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A time‑delayed model 
for the spread of COVID‑19 
with vaccination
Salma M. Al‑Tuwairqi* & Sara K. Al‑Harbi

A mathematical model is presented in this paper to investigate the effects of time delay in vaccine 
production on COVID-19 spread. The model is analyzed qualitatively and numerically. The qualitative 
analysis indicates that the system variables are non-negative, bounded, and biologically meaningful. 
Moreover, the model has produced two equilibrium points: the free equilibrium point, which can exist 
without conditions, and the endemic equilibrium point, which can exist if the control reproduction 
number, R

c
 , is not less than one. In addition, the local stability of the equilibrium points is 

investigated and agrees with the numerical analysis results. Finally, a sensitivity analysis is conducted 
for R

c
 . In particular, we examine the effect of the vaccine’s time delay, vaccine rate, and vaccine 

efficiency on the model dynamics.

Vaccination is a control measure to combat infectious diseases and reach herd immunity. It is through vaccina-
tion that smallpox disease was eliminated from the world1. Since the COVID-19 pandemic began, significant 
efforts have been made to develop a vaccine against the SARS-CoV-2 virus worldwide. Developing a vaccine for 
a new disease takes time. First, it is necessary to identify the nature of the virus and how it works. Second, after 
the drug is chemically produced, it goes through the stage of laboratory tests and animal experiments. If the tri-
als give positive results, the vaccine enters the phase of clinical trials, which include phases to ensure the safety 
and effectiveness of the vaccine and to know the appropriate dose and side effects. After the regulatory agencies 
approve the vaccine, it moves to the manufacturing and distribution phase2,3.

Many studies have mathematically examined the impact of the COVID-19 vaccine in controlling the spread 
of the disease. For example, Annas et al.4 constructed an SEIR model with the vaccine as a parameter in the 
model. They investigated the model analytically and numerically to predict the number of COVID-19 cases in 
Indonesia if vaccination is implemented. Alshammari and Akyildiz5 modeled the epidemic of COVID-19 dynam-
ics using the SIR model with nonstandard nonlinear incidence and recovery rates. They presented two models 
with and without the vaccine, where they also considered the vaccine as a model parameter. The study showed 
that the vaccination term model gives a better fit to the real data of Saudi Arabia. On the other hand, Ghostine 
et al.6 presented the COVID-19 model with a bilinear incidence rate, exhibiting the vaccinated population as a 
separate compartment. They applied the model to data from Saudi Arabia and investigated the effect of vaccina-
tion on controlling the disease. Moreover, Rana and Sharma7 created a seven compartments model by adding 
the vaccinated and hospitalized populations to the traditional susceptible, exposed, symptomatic, asymptomatic, 
and recovered populations. The model was fitted to data from four regions of India and Russia. They explored 
the effect of lockdown, vaccination, and drug treatment as control measures. Another model incorporating the 
compartment of the vaccinated population is given in8, where they discussed the effect of optimal vaccination 
and social distancing on COVID-19 in India. The previous studies agreed with the clinical study in9, where they 
confirmed that the COVID-19 vaccine reduced the mortality and the need for intensive care units for vaccinated 
individuals in Dammam, Saudi Arabia.

Time-delayed differential equations have been utilized in modeling the spread of COVID-19. It was used to 
describe the characteristics of COVID-19, such as incubation and latent period, recovery time, diagnosis time, 
and immune response. Cakan, in10, proposed an SEIR model representing the latent period of COVID-19 as a 
time delay parameter. The model investigates the capacity of health care by assuming the variability of recovery 
and death rates due to COVID-19. Barman and Mishra11 also modeled the incubation period in COVID-19 
disease as a time delay parameter; however, they included the asymptomatic population in the dynamics of the 
model. Yang and Zhang12 described the propagation dynamics of COVID-19 using the SEIQR model with two-
time delays. They considered the delay in time for an exposed individual to convert to an infected individual. 
Also, they incorporated in the model recovery time delay for exposed, infected, and quarantined individuals. 
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The model produced a unique endemic equilibrium point where its local stability depends on the time delays. 
On the other hand, Lu et al.13 modeled the spread of COVID-19, excluding the exposed population, using the 
SIQR model but regarding the recovery time delay for infected individuals. Two equilibrium points were accom-
plished, the virus free and the endemic equilibrium, where again, stability is determined according to the time 
delay values. Radha and Balamuralitharan14 considered the time delay for the immune system to respond to 
the transmission dynamics of COVID-19. They used an SEIR model and attained three equilibrium points that 
are stable under specific criteria. Finally, Yang15 presented a COVID-19 model considering the delayed time for 
an infected individual to be diagnosed and quarantined in hospitals. If the time delay is long, COVID-19 is not 
controllable. They concluded that home isolation and social distancing aid in containing the disease.

