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Abstract: Auto-detection of cerebral aneurysms via convolutional neural network (CNN) is being
increasingly reported. However, few studies to date have accurately predicted the risk, but not
the diagnosis itself. We developed a multi-view CNN for the prediction of rupture risk involving
small unruptured intracranial aneurysms (UIAs) based on three-dimensional (3D) digital subtraction
angiography (DSA). The performance of a multi-view CNN-ResNet50 in accurately predicting the
rupture risk (high vs. non-high) of UIAs in the anterior circulation measuring less than 7 mm in
size was compared with various CNN architectures (AlexNet and VGG16), with similar type but
different layers (ResNet101 and ResNet152), and single image-based CNN (single-view ResNet50).
The sensitivity, specificity, and overall accuracy of risk prediction were estimated and compared
according to CNN architecture. The study included 364 UIAs in training and 93 in test datasets.
A multi-view CNN-ResNet50 exhibited a sensitivity of 81.82 (66.76–91.29)%, a specificity of 81.63
(67.50–90.76)%, and an overall accuracy of 81.72 (66.98–90.92)% for risk prediction. AlexNet, VGG16,
ResNet101, ResNet152, and single-view CNN-ResNet50 showed similar specificity. However, the
sensitivity and overall accuracy were decreased (AlexNet, 63.64% and 76.34%; VGG16, 68.18% and
74.19%; ResNet101, 68.18% and 73.12%; ResNet152, 54.55% and 72.04%; and single-view CNN-
ResNet50, 50.00% and 64.52%) compared with multi-view CNN-ResNet50. Regarding F1 score, it was
the highest in multi-view CNN-ResNet50 (80.90 (67.29–91.81)%). Our study suggests that multi-view
CNN-ResNet50 may be feasible to assess the rupture risk in small-sized UIAs.

Keywords: intracranial aneurysm; convolutional neural network; angiography

1. Introduction

Intracranial aneurysms (IAs) have been automatically detected using various algo-
rithms based on magnetic resonance angiography (MRA) or computed tomography angiog-
raphy (CTA). Previous works in the field have been successful at diagnosing and detecting
aneurysms [1,2]. It is important to decide whether or not to treat unruptured intracranial
aneurysms (UIAs) as well as automatically detect aneurysms clinically. Although UIAs
are associated with a relatively lower rupture rate of less than 2%, ruptured aneurysms
increase the mortality rate above 50% within the first six months, and morbidity is a major
issue [3–5]. Moreover, higher rates of adverse effects (10%) after the treatment [6,7] also
interfere with the treatment of UIAs, in particular, asymptomatic aneurysms before rupture.
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Therefore, it may be more helpful to select UIAs indicated for treatment based on risk
classification using machine learning algorithms rather than simple automatic diagnosis [8].

Previously, we introduced single-view CNN for diagnosing aneurysm rupture (vs.
UIA) based on three-dimensional (3D) digital subtraction angiography (DSA), which had
a sensitivity of 78.76%, a specificity of 72.15%, and an overall diagnostic accuracy of
76.84% [5]. However, risk prediction based on a single input image may have limited
value in clinical settings because physicians acquire multiple 3D-DSA images in multiple
directions to determine the treatment plan, instead of single images. Moreover, in the
previous study, there was no study that evaluated the risk of rupture in only UIAs. Multi-
view CNN allows clinicians to draw conclusions based on various scanned images in
multiple directions. Accordingly, compared with single-view CNN, multi-view CNN may
be more useful in treatment decision-making for UIAs. Here, we propose a multi-view
CNN in an effort to predict the rupture risk (high vs. non-high) of small-sized UIAs in the
anterior circulation using 3D-DSA images.

2. Materials and Methods
2.1. Datasets

In this study, 3D-DSA images were used to develop the CNN algorithm. The images
were acquired consecutively at three hospitals. Two datasets were prepared from the
acquired images of training and test datasets. The training dataset included UIAs from
January 2012 to December 2017, and the test dataset included those acquired from January
2018 to December 2019. Inclusion criteria were (1) adult patients more than 18 years old;
(2) saccular aneurysm; (3) anterior circulation aneurysm; and (4) small aneurysms less than
7 mm in maximal diameter [5]. We excluded (1) fusiform and dissecting aneurysms; (2)
traumatic aneurysms; (3) posterior circulation aneurysms; and (4) treated aneurysms by
clipping or coiling.

