin–deficient, (Vivien-Roels et al., 1998), while the A/J

strain produces melatonin (Betti et al., 2019). Interestingly,

both mouse strains have had differences in the process of

Wallerian degeneration (La Hoz et al., 2003). These combined

findings suggest that melatonin is important for Schwann cell

functioning and neurorepair. Furthermore, luzindole, a

selective melatonin receptor antagonist with high affinity to

the MT2 receptor, could block activation of the ERK1/

2 kinases, which together with melatonin are understood to

co–modulate Schwann cell functions (Stazi et al., 2021).

Luzindole has impaired regeneration at the neuromuscular

junction, but the inhibitor has not affected repair within the

sciatic nerve (Stazi et al., 2021), thus implying that melatonin

may have distinct functional outcome on regeneration for a

particular scenario. Possibly, the melatonin receptors

MT1 and MT2 are involved in the modulation of this

outcome. Of note, single MT2 and double MT1/

MT2 receptor deficient mutant mice have displayed a

higher pain sensitivity threshold than controls, whereas

knock–out of MT1 had no effect on nociception. However,
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the MT1–deficient mice have shown deficits in locomotion

(Weil et al., 2006). The published data on melatonin receptor

deficient strains are scarce and further in–depth

ultrastructural studies as well as cell culture–based growth

or/and proliferation assays using Schwann cells need to be

performed. In this respect, it would be important to discuss

whether melatonin affects the expression of growth factors

and other morphogens needed for neurorepair.

Melatonin affects glial cell–derived
neurotrophic factor expression in
Schwann cells

Interestingly, melatonin upregulates expression of the glial

cell–derived neurotrophic factor (GDNF) in Schwann cells to

support proliferation and de–differentiation (Tiong et al., 2020).

Similarly, melatonin has been demonstrated to upregulate GDNF

FIGURE 6
Melatonin signalling in Schwann cells. MT1 is the dominant receptor mediating melatonin signalling in Schwann cells via three coupled
G–proteins—Gi, Gs, and Gq, and also the Ras/Raf/MEK/ERK cascade. Activation of Gs leads to a conversion of adenosine triphosphate (ATP) to cyclic
adenosine monophosphate (cAMP) by the adenylyl cyclase (AC). In turn, cAMP activates protein kinase A (PKA) to phosphorylate mitogen activated
protein kinase (MEK) and Raf. MEK activation via Gs occurs through sequential phosphorylation of multiple kinases—beginning with cAMP,
followed by PKA, phosphatidylinositol–3–kinase (PI3K), phosphoinositide–dependent kinase 1 (PDK1), PKC, and MEK. Activation of Gs inhibits the
adenylyl cyclase and the corresponding downstream signalling. Gq, which is coupled to the MT1 receptor, activates phospholipase c (PLC) and
hydrolyses membrane–located phosphatidylinositol–4,5–biphosphate (PIP2) to diacylglycerol (DAG) and inositol–1,4,5–triphosphate (IP3).
IP3 activates a calcium channel in the endoplasmic reticulum and induces calcium release into the cytosol. DAG and calcium ions synergistically
activate protein kinase C (PKC), which can regulate also MEK. In summary, MEK seems to be the central hub of the melatonin–mediated signalling,
where all regulatory pathways converge. However, the upstream kinase of the MAPK cascade Ras becomes also activated by the MT1 receptor (the
mechanism is not fully clear). Melatonin upregulates SOX2 (Schwann cell de–differentiation), SHH and Gli1 (signalling components of the Sonic
hedgehog pathway mediating Schwann cell migration), as well as BDNF and GDNF (brain and glial derived neurotrophic factors supporting the
axo–glial interaction). Melatonin elevates the expression of parkin, which mediates mitophagy in Schwann cells, thus reducing the amount of
reactive species as well as oxidative stress. Collagen and chondroitin sulfate proteoglycans, which are components of the extracellular matrix, are
being downregulated, while the focal adhesion kinase (FAK) that regulates the interplay between a Schwann cell and its basal lamina is upregulated.
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in neural stem cells (Li et al., 2017), and in the C6 glioma cell line