As for models representing time-delayed dynamics of COVID-19 with vaccination measures, Zhai et al.16 
proposed an SEIR model with a time delay for infected individuals to be infectious. They incorporated a vaccina-
tion strategy that switches when the basic reproduction number exceeds one. They tested the model during the 
second outbreak of COVId-19 in Italy. Moreover, Amaku et al.17 examined the effect of the delay in COVID-19 
vaccination on the number of infected cases in Brazil. Their model included a compartment of vaccinated indi-
viduals and a compartment of vaccinated individuals who failed to be immunized. They concluded that severe 
consequences would occur due to the vaccination delay.

To our knowledge, no mathematical model for COVID-19 dynamics examines the delay time in vaccine 
production. This work aims to build a mathematical model using time-delayed differential equations to discuss 
the impact of the delay in producing the COVID-19 vaccine and the effect of vaccination rate and its efficiency 
on COVID-19. The paper is outlined as follows. In section “Mathematical model”, we formulate the model and 
prove it is epidemiologically appropriate. In section “Qualitative analysis”, we show the model’s qualitative analy-
sis, the equilibrium points’ existence, and their local stability. Moreover, we compute the formula of the control 
reproduction number, Rc . Then, we demonstrate in section “Numerical analysis” the numerical analysis that 
affirms its agreement with the qualitative analysis and analyzes the effect of the time delay, vaccination rate, and 
vaccine efficacy. Furthermore, we present the sensitivity analysis for the threshold quantity Rc.

Mathematical model
We divide the total population size, N, into five classes: susceptible, exposed, infected, recovered, and vaccinated, 
which is denoted by S(t), E(t), I(t), R(t) , and V(t), respectively. Each class describes the number of individuals at 
a time t. Therefore, all variables are non-negative. Individuals in the susceptible class move to the vaccinated class 
at a vaccination rate of r. Also, they transfer to the exposed class after connection with infected individuals with 
a transmission rate of β . The transmission of COVID-19 is affected by the preventive measures, the lockdown 
( ρ ∈ (0, 1] ) and the social distancing ( SD ∈ [0, 1) ). At the end of the incubation period, the exposed individuals 
transfer to the infected class at a rate of γ . Then, individuals in the infected class recover at the rate of δ or die 
due to COVID-19 at the rate of d. A percentage α of individuals in the recovered class receive the vaccine and 
move to the vaccinated class. After receiving the vaccine, individuals may lose their immunity from COVID-19 
and move to the susceptible class at a rate of φ . Infection after a vaccine is affected by the efficiency ratio of vac-
cine f, which differs from one vaccine to another. Depending on the vaccine’s efficiency, vaccinated individuals 
move to the infected class at a rate of σ due to contact with infected individuals. Moreover, we assume that all 
newborns are included in the susceptible class at a birth rate η , and the natural death rate from all classes is µ . 
The dynamics of the model are illustrated in Fig. 1.

The following nonlinear system of delayed differential equations governs the dynamics of the model:

(1)

dS

dt
= η − βρ(1− SD)SI − rS̃(t, τ)+ φV − µS,

dE

dt
= βρ(1− SD)SI − (γ + µ)E,

dI

dt
= γE + σ(1− f )VI − (δ + d + µ)I ,

dR

dt
= δI − αR̃(t, τ)− µR,

dV

dt
= rS̃(t, τ)+ αR̃(t, τ)− σ(1− f )VI − (φ + µ)V .

Figure 1.   Flowchart of the model.
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All the parameters in system (1) are non-negative. The parameter τ is the time delay in producing the vac-
cine for COVID-19. The S̃(t, τ) and R̃(t, τ) terms describe the susceptible and recovered individuals who did not 
receive the vaccine at the time t − τ , respectively. Moreover, we assume that the rate of change of S̃(t, τ) decreases 
at a rate of µ as in10, which is given by the following equation

Since the expression S̃(t, 0) indicates the number of susceptible individuals at time t, which is equal to S(t), 
therefore, consider the first order partial differential equation (2) with the boundary condition, S̃(t, 0) = S(t).

Similarly, we assume that the rate of change of R̃(t, τ) decreases at a rate of µ and given by the following 
equation

The expression R̃(t, 0) indicates the number of recovered individuals at time t, which is equal to δI(t) . There-
fore, consider the equation (3) with the boundary condition, R̃(t, 0) = δI(t).