A total of 457 UIAs consisting of 364 UIAs of the training dataset and 93 UIAs of
the test dataset were included. Baseline characteristics of the two datasets are presented
in Table 1. The size of the aneurysms was 5.2 ± 1.2 mm in the training dataset and
5.3 ± 1.3 mm in the test dataset. The UIAs in the training dataset were located in anterior
cerebral artery (ACA) (n = 78, 21.4%), middle cerebral artery (MCA) (n = 115, 31.6%), and
internal carotid artery (ICA) (n = 171, 47.0%). The distribution of the UIAs in the test
dataset is as follows: ACA, n = 15 (16.1%); MCA, n = 40 (43.0%); and ICA, n = 38 (40.9%).
The number of high-risk UIAs included 133 (36.5%) in the training and 44 (47.3%) in the
test datasets. A total of 251 and 206 images were obtained from Siemens Healthcare and
Philips Medical System, respectively.

We developed an automatic risk classification system for small-sized UIAs based on
representative images with six directions acquired with 3D-DSA [5]. High-risk aneurysms
were defined as (1) those with an irregular aneurysm wall with small bleb(s); (2) secondary
aneurysms protruding from the fundus of saccular aneurysm; (3) bi- or multilobular
aneurysms; and (4) those with an aspect ratio ≥ 1.6 [9,10] (Supplemental Figure S1). Risk
interpretation of the UIAs was conducted by two blinded readers (KHC and JPG). Disagree-
ments were resolved by the third reviewer (JKL) (Supplemental Data). Image acquisition
and post-image processing are presented in the Supplemental Data. Briefly, DSA proce-
dures were conducted with the Axiom Artis Zee (Siemens Healthcare, Erlangen, Germany)
or the Allura Xper FD 20/20 (Philips Medical Systems, Best, The Netherlands) with stan-
dard injection protocols as described previously [5]. Post-processing of the 3D-DSA was
conducted in an independent workstation equipped with InSpace 3D software [11–13].
The study design was listed on Clinical Research Information Service (registration number
KCT0005084) prior to initiation of the study.
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Table 1. Clinical and radiological characteristics: training vs. test datasets.

Variables Training Dataset (n = 364) Test Dataset (n = 93)

Clinical findings
Female 206 (56.6%) 54 (58.1%)

Age, years 57.2 ± 14.5 56.8 ± 15.3
Hypertension 97 (26.7%) 28 (30.1%)

Diabetes mellitus 35 (9.6%) 10 (10.8%)
Hyperlipidemia 42 (11.5%) 10 (10.8%)

Smoking 48 (13.2%) 12 (12.9%)
Radiologic findings

High-risk UIA 133 (36.5%) 44 (47.3%)
Size (mm) 5.2 ± 1.2 5.3 ± 1.3

Aneurysm location
Anterior cerebral artery 78 (21.4%) 15 (16.1%)
Middle cerebral artery 115 (31.6%) 40 (43.0%)
Internal carotid artery 171 (47.0%) 38 (40.9%)

Imaging platform
Siemens Healthcare 210 (57.7%) 41 (44.1%)

Philips Medical Systems 154 (42.3%) 52 (55.9%)

2.2. Multi-View Convolutional Neural Networks

We used a multi-view CNN architecture to assess the rupture risk in small-sized UIAs.
Regions of interest (ROIs) including the aneurysms were selected by the neurosurgeon
or neuroradiologist, extracted, and the cropped ROI was entered in parallel as input for
the six neural networks, followed by convolution and pooling of the layers in each neural
network. The multi-view CNN received six three-channel 224 ××× 224-sized input images,
extracted from each different ROI view [5]. In the end, the pooled view was used to merge
all six neural networks into a single one (Figure 1 and Supplemental Figure S2). More
specifically, each view model in the multi-view CNN was initialized with the weights
pre-trained from single-view CNN after feature extraction. During the multi-view CNN
training, each view model weight was frozen, whereas the pooled layer view was fine-
tuned. Hyper-parameters are combinations of values that are defined for training on CNN.
The learning rate scheduler was applied. The learning rate varies depending on the setting
of the learning rate scheduler. The learning rate warm-up was 5 epochs, and cosine decay
was introduced after reaching the maximum learning rate. The total epoch was set to 100,
and the cross-entropy function was selected as the loss function. Adam was used for the
optimizer [14]. Additionally, all weights were initialized with ImageNet weights [15]. The
batch size was set as 32. All training in the multi-view CNN was conducted with each
aneurysm and not each image. Finally, label smoothing was added for the training [16].