(Armstrong and Niles, 2002). GDNF is responsible for axonal

support, survival, remyelination (Chen et al., 2018), and

migration of Schwann cells (Heermann et al., 2012) or their

precursors (Cornejo et al., 2010); the factor is induced in

Schwann cells of injured nerves (Xu et al., 2013). Although

many studies have shown that GDNF can promote

long–distance regeneration of axons after spinal cord injuries,

the uncontrolled expression of GDNF may have side effects

owing to an excessive axonal growth, aberrant sprouting, and

axonal entrapment resulting in a pathological hypertrophy of the

injured nerve (Eggers et al., 2019). For example, overexpression

of GDNF induced by lentiviral transduction of Schwann cells has

increased their cell density and altered their morphology, which

has led to impaired growth of axons and compromised

regeneration (Eggers et al., 2019). On the other hand, Eggers

and colleagues could methodologically create a precise and

controllable GDNF–gradient, which has supported nerve

regeneration (Eggers et al., 2019). Based on these combined

findings, one could ask whether the melatonin–mediated

activation of GDNF occurs in a precisely controlled fashion

such that the resulting GDNF gradient would stimulate, rather

than hinder, nerve regeneration. Contrariwise, does an

overstimulation with melatonin lead to impairment of axonal

growth? Overall, the melatonin–mediated GDNF signalling

seems to be a mechanism that controls migration of mature

or de–differentiating Schwann cells towards the site of lesion,

where they enable guided growth and compartmentalisation of

the regenerating axons. The melatonin–mediated GDNF

signalling, however, may be also supported by other

morphogens, such as the Hedgehog proteins, which altogether

promote the regenerative process by inducing responses in

migrating Schwann cells and growing axonal sprouts. GDNF

expression that co–modulates Schwann cell plasticity in

regeneration upon melatonin exposition is further supported

by the Sonic hedgehog cascade underlying Schwann cell

migration.

Melatonin regulates Schwann cell
proliferation and migration via the
Sonic Hedgehog pathway

Sonic Hedgehog (SHH) is a morphogen mediating signalling

pathways involved in mammalian organogenesis, e.g.

development of the neural tube (Patten and Placzek, 2000).

Aberrant activation of SHH may lead to development of

malignant cellular transformations and their migration (Gupta

et al., 2010; Riaz et al., 2019; Takabatake et al., 2019). SHH has

been considered responsible for proper axonal (re)growth in the

spinal cord and in the cortical projections (Harwell et al., 2012),

positioning and specification of the neurons in the spinal cord

(Yang et al., 2019; Danesin et al., 2021), and for the retinal and

cerebellar development. SHH has driven proliferation and

migration of different cell types, such as cancer cells (Sari

et al., 2018) and oligodendrocyte precursors (Merchán et al.,

2007). Furthermore, SHH has been demonstrated to play a

significant role in nerve injury: the morphogen has been

found upregulated in Schwann cells after nerve injury and has

stimulated expression of neurotrophic factors including the

brain–derived neurotrophic factor (BDNF) that supports

survival and neurite outgrowth in motoneurons (Hashimoto

et al., 2008). Additionally SHH, together with MAPK and

c–Jun cascades, has been shown to orchestrate differentiation

of mature Schwann cells into repair entities in injured nerves

(Moreau and Boucher, 2020), see also Table 1 and Figure 6. Pan

and colleagues have reported that melatonin influences Schwann

cell proliferation and migration via the SHH signalling pathway

after peripheral nerve injury, as they have observed an increased

expression of SHH and the glioma–associated oncogene Gli1 in

RSC96 Schwann cells following an in vitro melatonin treatment

(Pan et al., 2021). Since RSC96 is a transformed cell line, further

studies using primary Schwann cells need to be carried out to

confirm these results. Nevertheless, SHH has been shown to

stimulate in Schwann cells activation of c–Jun, a downstream

transcription factor of the MAP kinases (Wagstaff et al., 2020).

Therefore, the pathways via SHH, c–Jun, and MAPK seem to be

interconnected.

Melatonin regulates Schwann cell
proliferation and de–differentiation
via the Ras/Raf/ERK and MAPK
signalling cascade