We use the method of characteristics to solve the first-order partial differential equations18. From (2), the 
characteristic equation is

First, we solve the equation

Integrating both sides, we get −µτ + A1 = ln S̃(t, τ) , where A1 is the constant of integration and 
A1 = ln S̃(t, τ)+ µτ . Then, solve the equation

We get B1 = t − τ . Using the formula A1 = F(B1) , we obtain

Substitute τ = 0 and use the boundary condition S̃(t, 0) = S(t) , we get ln S(t) = F(t) . Then equation (4) 
becomes

Hence, the solution of equation (2) is

Similarly the solution of equation (3) is

Then, model (1) can be rewritten as follows:

The term e−µτ is the probability that the individual survives during the delay period in the relevant class, 
susceptible or recovered. The initial functions of system (7) are

(2)
( ∂

∂t
+

∂

∂τ

)
S̃(t, τ) = −µS̃(t, τ).

(3)
( ∂

∂t
+

∂

∂τ

)
R̃(t, τ) = −µR̃(t, τ).

dt = dτ =
dS̃(t, τ)

−µS̃(t, τ)
.

−µdτ =
dS̃

S̃
.

dt = dτ .

(4)ln S̃(t, τ)+ µτ = F(t − τ).

ln S̃(t, τ) = F(t − τ)− µτ ,

ln S̃(t, τ) = ln S(t − τ)− µτ .

(5)S̃(t, τ) = S(t − τ)e−µτ .

(6)R̃(t, τ) = δI(t − τ)e−µτ .

(7)

dS

dt
= η − βρ(1− SD)SI − rS(t − τ)e−µτ + φV − µS,

dE

dt
= βρ(1− SD)SI − (γ + µ)E,

dI

dt
= γE + σ(1− f )VI − (δ + d + µ)I ,

dR

dt
= δI − αδI(t − τ)e−µτ − µR,

dV

dt
= rS(t − τ)e−µτ + αδI(t − τ)e−µτ − σ(1− f )VI − (φ + µ)V .

(8)
S(ζ ) = ϕ1(ζ ), E(ζ ) = ϕ2(ζ ),

I(ζ ) = ϕ3(ζ ), R(ζ ) = ϕ4(ζ ),

V(ζ ) = ϕ5(ζ ), ζ ∈ [−τ , 0],
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where, ϕi(ζ ) ≥ 0 (i = 1, 2, . . . , 5), and (ϕ1, ϕ2, . . . , ϕ5) ∈ C([−τ , 0],R5
≥0) . Where, C is the Banach space of con-

tinuous function mapping the interval [−τ , 0] into R5
≥0 . By the theorem of delay differential equation19, system 

(7) has a unique solution which satisfies the initial functions (8).

Theorem 1  If (S,E, I ,R,V) ∈ R
5
≥0 is a solution of system (7) with the initial functions (8), then the set

is positively invariant for system (7).

Proof  Let (S(0),E(0), I(0),R(0),V(0)) ∈ � . From the equations of system (7), we have

Note that α < 1 and e−µτ < 1 . Thus, for all t ≥ 0, all non-negative solutions remain non-negative. By combin-
ing all the equations of system (7), we obtain

Then, solving the above inequality by the integrating factor method20, we have

Integrating both sides over the time interval [0, t], we get

Therefore,

Hence, all solutions of system (7) are bounded and non-negative for all t ≥ 0 . Thus, � is positively invariant.

Qualitative analysis
In this section, we find the two equilibria for system (7) and compute the control reproduction number. Fur-
thermore, we analyze the local stability behavior of the equilibrium points by using the linearization method21.

Equilibrium points and basic reproduction number.  Before finding the equilibrium points for system 
(7), we assume that

Then, we set the rates in (7) to zero and solve the following system

� =
{
(S,E, I ,R,V) ∈ R

5
≥0 : 0 ≤ N ≤

η

µ

}

dS

dt

∣∣∣
S=0

= η + φV ≥ 0, for all V ≥ 0,

dE

dt

∣∣∣
E=0

= βρ(1− SD)SI ≥ 0, for all S, I ≥ 0,

dI

dt

∣∣∣
I=0

= γE ≥ 0, for all E ≥ 0,

dR

dt

∣∣∣
R=0

= δI(1− α) ≥ 0, for all I ≥ 0, τ = 0,

dR

dt

∣∣∣
R=0

≥ δI(1− αe−µτ ) ≥ 0, for all I ≥ 0, τ > 0,

dV

dt

∣∣∣
V=0

= (rS(t − τ)+ αδI(t − τ))e−µτ ≥ 0, for all S, I ≥ 0.

dN

dt
= η − dI − µN ≤ η − µN .

d

du

[
eµuN(u)

]
≤ ηeµu.

