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Abstract: Closely related species have similar reproductive behaviors and recognition systems,
which contribute to interspecific interactions. However, few studies have explored interspecific
reproduction choice and mating in termites. We investigated whether hybridization between two
sympatric termites, Reticulitermes flaviceps and R. chinensis, occurs under laboratory conditions.
We found that frequencies of acceptance were significantly higher than those of agonism between
interspecific partners. There were no significant differences in frequencies of tandem and mating
behaviors between intraspecific and interspecific partners. However, the allogrooming frequencies of
interspecific partners were significantly higher than intraspecific partners. There were no significant
differences in the duration of tandem, allogrooming, or mating behavior at each time between
conspecific partners and heterospecfic partners. Genotyping analyses further showed that both
intraspecific and interspecific mating were able to produce offspring. We conclude that interspecific
hybridization does occur between two termite Reticulitermes species under laboratory conditions.
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1. Introduction

Hybridization between relative species is considered to be a potential way to increase the chance
of mating and reproduction for individuals that fail to mate with intraspecific partners. Closely
related species often have similar reproductive behaviors and recognition systems, which contribute
to interspecific interactions. However, behavioral preference for conspecifics may form some barrier
limiting interaction and results in minimum chances of gene flow between species [1–3]. Behavioral
observations have suggested that preferences for conspecific may be plastic [1,4]. It can be minimized
or reversed depending on the fitness of offspring and environments [1–3]. While the preference for
conspecifics plays a role in keeping a pure gene pool in each species, its breakdown may facilitate
hybridization between species [4].

In previously described cases of interspecies mating in termites, the two productive individuals
from different species were forced to pair, and they had no chance to choose their partners between
interspecifics and intraspecifics [5,6]. For example, interspecific mating occurred between Nasutitermes
corniger Motschulsky and Nasutitermes ephratae Holmgren in lab [6]. Similarly, interspecific mating
was found in invasive species Coptotermes formosanus Shirak and Coptotermes gestroi Wasmann in south
Florida [7]. The above cases indicate that hybridization between two relative termite species were able
to produce live offspring. In termites, the sex-pairing pheromone is similar in sibling species [5,6,8],
and neither queens nor kings possess external sclerotized genitalia, which results in no physical barriers
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to interspecies mating [9]. The indications of preferences for conspecifics may be largely absent in
many termite sibling species. If so, it may be possible to create a termite colony between interspecies.

Reticulitermes flaviceps Oshima and Reticuliterme chinensis Snyder are consistently recognized as the
two distinct species on the basis of multiple criteria including morphology, biology and mitochondrial
genomic characteristics [10,11]. R. flaviceps and R. chinensis share habitat, including nesting and
foraging sites. Despite asynchronous peak flights, there is some overlap in their dispersal flight seasons.
Therefore, we speculate that reproductive individuals of the two termite species may hybridize when
they encounter each other in nature.

To demonstrate our speculation, frequencies and duration of several behaviors, which were
acceptance, agonism, tandem, allogrooming interspecies, and intraspecies mating, were measured
and compared in R. flaviceps and R. chinensis. We also analyzed genotypes of parents and offspring
from five colonies built by interspecific partners and intraspecific partners using five microsatellite
loci. Our results will provide new insights into reproductive barriers and hybridization between the
sympatric termite species.

2. Materials and Methods

2.1. Termites

All R. chinensis and R. flaviceps colonies used in this study were collected from Shizi hill, Wuhan city,
Hubei province, China from March to April (swarming seasons) of 2018 (Table S1). Images of R. chinensis
and R. flaviceps differ in having black or yellow pronota, respectively. Alates living in dead logs were
brought to the laboratory and kept under moisture 75% at a temperature of 25 ◦C to promote dispersal
flight. Subsequently, individual alates were removed from dead logs and their genders were identified
via the shape of the seventh abdominal sternite [12,13]. Individuals with the same sex from the same
colony in each species were placed in Petri-dishes with a small piece of wood and a moistened filter
paper for pairing experiments commencing of the day when nestmates in their home colony disperse.