According to Tiong and colleagues, de–differentiation and

proliferation of Schwann cells caused by melatonin rely on the

activation of the Ras/Raf/MEK/ERK (MAPK/ERK) pathway

(Tiong et al., 2020). Melatonin has been found to upregulate

the expression of the MAPK/ERK mediators Ras, p–B–Raf and

p–C–Raf, with unchanged expression levels of B–Raf and C–Raf,

whereas the p–ERK(p44)/ERK(p44) and p–ERK(p42)/ERK(p42)

levels were elevated, and in contrast, the p–SAPK–JNK(p54)/

SAPK–JNK(p54), p–SAPK–JNK(p46)/SAPK–JNK(p46) and

p–p38/p38 levels were downregulated dose–dependently in the

RT4 Schwann cell line (Tiong et al., 2020). SOX2, a transcription

factor and a marker for stem cells, was also elevated in

RT4 Schwann cells treated with melatonin, indicating that

melatonin induces de–differentiation of Schwann cells (Tiong

et al., 2020; Govindasamy et al., 2022). Moreover, Chang and

colleagues have determined that melatonin simulates

proliferation of RSC96 cells by increasing the expression levels

of p–ERK1/2 (Chang et al., 2014). The experiments on

Schwannoma cells conducted by Tiong et al. and Chang et al.

provide first insights into the intracellular melatonin signalling,

but it is questionable whether the conclusions can be transferred
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to non–transformed Schwann cells. Indeed, in perisynaptic

Schwann cells at the neuromuscular junction as well as in

Schwann cells along the axons of the regenerating sciatic

nerve, MT1 has become upregulated, thus leading to an

elevated phosphorylation of ERK (Stazi et al., 2021). Although

the Schwannoma cells resemble only partially Schwann cells,

both cell entities respond to melatonin in a similar fashion.

How does the MAPK/ERK pathway become activated by

melatonin? Multiple indirect cascades that do not require Ras

have been proposed to explain the activation of the MAPK/ERK

pathway by melatonin. Thus, Chen and colleagues have found

that in HEK293 cells the melatonin receptors can be coupled to

Gs proteins (Chen L. et al., 2014). This coupling leads to

activation of the MEK kinase via the PKA/PI3K/PDK1/PKC

cascade, yet the latter can be counteracted by an inhibitory

G–protein which associates with the melatonin receptors

(Chen L. et al., 2014). Melatonin has also activated ERK via

the MT1 or MT2 receptor or the MT1/MT2 heterodimer in

HEK293 and NS–1 cells employing the Gβγ/PI3K/PKCζ/c–Raf/
MEK/ERK cascade (Chen et al., 2020a). In this respect, Ras,

despite its involvement in the melatonin–mediated signalling in

Schwann cells, seems to be dispensable for the activation of

MAPK/ERK via the melatonin receptors (Table 1 and Figure 6).

The Ras/Raf/MEK/ERK signalling pathway has been

postulated as a regulator of cell differentiation (Rodríguez-

Carballo et al., 2016; Meng et al., 2018), however its sustained

activation has induced an opposite effect in Schwann cells,

namely de–differentiation (Harrisingh et al., 2004). Cervellini

and colleagues have noted that persistent activation of the

MAPK/ERK pathway in Schwann cells has stimulated

myelination, but in the case of an excessive activation of this

pathway de–myelination and de–differentiation of Schwann cells

have occurred (Cervellini et al., 2018). Knock–out of ERK1/

2 used as a model by Newbern and colleagues has turned out to

inhibit myelination of axons, the morphology of the nerves was

altered, the ratio of myelinated to non–myelinated axons shifted

in favour of the non–myelinated fibres, however no reduction in

Schwann cell number occurred, and the myelin basic protein

(MBP) and myelin–associated glycoprotein (MAG) were

upregulated, whereas the pluripotency related and glial

differentiation control proteins Id2 and Id4 were

downregulated, all of which has been interpreted by the

authors as a premature onset of myelination (Newbern et al.,

2011). Surprisingly, this has had little effect on oligodendrocytes,

as they have exhibited even more intricate morphology and

myelin marker expression than the control littermates

(Newbern et al., 2011). Of note, Suo and colleagues have

determined that inhibition of the MAPK/ERK pathway by the

PD0325901 inhibitor boosts differentiation of neural progenitor

cells to oligodendrocytes and promotes myelination, what the

authors have proposed as a possible target for therapy of

demyelinating diseases such as multiple sclerosis (Suo et al.,

2019). Thus, the selective manipulation of the MAPK/ERK

pathway may determine the fate of a particular cell

population (Lee et al., 2014; Ryu et al., 2015), specifically

whether the cells should de–differentiate and proliferate or

remain in an arrested cell cycle of terminal differentiation. To

sum up, the MAPK/ERK pathway suppresses differentiation, and

thus, myelination of Schwann cells, to keep them in a

progenitor–like state, capable of high proliferatory activity and

being able to differentiate further into distinct subtypes.