N(t) ≤
η

µ
+

[
N(0)−

η

µ

]
e−µt .

lim
t→∞

Sup[N(t)] ≤
η

µ
.

lim
t→∞

S(t) = lim
t→∞

S(t − τ),

lim
t→∞

I(t) = lim
t→∞

I(t − τ).

(9)

η − βρ(1− SD)SI − rSe−µτ + φV − µS = 0,

βρ(1− SD)SI − (γ + µ)E = 0,

γE + σ(1− f )VI − (δ + d + µ)I = 0,

δI − αδIe−µτ − µR = 0,

rSe−µτ + αδIe−µτ − σ(1− f )VI − (φ + µ)V = 0.
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System (9) indicates that there are two equilibrium points. The COVID-19 free equilibrium, P0 , which is always 
present and obtained by setting E = I = 0 , that is,

To find the COVID-19 endemic equilibrium, P1 , we solve the fourth equation of system (9) for R, that is,

Also, from the second and the fifth equation, we have, respectively,

Substituting equations (10) and (11) into the third equation in system (9), we get

Thus, rewriting (11) and (12), we have

Finally, substituting S and V into the first equation in system (9) and solving for I, we get the following 
quadratic equation

where,

Here,

Roots of (13) have the form

We focus here on studying the existence of the endemic equilibrium when Rc > 1 . Clearly, a2 > 0 and a0 < 0 . 
Since −4a2a0 > 0 , then a1 ≤

√
a21 − 4a2a0 . Hence, if Rc > 1, system (7) has a unique endemic equilibrium, 

P1 = (S1,E1, I1,R1,V1) , where

P0 =
(

η(φ + µ)

µre−µτ + µ(φ + µ)
, 0, 0, 0,

ηre−µτ

µre−µτ + µ(φ + µ)

)
.

R =
δ(1− αe−µτ )

µ
I .

(10)E =
βρ(1− SD)

γ + µ
SI ,

(11)V =
re−µτ S + αδe−µτ I

σ(1− f )I + φ + µ
.

(12)S =
(γ + µ)

[
(d + µ+ δ(1− αe−µτ ))σ (1− f )I + (φ + µ)(δ + d + µ)

]

γβρ(1− SD)(σ (1− f )I + φ + µ)+ σ(1− f )(γ + µ)re−µτ
.

V =
γβρ(1− SD)αδe−µτ I + (γ + µ)(δ + d + µ)re−µτ

γβρ(1− SD)(σ (1− f )I + φ + µ)+ σ(1− f )(γ + µ)re−µτ
.

E =
βρ(1− SD)

[
(d + µ+ δ(1− αe−µτ ))σ (1− f )I2 + (φ + µ)(δ + d + µ)I

]

γβρ(1− SD)(σ (1− f )I + φ + µ)+ σ(1− f )(γ + µ)re−µτ
.

(13)a2I
2 + a1I + a0 = 0,

a2 = (γ + µ)(d + µ+ δ(1− αe−µτ ))βρ(1− SD)σ (1− f ),

a1 = (γ + µ)(φ + µ)(δ + d + µ)βρ(1− SD)− ηγβρ(1− SD)σ (1− f )

+ (γ + µ)(d + µ+ δ(1− αe−µτ ))(re−µτ + µ)σ(1− f )− φγβρ(1− SD)αδe−µτ ,

a0 = µ(γ + µ)(δ + d + µ)(re−µτ + φ + µ)(1−Rc).

Rc =
γ ηβρ(1− SD)(φ + µ)

µ(γ + µ)(δ + d + µ)(re−µτ + φ + µ)
+

ησ(1− f )re−µτ

µ(δ + d + µ)(re−µτ + φ + µ)
.

I1,2 =
−a1 ±

√
a21 − 4a2a0

2a2
.
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Therefore, the COVID-19 endemic equilibrium exists only if Rc > 1.