2.2. Experimental Setup

Five R. flaviceps colonies were labeled A1 to A5, and five R. chinensis colonies were labeled B1 to B5.
We set five groups: A1B1, A2B2, A3B3, A4B4 and A5B5. Each group was composed of a R. flaviceps couple
and a R. chinensis couple. Male individuals for both species were marked with white color (uni-Paint
markers PX-21, Mitsubishi Pencil Company, Tokyo, Japan) on their abdomens. Each group was
placed into 60 mm Petri-dishes with moistened filter paper. We established the following experiment:
(1) the behavioral observation of agonism, acceptance, tandem and allogrooming. Videos (3 min long)
were taken with a high definition (HD) camera (Nikon D7000 with 60 mm lens, Tokyo, Japan) at
four times after the groups were established, at 10 min, 30 min, 50 min and 70 min, because the
identification and tandem behavior of dealates was duration half hour to one hour after encountering
each other. Six replicates for each group were used. (2) After above behavior finished, four group
including A1B1, A2B2, A3B3, and A4B4 were used in the behavioral observation of mating. One-hour
videos were taken by every two hours. We did 2 replicates for each group and thus there were
8 replicates. (3) After the filming was finished, the dealates were placed into a 120 mL transparent
cylindrical vial (φ = 3 cm) with moistened filter paper and pine wood at 20–26 ◦C in constant darkness.

2.3. Behavioral Observation

The reproductive behavior of termites from swarming to mating has been described in previous
studies [9,14]. In this study we viewed the videos to determine the following behaviors. (1) Agonism:
a quick attack with open mandibles towards an alien with intension to bite followed by return to
original state. (2) Acceptance: if there is no aggression between encountering individuals, we assume
that they accept each other. (3) Tandem: the male follows the female and antennates the posterior part
of the female abdomen when searching for an adequate nesting site. (4) Allogrooming: we define
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a cleaning of each other’s bodies as a nuptial gift for mating. (5) Mating: Termites copulate in the
opposite position by joining their abdominal ends.

If the events of tandem/allogrooming/mating behavior continued more than 5 s, the behavior
was considered valid. If the interval time was less than 3 s between two events of tandem/mating,
the behavior was recorded as one event. General Linear Mixed Models (GLMM) were used to
statistically analyze behavioral frequency difference between interspecies and intraspecies, and
performed using SPSS v19 (IBM Corp., Armonk, NY, USA). For mixed-effects models, the groups
were considered to be random effects and the type of behaviors were considered to be a fixed effect.
We applied an independent sample t-test to analyze the duration of behaviors between interspecies and
intraspecies. All values were expressed as the mean ± SEM. The p value less than 0.05 was considered
to be statistically significant.

2.4. Genotyping Analyses

To evaluate hybridization or conspecific mating between R. chinensis and R. flaviceps, we analyzed
genotypes of the parents and their offspring from the five colonies built by interspecific partners
and intraspecific partners using five microsatellite loci. The colonies were assayed three months
after post-colony-establishment. DNA was extracted from each individual (detailed sample data see
Table S2) using a TIANamp Genomic DNA Kit (Tian Gen biotech Co., Ltd., Beijing, China) according to
the recommendations of the manufacturers. Each DNA sample was amplified by PCR and performed
using five pairs of microsatellite primers: Rs03, Rs78, Rs76, Ra144 and Ra141 (Table S1) and the
conditions for each PCR have been improved base on the research conducted by Wu et al. [13]. A color
marker was added to 5′-primers and all primers synthesized by Invitrogen Trading (Shanghai, China)
Co., Ltd. GeneMapper v4.0 (Applied Biosystems, Foster City, CA, USA) and Peak Scanner v1.0 (Applied
Biosystems, Foster City, CA, USA) were used for analysis. Both the R. flaviceps and R. chinensis are
non-parthenogenetic species [15]. The offspring produced by sexual reproduction were diploid. Thus,
we estimated the offspring produced by hybridization or conspecific mating via microsatellite loci.