Nevertheless, the effects of MAPK/ERK depend on the

intensity of the activation of this cascade, and different

outcomes are possible (Altunkaynak et al., 2018). The role of

the MAPK/ERK signalling in the myelination process could

explain the findings on improved myelination in injured

sciatic nerves in vivo (Zhang et al., 2022).

The MAPK/ERK pathway facilitates regulatory influence on

gene expression through recruitment of downstream

transcription factors—it is known that melatonin can regulate

the activity of the c–Jun N–terminal kinases (JNKs) and the

transcription factor c–Jun in traumatically injured mouse brains

(Rehman et al., 2019), and possibly in breast cancer cells (Chan

et al., 2002). The role of c–Jun in myelination, programmed cell

death and nerve regeneration is an interesting topic, as it has been

described in several studies. The transcription factor c–Jun has

been shown to regulate glial phagocytosis of axonal debris

through activation of the draper protein in Drosophila

melanogaster (MacDonald et al., 2013), autophagy and cell

death through the regulation of pro– and anti–apoptotic

proteins Bcl–2 associated X–protein (Bax), B–cell lymphoma 2

(Bcl–2) (Bogoyevitch et al., 2010). Furthermore, pronounced

c–Jun activity has been observed in neuropathies and

peripheral nerve lesions (Fazal et al., 2017) and suggested to

have both beneficial (Fontana et al., 2012; Hantke et al., 2014;

Wagstaff et al., 2020) and maladaptive functions (Parkinson

et al., 2008; Huang et al., 2015; Nunes et al., 2021) in

regenerating peripheral nerves. As it has been claimed by

Blom and colleagues, c–Jun activation in Schwann cells is

JNK–independent in the case of peripheral nerve injury and

the authors have proposed that other MAPKs are also capable of

stimulating c–Jun (Blom et al., 2014). Another study has shown

that c–Jun had delayed the onset of myelination (Parkinson et al.,

2008) and controlled the phenotypical changes in marker’s

expression patterns inside the Schwann cells as they

de–differentiate, also controlled neuronal survival, promoted

axonal growth and myelin degradation in cooperation with

the macrophages during peripheral nerve regeneration

(Arthur-Farraj et al., 2012). Activation of c–Jun occurs

through N–terminal phosphorylation by ERK1/2 (Leppä et al.,

1998; Deng et al., 2012) or predominantly by JNKs at Ser63 and

Ser73 (Ruff et al., 2012). c–Jun has been determined to be

essential for the regeneration of the mouse facial nerve in

deletion experiments performed by Ruff and colleagues,

however substitution of the phosphoacceptor sites has shown

moderate effects on nerve regeneration, thus suggesting that
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activation of c–Jun by JNKsmight not be the primarymechanism

of its regulation during peripheral nerve regeneration (Ruff et al.,

2012). Other sites that can be phosphorylated in c–Jun are Ser91,

Ser93 and Ser95 (Reddy et al., 2013). Phosphorylation at multiple

sites has been determined to initiate pro–apoptotic behaviour of

cerebellar granule neurons (Reddy et al., 2013). The

Ser95–phosphorylation has been observed to occur after

continuous exposure of human embryonic kidney cells to

stress, induced by etoposide, which has been proposed as a

sensory mechanism of protection against the genotoxicity

(Vinciguerra et al., 2008).

Conclusion

The Schwann cells repair the injured nerve by initiating

extracellular matrix reorganisation within the injured region.

Each Schwann cell modifies its basal lamina as to accommodate

the re–growing axons and, at the same time, clears myelin debris

and modulates the composition of the surrounding endoneurium

for regrowing axons. In the process of regeneration, the Schwann

cells differentiate into an ensemble of various cell types including

the myelinating, non–myelinating, phagocytic, repair, and

mesenchyme–like phenotypes that provide control upon the

regeneration and remyelination process. Since neurorepair

requires accurate timing and precision of signalling cascades,

the circadian control of Schwann cell functions might represent

an essential aspect of neuroregeneration. Indeed, the question of

whether an intrinsic rhythm can govern the Schwann cells was

raised long time ago. Although the direct experimental evidence

for an intrinsic rhythm is missing, the Schwann cells in

regenerating nerves respond to alterations in the external

clock and react time–dependently to application of melatonin.

Melatonin induces remarkable changes in Schwann cells—the

hormone promotes de–differentiation, migration, and reduces

glial scar formation. These effects seem to influence not only the

Schwann cells but also the axo–glial interaction, which is

essential for regeneration and remyelination.
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