ResNet50, AlexNet, and VGG16 were used as the components of multi-view CNN
architecture for risk classification. ResNet101 and ResNet152 were then compared with
ResNet50. Additionally, the diagnostic performance of multi-view CNN-ResNet50 was
compared with that of single-view CNN-ResNet50. Pytorch was used as the main training
framework [17].

2.3. Statistical Analysis

Descriptive analysis is presented as the numbers of subjects (percentage) for discrete
and categorical variables and mean with standard deviation (SD). Two-by-two tables were
generated to assess sensitivity, specificity, and overall accuracy [11]. The degree of agree-
ment between the two readers was assessed using the k test (Supplemental Data) [14].
Confidence interval (CI) estimation was performed using the binomial proportions confi-
dence interval, specifically the Clopper–Pearson interval, in which the success probability
was estimated by the total number of trials and the number of successful trials based on
the cumulative probabilities of the binomial distribution. A p-value < 0.05 was considered
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statistically significant. The analysis was conducted using SPSS version 19 (IBM, Armonk,
NY, USA) and MedCalc (www.Medcalc.org, accessed on 1 February 2021).

Figure 1. Overview of our proposed multi-view CNN architecture and simplified example of the
convolution and pooling layers.

3. Results
3.1. ResNet50 vs. AlexNet vs. VGG16

Comparative analyses of three different multi-CNN models of ResNet50, AlexNet,
and VGG16 were performed. During the training, we achieved over 99% accuracy
(Supplemental Figure S1). For the test, we evaluated every single model from each epoch,
and each model in 93 UIAs to identify the best model (Table 2). Multi-view CNN-ResNet50
demonstrated a sensitivity of 81.82 (66.76–91.29)%, a specificity of 81.63 (67.50–90.76)%,
and an overall accuracy of 81.72 (66.98–90.92)% (Table 3 and Figure 2). ResNet50 exhibited
superior sensitivity in terms of risk prediction compared with other types of CNNs such as
AlexNet (63.64 (47.74–77.17)%) and VGG16 (68.18 (52.29–80.93)%), but similar specificity.
In terms of overall accuracy, ResNet50 was better than AlexNet (76.34 (62.31–88.19)%) and
VGG16 (74.19 (58.93–85.60)%).

Table 2. Accuracy of multi-view CNN-ResNet50 for the prediction of rupture.

Diagnosis

CNN ResNet50 Classification

High Risk Non-High Risk Total
High risk 36 8 44

Non-high risk 9 40 49
Total 45 48 93

www.Medcalc.org
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Table 3. Binary classification of rupture risk involving small UIAs in the test dataset using various CNN architectures. CI,
confidence interval.

Type Models Sensitivity (95% CI) Specificity (95% CI) Overall Accuracy
(95% CI) F1 Score (95% CI)

Multi-view ResNet50 81.82 (66.76–91.2)% 81.63 (67.50–90.76)% 81.72 (66.98–90.92)% 80.90 (67.29–91.81)%
Multi-view AlexNet 63.64 (47.74–77.17)% 87.76 (74.54–94.92)% 76.34 (62.31–88.19)% 71.79 (55.13–85.00)%
Multi-view VGG16 68.18 (52.29–80.93)% 79.59 (65.24–89.28)% 74.19 (58.93–85.60)% 71.43 (55.42–84.28)%
Multi-view ResNet101 68.18 (52.29–80.93)% 77.55 (63.01–87.75)% 73.12 (57.71–84.66)% 70.59 (55.42–84.28)%
Multi-view ResNet152 54.55 (39.00–69.31)% 87.76 (74.54–94.92)% 72.04 (58.18–85.68)% 64.86 (47.46–79.79)%
Single-view ResNet50 50.00 (34.79–65.21)% 77.55 (63.01–87.75)% 64.52 (48.93–78.45)% 57.14 (40.82–73.69)%

Figure 2. Comparative analyses of multi-view CNN-ResNet50 for predicting rupture risk type involving small UIAs under
various conditions: other types of AlexNet and VGG16 (A,B), same type but different layers (ResNet101 and ResNet152)
(C,D), and single-view CNN (E,F).