Control reproduction number Rc.  To find Rc , we use the next generation matrix approach22. Let O = (E, I)T , 
then system (7) can be rewritten as Ȯ = F (O)−V (O) , where

Computing the Jacobian matrix of F and V at P0 we obtain, respectively,

Now, we can evaluate the next generation matrix as follows

The control reproduction number Rc of system (7) is the spectral radius of matrix FV−1 , and it is given by

Moreover, we can write the expression of Rc as: Rc = ρ(1− SD)RS + (1− f )RV , where RS and RV are:

The interpretation of the terms in Rc are as follows. Firstly, in RS , the term that expresses the incidence of 
new infections by infected individuals is βSI . Thus, the number of secondary cases by one infectious individual 
( I = 1 ) in a population containing only susceptible individuals is βS0 , where S0 = η(φ + µ)/µ(re−µτ + φ + µ) . 
Also, 1/(δ + d + µ) represents one infectious individual’s average time spent in the infected compartment. In 
addition, γ /(γ + µ) is the proportion of newly infected individuals that survived the incubation period. Secondly, 
in RV , the term that represents the incidence of new infections from the vaccinated class by infected individu-
als is σVI . Then, the number of secondary cases by one infectious individual in a population containing only 
vaccinated individuals is σV0 , where V0 = ηre−µτ /µ(re−µτ + φ + µ) . Again, 1/(δ + d + µ) represents one 
infectious individual’s average time spent in the infected compartment.

Local stability analysis.  To investigate the local stability, we compute the Jacobian matrix of system (7),

where, J11 = −βρ(1− SD)I − re−µτ − µ.

COVID‑19 free equilibrium point P0.  To analyze the local stability of the free equilibrium point P0 , we compute 
the Jacobian matrix of system (7) at P0 , which has the form J1(P0)+ J2(P0) , where

S1 =
(γ + µ)

[
(d + µ+ δ(1− αe−µτ ))σ (1− f )I1 + (φ + µ)(δ + d + µ)

]

γβρ(1− SD)(σ (1− f )I1 + φ + µ)+ σ(1− f )(γ + µ)re−µτ
,

E1 =
βρ(1− SD)

[
(d + µ+ δ(1− αe−µτ ))σ (1− f )I21 + (φ + µ)(δ + d + µ)I1

]

γβρ(1− SD)(σ (1− f )I1 + φ + µ)+ σ(1− f )(γ + µ)re−µτ
,

I1 =
−a1 +

√
a21 − 4a2a0

2a2
,

R1 =
δ(1− αe−µτ )

µ
I1,

V1 =
γβρ(1− SD)αδe−µτ I1 + (γ + µ)(δ + d + µ)re−µτ

γβρ(1− SD)(σ (1− f )I1 + φ + µ)+ σ(1− f )(γ + µ)re−µτ
.

F =
[
βρ(1− SD)SI
σ(1− f )VI

]
and V =

[
(γ + µ)E

−γE + (δ + d + µ)I

]
.

F =
[
0 βρ(1− SD)S0
0 σ(1− f )V0

]
and V =

[
γ + µ 0

−γ δ + d + µ

]
.

FV−1 =
[

γβρ(1−SD)S0
(γ+µ)(δ+d+µ)

βρ(1−SD)S0
(δ+d+µ)

γ σ(1−f )V0

(γ+µ)(δ+d+µ)

σ(1−f )V0

(δ+d+µ)

]
.

Rc =
γ ηβρ(1− SD)(φ + µ)

µ(γ + µ)(δ + d + µ)(re−µτ + φ + µ)
+

ησ(1− f )re−µτ

µ(δ + d + µ)(re−µτ + φ + µ)
.

RS =
γ ηβ(φ + µ)

µ(γ + µ)(δ + d + µ)(re−µτ + φ + µ)
,

RV =
ησ re−µτ

µ(δ + d + µ)(re−µτ + φ + µ)
.

J =





J11 0 − βρ(1− SD)S 0 φ

βρ(1− SD)I − (γ + µ) βρ(1− SD)S 0 0

0 γ σ(1− f )V − (δ + d + µ) 0 σ(1− f )I
0 0 δ(1− αe−µτ ) − µ 0

re−µτ 0 δαe−µτ − σ(1− f )V 0 − σ(1− f )I − (φ + µ)




.
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and

Then, solving the characteristic equation |J1(P0)+ J2(P0)e
−�τ + �I| = 0 , we get

where

Theorem 2  If Rc < 1 , the COVID-19 free equilibrium point P0 , is locally asymptotically stable for τ ≥ τ ∗ , where

Proof  The roots of the characteristic equation (14) are �1,2 = −µ and �3,4 satisfy the following equation

Using the Routh-Hurwitz criteria, �3,4 have a negative real part if c1 > 0 and c0 > 0 . The coefficients c1 and c0 
are positive if Rc = ρ(1− SD)RS + (1− f )RV < 1 . Hence, we assume that Rc < 1 . The last root of (14) satisfies