3. Results

• Agonism reduced mating frequency, while acceptance represents more possibility of mating when
interspecific reproductives encounter each other. Our results indicated that the frequencies of
acceptance were significantly higher than those of aggression between interspecific partners when
they encountered each other (Figure 1; t = −8.35, df = 8, p < 0.0001).
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Figure 1. The frequencies of agonism and acceptance between the interspecific partners in the termites
R. chinensis and R. flaviceps. The frequencies of acceptance are significantly higher than those of agonism
between the interspecific partners (t = −8.35, df = 8, p < 0.0001). *** indicates p < 0.001.
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• Tandem behavior showed that conspecific mating preference was indistinct between R. chinensis
and R. flaviceps. Similar to tandem behavior in intraspecies, the frequencies of tandem behavior in
interspecies decreased with an increase in time, which began with encountering each other and
ended after one hour. The frequencies of both conspecific (Figure 2A; GLMM: F = 12.24, p < 0.001)
and interspecific tandem behavior (Figure 2A; GLMM: F = 19.25, p < 0.001) were significantly
different during each time of observation. However, there were no significant differences in the
tandem frequencies at each time of observation between conspecific and heterospecific species
in the laboratory (Figure 2A; GLMM: F = 0.34, p = 0.56). Similarly, there were no significant
differences in tandem duration at each time between conspecific partners and heterospecific
partners (Figure 2B; t = 2.31, p = 0.22). Our results indicated that the preferences for conspecific
individuals were absent in tandem behavior.
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Figure 2. (A): The frequencies of tandem behavior observed in intraspecific and interspecific partners.
(B): The duration of tandem behavior per time (unit: min). There were no significant differences in
frequencies of tandem behavior between intraspecific and interspecific partner at each observing point
(GLMM: F = 0.34, p = 0.56). Similarly, there were no significant differences in the duration of tandem
between them (t = 2.31, p = 0.22).

• When conspecific and interspecific partners were present in the same arena, we found that there
were the similar frequencies of allogrooming in early encountering between interspecies and
intraspecies (Figure 3A; t = 0.43, p = 0.67). The allogrooming frequencies of both interspecies
and intraspecies increased with time, whereas the allogrooming frequency of interspecies
was almost twice as much as that of intraspecies (Figure 3A; GLMM: F = 25.85, p < 0.001).
Significantly higher allogrooming frequency was found in interspecies as compared with
interspecies (Figure 3A; GLMM: F = 6.39. p = 0.012). Although the allogrooming duration
in interspecific partners was longer than intraspecific partners, no significant differences were
observed between them (Figure 3B; t = −0.96, p= 0.34). These results suggested that the two
species preferred interspecific versus intraspecific partners, based on allogrooming duration and
frequency under laboratory conditions.
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Figure 3. (A): The frequencies of allogrooming in intraspecific and interspecific partners.
(B): The duration of allogrooming behavior per time (unit: min). The allogrooming frequencies
in interspecific partners is significantly higher than those in intraspecific partners (GLMM: F = 6.39,
p = 0.012), but there were no significant differences in the duration of allogrooming between them
(t = −0.96, p = 0.34).

• Both tandem and allogrooming are associated with courtship, which allows termites to prepare
for mating. We observed multiple occurrences of mating in each nest after pair formation. Mating
behavior happened multiple times (average 2.34 ± 0.83 times, including mating of intraspecies
and interspecies) within 1 h (see Supplementary Movie Video S1). Strikingly, both conspecific
and interspecific mating was commenced over a short time. Our result indicated that there were
56 mating behavior in period of observation, 39.29% (22/56) mating occurred in interspecies couples
and 61.71% (34/56) mating occurred in intraspecies couples. However, there were no significant
differences in mating frequency between conspecific and heterospecific partners (Figure 4A;
GLMM: F = 2.53, p = 0.13). There were no significant differences in the mating duration between
intraspecies and interspecies also (Figure 4B; t = 1.27, p = 0.21). Genotyping analyses of larvae
from artificial colonies identified the number of larvae produced by hybridization and conspecific
partners in artificial colonies (Table S3). Although the accurate proportion of hybrid offspring in
colonies was unknown because of limited diagnostic alleles, we still proposed that in the case of
intraspecific mating being present in a colony, the interspecies mating can also produce living
offspring in termites (Figure 5).
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4. Discussion

The dynamics of hybridization among populations depends on behavioral interactions among
individuals [16,17]. Our results showed that agonism between dealates was infrequent and transitory
when interspecies individuals encountered each other during dispersal flight. A lack of preferences
for conspecifics in the search for partners does not easily form a pre-mating barrier according to this
study, and even preference for heterospecific partners is found in allogrooming behavior. Our results
suggested that the pre-mating isolation mechanism may be not prevent hybridization between
R. flaviceps and R. chinensis, which facilitates gene flow between the two species.