3.2. ResNet50 vs. ResNet101 vs. ResNet152

We compared the diagnostic performance of ResNet50 with the same type but dif-
ferent layer of ResNet101 and ResNet152. Detailed configurations of the three ResNets
are presented in Table 4. ResNet50 was superior to ResNet101 (68.18 (52.29–80.93)%)
and ResNet152 (54.55 (39.00–69.31)%) after the 50th epoch. ResNet50 had higher overall
accuracy than ResNet101 (73.12 (57.71–84.66)%)) and ResNet152 (72.04 (58.18–85.68)%)
(Table 3 and Figure 2). ResNet50 (80.90 (67.29–91.81)%) also exhibited higher F1 score than
ResNet101 (70.59 (55.42–84.28)%) and ResNet152 (64.86 (47.46–79.79)%).
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Table 4. Detailed configuration of ResNet50, ResNet101, ResNet152, AlexNet, and VGG16. Convolution and pooling layers of ResNet block 2, 3, 4, and 5 were performed with a stride of 2.

Block Output Size ResNet50 ResNet101 ResNet152 VGG16 Output Size AlexNet

1 112 × 112 7 × 7, 64, stride 2 7 × 7, 64, stride 2 7 × 7, 64, stride 2 [3 × 3, 64 ]× 2 55 × 55 11 × 11, 96, stride 4

2 56 × 56

3 × 3 max-pooling,
stride 2

3 × 3 max-pooling,
stride 2

3 × 3 max-pooling,
stride 2 2 × 2 max-pooling, stride 2

27 × 27

3 × 3 max-pooling, stride 2 1 × 1, 64
3 × 3, 64
1 × 1, 256

× 3

 1 × 1, 64
3 × 3, 64

1 × 1, 256

× 3

 1 × 1, 64
3 × 3, 64
1 × 1, 256

× 3 [ 3 × 3, 128 ]× 2 5 × 5, 256, stride 1

3 28 × 28

 1 × 1, 128
3 × 3, 128
1 × 1, 512

× 4

 1 × 1, 128
3 × 3, 128
1 × 1, 512

× 4

 1 × 1, 128
3 × 3, 128
1 × 1, 512

× 8
2 × 2 max-pooling, stride 2

13 × 13

3 × 3 max-pooling, stride 2

[ 3 × 3, 256 ]× 3
 3 × 3, 384

3 × 3, 384
3 × 3, 256

, stride 1

4 14 × 14

 1 × 1, 256
3 × 3, 256

1 × 1, 1024

× 6

 1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 23

 1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 36
2 × 2 max-pooling, stride 2

1 × 1

3 × 3 max-pooling, stride 2

average pooling

[ 3 × 3, 512 ]× 3

[4096 fully connected,
ReLU] × 2

n-class fully connected,
softmax

5 7 × 7
 1 × 1, 512

3 × 3, 512
1 × 1, 2048

× 3

 1 × 1, 512
3 × 3, 512

1 × 1, 2048

× 3

 1 × 1, 512
3 × 3, 512

1 × 1, 2048

× 3 [ 3 × 3, 512 ]× 3

6 1 × 1
average-pooling

2 × 2 max-pooling, stride 2

[4096 fully connected,
ReLU] ×2

n-class fully connected, softmax n-class fully connected,
softmax
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3.3. Multi-View CNN-ResNet50 vs. Single-View CNN-ResNet50

We further compared the diagnostic performance of multi-view CNN-ResNet50 and
single-view CNN-ResNet50. Single-view CNN-ResNet50 showed a sensitivity of 50.00
(34.79–65.21)%, a specificity of 77.55 (63.01–87.75)%, and an overall accuracy of 64.52
(48.93–78.45)%, which were lower than those of multi-view CNN-ResNet50.

4. Discussion

To the best of our knowledge, this is the first study using multi-view CNN for the
prediction of UIA risk. Multi-view CNN-ResNet50 demonstrated a sensitivity of 81.82%,
a specificity of 81.63%, overall accuracy of 81.72%, and an F1 score of 80.90% for the
classification of rupture risk involving small-sized UIAs.