When τ = 0 , then �5 = −(φ + µ+ r) . Therefore, P0 is locally asymptotically stable for case τ = 0 . For τ > 0 , 
we assume that � = iω, (ω ∈ R) is a root of (15). Substituting � = iω in (15), we have

Then by using Euler’s formula e−iτω = cos(τω)− i sin(τω) , and equating the real and imaginary parts, we 
obtain

Squaring the above equations and adding them, we get

Hence, the purely imaginary root exists if and only if ω ∈ R . Thus,

If the delay value τ < τ ∗ , then equation (15) has the purely imaginary root. Therefor, the stability of P0 can 
change from stable to unstable. Conversely, if τ > τ ∗ the point P0 is stable. Hence, if Rc < 1 the COVID-19 free 
equilibrium is locally asymptotically stable when τ ≥ τ ∗.

COVID‑19 endemic equilibrium point P1.  We study the local stability of the endemic equilibrium point, P1 , 
assuming it exists, by evaluating the Jacobian matrix of system (7) around P1 , we obtain

J1(P0) =





−µ 0 − βρ(1− SD)S0 0 φ

0 − (γ + µ) βρ(1− SD)S0 0 0

0 γ σ(1− f )V0 − (δ + d + µ) 0 0

0 0 δ − µ 0

0 0 − σ(1− f )V0 0 − (φ + µ)




,

J2(P0) =





−re−µτ 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 − αδe−µτ 0 0

re−µτ 0 αδe−µτ 0 0




.

(14)
(
µ+ �

)2(
re−(�+µ)τ + φ + µ+ �

)(
�
2 + c1� + c0

)
= 0,

c1 = γ + µ+ (δ + d + µ)

(
1− (1− f )Rv

)
,

c0 = (γ + µ)(δ + d + µ)(1−Rc).

τ ∗ =
1

µ

(
ln

r

φ + µ

)
.

�
2 + c1� + c0 = 0.

(15)� + φ + µ+ re−(µ+�)τ = 0.

iω + φ + µ+ re−(iω+µ)τ = 0.

φ + µ = −re−µτ cos(τω),

ω = re−µτ sin(τω).

ω =
√(

re−µτ − (φ + µ)

)(
re−µτ + (φ + µ)

)
.

re−µτ − (φ + µ) > 0 =⇒ τ <
1

µ
ln

r

φ + µ
= τ ∗.
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where, J11 = −βρ(1− SD)I1 − re−µτ − µ .  From the equilibrium equation (9) of P1 ,  we have 
−
[
βρ(1− SD)I1 + re−µτ + µ

]
= −(η + φV1)/S1 . The matrix J(P1) can be written in the form, J1(P1)+ J2(P1) , 

where

and

where, J33 = σ(1− f )V1 − (δ + d + µ) , and J55 = −σ(1− f )I1 − (φ + µ) . The characteristic equation of the 
linearized system (7) at P1 is in the form

where

where

J(P1) =





J11 0 − βρ(1− SD)S1 0 φ

βρ(1− SD)I1 − (γ + µ) βρ(1− SD)S1 0 0

0 γ σ(1− f )V1 − (δ + d + µ) 0 σ(1− f )I1
0 0 δ(1− αe−µτ ) − µ 0

re−µτ 0 δαe−µτ − σ(1− f )V1 0 − σ(1− f )I1 − (φ + µ)




,

J1(P1) =





−(η+φV1)
S1

0 − βρ(1− SD)S1 0 φ

βρ(1− SD)I1 − (γ + µ) βρ(1− SD)S1 0 0

0 γ J33 0 σ(1− f )I1
0 0 δ − µ 0

0 0 − σ(1− f )V1 0 J55




,

J2(P1) =





0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 − αδe−µτ 0 0

re−µτ 0 αδe−µτ 0 0




,

(16)(� + µ)

[
P1(�)+ P2(�, τ)e

−�τ
]
= 0,

P1 = �
4 + A3�

3 + A2�
2 + A1� + A0,

P2 = e−µτ
(
B2�

2 + B1� + B0

)
,

A3 =
( η + φV1

S1

)
+ σ(1− f )(I1 − V1)+ δ + γ + d + φ + 3µ,

A2 =
(
δ + d + µ

)(
σ(1− f )I1 + φ + µ

)
− (φ + µ)σ(1− f )V1

+
( η + φV1

S1
+ γ + µ

)(
σ(1− f )(I1 − V1)+ φ + δ + d + 2µ

)

+
( η + φV1

S1

)(
γ + µ

)
− γβρ(1− SD)S1,

A1 =
( η + φV1

S1

)(
γ + µ

)(
σ(1− f )(I1 − V1)+ δ + d + φ + 2µ

)