Preference for conspecifics is a type of assortative mating which is considered to be a mechanism to
prevent gene exchange between distinct species or divergent populations [2,18]. Previously, assortative
mating has been used to describe a particular form of mate choice in which individuals select mates
on the basis of homologous genotypic or phenotypic traits [19–22]. It can contribute to the genetic
isolation of two populations that come into a hybrid zone and prevent them from merging back into
a hybrid population [23,24]. However, these mechanisms can be plastic, and an individual can either
accept or reject a potential mate depending on the fitness of their offspring. For example, spadefoot
toads, Spea bombifrons Cope and Spea multiplicata Cope in the southwestern United States preferentially
mate with heterospecific partners under conditions of insufficient water, and hybrids thus gain a fitness
advantage [1]. If partner resources in intraspecies are rare [25] or predators exist, choosers may favor
to mate with heterospecific partners [26].

Swarming behavior of alates is important for reproductive success in termites, certainly along with
high risk. During swarming, many alates leave the natal colony and randomly disperse, but less than
1% are able to found a new colony due to predators, dispersal distance, sex ratios, and other factors [27].
Thus, overzealously seeking conspecific out-breeding partners may result in the loss of an individual’s
mating opportunities. For dealate termites, failing to mate means entomopathogenic infections [28],
capture by natural enemies, and loss of all fitness. However, accepting a heterospecific partner
permissively may allow an individual to experience higher fitness costs because of incompatible
epistatic interactions between genes from different species. Although hybrid offspring may be
sterile, the established heterospecific colonies many obtain high fitness that would promote genetic
diversity [5,6]. In this study, no preference for conspecifics in mating behavior and genotyping strongly



Insects 2020, 11, 14 7 of 9

demonstrated that hybridization happened between the two sympatric Reticulitermes species under
laboratory conditions when they encountered each other.

Interspecific mating increases heterozygosity, decreases inbreeding depression, and facilitates the
maintenance of sexually antagonistic variation [29]. It can result in introgression from one population
into another and can drive divergence during speciation with the adaptation process [30]. However,
there should be mechanisms for maintaining independent species in these species when genetic
material strides across the species boundary. For example, hybridization is favored in females but
not in males, and hybrid offspring mating prefers one species of parents in the ants Formica aquilonia
Yarrow and Formica polyctena Foerster [31–33]. Similar patterns might also be present in termites when
hybridization occurs, but new speciation through hybridization is unusual. Other studies showed that
after a closed and monogamous hybrid colony was established, colony life was not limited by food
availability [34] or lifespan of founder inconformity [35,36]. Therefore, replacement and backcross can
be continued in a colony if hybrid offspring are fertile, and meanwhile continuous backcross may be
able to make the genetic construction of the hybrid colony come back to the original species’ gene pool.
In other words, hybridization makes genetic exchange between species possible. However, lifetime
asymmetry of the founder may result in backcross which can prevent gene differentiation and then
eliminate the speciation.

5. Conclusions

Our studies showed that interspecific hybridization occurred between two sympatric Reticulitermes
species under laboratory conditions. With interspecific hybridization, termites may increase the mating
opportunities for dealates and may transfer their genes to neighbor species. The lack of preference
for conspecifics in mating behavior may also benefit themselves because the offspring produced by
hybridization may obtain heterosis, such as strong immunity [28] and greater escape speed from natural
enemies [7,37]. We predict that hybridization between these two sympatric Reticulitermes species
might happen in nature. This needs to be examined and proven or disproven in field observation
and experimentation.
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