Various machine learning algorithms have been increasingly implemented in disease
diagnosis and predicting disease risk. Previous machine learning algorithms mainly
focused on the auto-detection of cerebral aneurysms, but not risk prediction [1,18–23].
Based on MIP images acquired via MRA, CNN yielded superior detection rates (>90%) of
aneurysm [1,19]. Recently, a two-stage CNN consisting of region localization and aneurysm
detection was introduced for the auto-detection of aneurysms [24]. The regional average
grayscale suppression was used to differentiate ROI of aneurysm and enlargement area [24].
Hu et al. [25] used Bayesian optimization for aneurysm detection based on DSA images,
showing a sensitivity of 96.4% with a false-positive rate of 6.2%. However, in most cases in
daily practice, DSA is additionally performed to acquire detailed information of aneurysm
including relationship with nearby arteries to decide the treatment plan [26], but not the
diagnosis of aneurysm itself [5]. Therefore, CNN based on DSA images can be used more
frequently in clinical practice for the prediction of UIA risk, but not auto-detection. Kim
et al. [5] proposed single-view CNN for differentiating ruptured aneurysm from UIA
using DSA images based on AlexNet_v2 architecture. A single input image after data
preprocessing using a histogram-oriented gradient resulted in two output parameters of
ruptured aneurysm or UIA. Single-view CNN yielded better diagnostic accuracy than
human evaluators based on the AUROC difference of 0.163 (p < 0.001) [5]. Nonetheless,
its clinical usefulness is limited because the rupture risk of an aneurysm is evaluated by
the clinician based on multiple images acquired simultaneously, and not each individual
image. Therefore, we built six independent neural networks for six views in parallel and
were trained separately in the front layers to evaluate the advantage of multi-view CNN for
prediction of the risk of aneurysm rupture in patients with small-sized UIAs. Subsequently,
the six individual models were combined together by pooling the views in the last layers.

Since 2012, most CNN algorithms have been evaluated using the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC). AlexNet, VGG16, and ResNet50 were regarded
as important CNN architectures and milestones (Table 4). As the 2012 ILSVRC winner,
AlexNet represents a base architecture for various CNN models [27]. VGG16, which is
ranked 2nd in 2014 ILSVRC, uses a different approach, with a reduced filter size [28].
Compared with AlexNet’s parallel architectures, VGG16 adopted a single architecture with
smaller 3 × 3 filters, which reduced the computational cost and time. ResNet, ranked 1st
in the 2015 ILSVRC, provided a completely different solution to the classification task,
and suggested a residual block, with superior performance compared with others [29–31].
Compared with the plane layers, ResNet’s residual block included the identity block that
preserves the existing information. As a result, both existing and newly trained informa-
tion contributed to the total performance. ResNet can be differentiated into ResNet50,
ResNet101, and ResNet152 depending on the number of layers. Additional layers require
more computation and time. In many cases, image resolution is enhanced with architec-
tures comprising a large number of layers, e.g., ResNet152. However, small architectures
such as ResNet50 yielded better results involving low-resolution images. In our study,
the average resolution of the cropped aneurysm was quite low, and therefore, ResNet50
predicted the rupture risk more accurately than ResNet101 and ResNet152 in small-sized
UIAs. The superiority of ResNet50 compared with ResNet101 and ResNet152 can also be
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attributed to fewer trainable parameters in ResNet50. In our fine-grained classification task,
ResNet50 with 23 million parameters could be optimized more effectively than ResNet152
with 60 million parameters.

The edges in 3D dimensions and roughness of the aneurysm surface are indicators for
the assessment of rupture risk as well as aneurysm shape. As a main algorithm, we acquired
six independent neural networks for six views in parallel, and they were trained separately
in the front layers and combined via view pooling in the final layers. Clearer features were
extracted in the front layers using this method, and the relationships between views were
trained in the end as well. In short, both similar feature extractions and the relationship
between the views enhanced accurate prediction of rupture risk using our multi-view CNN.
Accordingly, multi-view CNN can be fine-tuned using pre-trained weights resulting in
higher precision of risk prediction involving small-sized UIAs compared with single-view
CNN. Kang et al. [32] also demonstrated higher accuracy of lung nodule classification
using 3D multi-view CNN compared with single-view CNN. In addition, it is possible
to apply our CNN system for rupture risk regardless of angiography machine due to
post-processing of images via histogram equalization. Therefore, multi-view CNN will
be more useful for clinicians who are less experienced in deciding the treatment plan for
patients with UIAs.