+
( η + φV1

S1
+ γ + µ

)(
δ + d + µ

)(
σ(1− f )I1 + φ + µ

)

−
( η + φV1

S1
+ γ + µ

)(
(φ + µ)σ(1− f )V1

)
+

(
βρ(1− SD)

)2
S1I1

− γβρ(1− SD)

(
η + φV1

)
− γβρ(1− SD)S1

(
σ(1− f )I1 + φ + µ

)
,

A0 = −γβρ(1− SD)

(
σ(1− f )I1 + φ + µ

)(
βρ(1− SD)S1I1 − (η + φV1)

)

−
( η + φV1

S1

)(
γ + µ

)(
(φ + µ)σ(1− f )V1

)
+ φγβρ(1− SD)σ (1− f )I1V1

+
( η + φV1

S1

)(
γ + µ

)(
δ + d + µ

)(
σ(1− f )I1 + φ + µ

)
,

B2 = −φr − αδσ(1− f )I1,

B1 = r

(
βρ(1− SD)σ (1− f )S1I1 + φσ(1− f )V1 − φ(δ + d + µ)

)

−
( η + φV1

S1
+ γ + µ

)
αδσ(1− f )I1 − φr(γ + µ),

B0 = r

(
γ + µ

)(
βρ(1− SD)σ (1− f )S1I1 + φσ(1− f )V1 − φ(δ + d + µ)

)

− φγβρ(1− SD)

(
αδI1 − rS1

)
−

( η + φV1

S1

)(
γ + µ

)
αδσ(1− f )I1.
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Theorem 3  At the absence of a delay, that is, τ = 0 , the COVID-19 endemic equilibrium P1 , if it exists, is locally 
asymptotically stable if and only if the following conditions hold:

where

Proof  When τ = 0 , the characteristic equation (16) has �1 = −µ and the other roots are the solution to the 
following equation

that is,

Therefore, using the Routh-Hurwitz criteria, if the conditions in (17) are satisfied, then the roots of equation 
(18) are either negative or have a negative real part. Hence, if P1 exists, it is locally asymptotically stable without 
delay.

To analyze the second case, when τ > 0 , the characteristic equation (16) has �1 = −µ . Assuming that 
� = iω, (ω ∈ R) is a root of (16), we get

Separating the real and imaginary parts of (19), we obtain respectively,

where

Squaring (20) and (21), and adding them we obtain

where

Let Z = ω2 , then

When the coefficients of (22) satisfy the Routh-Hurwitz criterion, that is,

then all roots of (22) are negative or have negative real parts. Accordingly, ω =
√
Z , however, this contradicts our 

assumption that ω ∈ R . Thus, the signs of the eigenvalues remain the same as in case τ = 0 and do not change 
as τ increases. The following theorems summarize the stability of P1 when τ > 0.

Theorem 4  If the roots of (22) satisfy the conditions (23), then the COVID-19 endemic equilibrium P1 is locally 
asymptotically stable for τ > 0 , provided it is stable at τ = 0.

Theorem 5  When the COVID-19 endemic equilibrium is stable at τ = 0 , its stability will change to unstable when 
there is a delay if (22) has at least one positive root, meaning that the stability conditions (23) are not met.

(17)
K1 > 0, K2 > 0, K3 > 0, K4 > 0,

K1K2K3 > K
2
3 +K

2
1K4,

K1 = A3, K3 = A1 + B1,

K2 = A2 + B2, K4 = A0 + B0.

P1(�)+ P2(�) = 0,

(18)�
4 + A3�

3 + (A2 + B2)�
2 + (A1 + B1)� + (A0 + B0) = 0.

(19)P1(iω)+ P2(iω, τ)e
−iωτ = 0.

(20)R1(ω)+ R2(ω) cos(τω)+ Q2(ω) sin(τω) = 0

(21)Q1(ω)+ Q2(ω) cos(τω)− R2(ω) sin(τω) = 0

R1 = ω4 − A2ω
2 + A0, Q1 = −A3ω

3 + A1ω,

R2 = e−µτ
(
− B2ω

2 + B0

)
, Q2 = e−µτB1ω.

ω8 + G3ω
6 + G2ω

4 + G1ω
2 + G0 = 0,

G3 = A2
3 − 2A2,

G2 = A2
2 + 2A0 − 2A1A3 − e−2µτB22,

G1 = A2
1 − 2A0A2 + e−2µτ

(
2B0B2 − B21

)
,

G0 = A2
0 − e−2µτB20.