In this study, we only included anterior circulation aneurysms measuring less than
7 mm in size. Tykocki et al. [33] reported that morphological factors such as parent artery
size and aspect ratio varied between anterior and posterior circulation aneurysms. Usually,
UIAs greater than 7 mm are indicated for treatment due to the risk of rupture [34,35].
However, the treatment policy for an aneurysm less than 7 mm in size is disputed. Ac-
cording to the second international study of unruptured intracranial aneurysms (ISUIA),
small aneurysms measuring less than 7 mm without previous subarachnoid hemorrhage
(SAH) are associated with 0% cumulative rupture rate over a period of 5 years [36,37].
Nevertheless, a small UIA can rupture during the follow-up period. Suzuki et al. [38]
reported that bifurcated aneurysms and UIAs harboring blebs were associated with future
rupture. Therefore, it may be helpful to selectively treat UIAs with a high risk of rupture
in the future via CNN. Compared with other machine learning techniques, CNN is sub-
stantially more amenable to medical image processing and classification tasks, as well
as easy customization for specific tasks. Our study demonstrated that ResNet50-based
multi-view CNN had higher accuracy than AlexNet, VGG16, ResNet101, ResNet152, or
single-view CNN.

The study limitations are as follows. First, the study included only small-sized UIAs
in the anterior circulation. Morphometric variables, such as aspect ratio and parent artery
size, which are associated with aneurysm rupture, vary according to aneurysm location
and size [5]. Accordingly, the evaluation of an algorithm for rupture risk classification
involving posterior circulation aneurysm is further required. Second, images acquired
under specific conditions such as concomitant vascular disease or cerebral angiograms
from General Electric Healthcare were not included. Thus, there may be some limitations
in terms of real-world clinical effectiveness of our multi-view CNN. Third, no quantitative
hemodynamic parameters were considered. In addition to morphological characteristics,
hemodynamic factors such as wall share stress (WSS), oscillatory shear index, WSS gradient,
or spatial WSS gradient are associated with aneurysm rupture. Although Chen et al. [39]
did not report that machine learning was better than conventional logistic regression in
predicting UIA rupture, a model is needed based on morphological and hemodynamic
features in subsequent studies using artificial intelligence approaches. Fourth, we used
histogram equalization rather than vesselness filtering. The main purpose of the histogram
equalization applied in this study was to normalize the images obtained from two different
angiography machines. In addition, we aimed to identify the risk of aneurysm rupture
via the pattern and shape of the aneurysm, not the vessel itself. In future work, we will
continue to explore other filtering methods to normalize images from different types of
angiography machines as well as vesselness filtering to increase the diagnostic accuracy
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for high-risk aneurysms. Finally, we applied a user-selected ROI rather than automated
diagnosis around the UIAs in DSA images for risk prediction. Clinically, DSA is generally
used to decide treatment strategies rather than investigate the diagnosis [5]. Nonetheless,
a study analyzing risk prediction of UIA based on automated detection is necessary to
improve the clinical effectiveness of the CNN system.

5. Conclusions

We proposed a new multi-view CNN to evaluate rupture risk in small UIAs based on
3D-DSA images. The diagnostic performance of multi-view ResNet50 was better than that
of the other types of CNNs. An external study is required to further corroborate our results
before practical, clinical, and commercial applications can be envisaged.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075
-4426/11/4/239/s1. Figure S1: Examples of rupture risk (high vs. non-high) involving small
unruptured intracranial aneurysms. Figure S2: Post-image processing for uniform image conversion
via histogram equalization based on different three-dimensional digital subtraction angiography
data. Figure S3: Sensitivity of rupture risk differentiation (high vs. non-high) involving small UIAs
in the training cohort using multi-view ResNet50. Methods: The process of risk stratification and
inter-assessor agreements, image acquisition and post-image processing, detailed image acquisition
protocol of 3D-DSA.
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