(22)Z4 + G3Z
3 + G2Z

2 + G1Z + G0 = 0.

(23)
G3 > 0, G2 > 0, G1 > 0, G0 > 0,

G1G2G3 > G
2
1 + G

2
3G0,
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Numerical analysis
In this section, we perform numerical simulations for system (7) to show the agreement with the qualitative 
analysis results and examine the effect of some parameters. In addition, we analyze the sensitivity of the system’s 
parameters for the threshold quantity, the control reproduction number, Rc . Table 1 shows the values for the 
system’s parameters that mainly were used in the numerical analysis of this model.

Numerical experiments.  We re-scale the state variables in the system before implementing the numerical 
analysis. Let

Substituting (24) in system (7) and using the limiting value of N as t increases, that is, N = η/µ , we obtain 
the following re-scaled system (omitting the hat onward)

The system (25) is solved numerically using MATLAB package dde23, a package to solve delay systems with 
constant delays. We set the value zero to the parameters related to the vaccine during the delay interval, i.e., 
before producing the vaccine, that is, r = φ = σ = f = α = 0 . Accordingly, we used the conditional statements 
when defining system (25) in the MATLAB function file to set two different values to the parameters before and 
after the production of the vaccine (see Supplementary Material).

The first two experiments examines the stability of the equilibrium points, therefore, numerical simulations 
are executed for three different initial histories, where ζ ∈ [−τ , 0]:

Experiment 1: Stability of COVID-19 free equilibrium. We consider the parameters of system (25) as in 
Table 1 with some modification as follows: ρ = 0.5, SD = 0.75, r = 0.9, φ = 0.0001, σ = 0.0001, f = 0.9, and 
α = 0.0001. Then, the critical value of the delay will be τ ∗ = 77.7755 (see Theorem 2). Therefore, we examine 
two cases for the time delay τ . 

(24)S = ŜN , E = ÊN , I = ÎN , R = R̂N , V = V̂N .

(25)

dS

dt
= µ− βρ(1− SD)

η

µ
SI − rS(t − τ)e−µτ + φV − µS,

dE

dt
= βρ(1− SD)

η

µ
SI − (γ + µ)E,

dI

dt
= γE + σ(1− f )

η

µ
VI − (δ + d + µ)I ,

dR

dt
= δI − αδI(t − τ)e−µτ − µR,

dV

dt
= rS(t − τ)e−µτ + αδI(t − τ)e−µτ − σ(1− f )

η

µ
VI − (φ + µ)V .

IH1 : S(ζ ) = 0.8, E(ζ ) = 0.1, I(ζ ) = 0.05, R(ζ ) = 0, V(ζ ) = 0,

IH2 : S(ζ ) = 0.6, E(ζ ) = 0.2, I(ζ ) = 0.15, R(ζ ) = 0, V(ζ ) = 0,

IH3 : S(ζ ) = 0.4, E(ζ ) = 0.3, I(ζ ) = 0.20, R(ζ ) = 0, V(ζ ) = 0.

Table 1.   The description and values of the parameters in model (7).

Parameter Description Value Unit Source

η Birth rate 1250 Individual × Day−1 23

µ Natural death rate 0.04 Day−1 Estimated

β Transmission rate 1.0063 × 10−7 (Individual × Day)−1 23

γ Incubation rate 0.167 Day−1 24

δ Recovery rate 3.2772× 10
−1 Day−1 23

d Death rate due to COVID-19 2.3724× 10
−1 Day−1 23

ρ Lockdown 0.85 – Estimated

SD Social distancing 0.3 – Estimated

τ Time delay 120 Day Estimated

r Vaccination rate 0.6 Day−1 Estimated

f Efficiency of vaccine 0.4 – Estimated

σ Infection after vaccine rate 0.00055 (Individual × Day)−1 Estimated

φ Loss of vaccine immunity rate 0.0005 Day−1 Estimated

α Percentage of R receive the vaccine 0.7 – Estimated
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	 (i)	 Case τ > τ ∗ . Let τ = 120 , then, Rc = 0.5381 < 1 and the equilibrium value is P0 = (0.8441, 0, 0, 0, 0.1559) . 
Figure 2 displays the solution curves of the model where they tend to the free equilibrium point, P0 , with 
different initial histories.

	 (ii)	 Case τ < τ ∗ . Set different values for τ as: τ = 68, 72, and 76 . Figure 3 shows that the free equilibrium 
point, P0 , lost its stability state. A periodic solution appears due to the presence of a pair of purely imagi-
nary roots for the linearized system of (25) around P0 . Therefore, Hopf bifurcation occurs.
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Figure 2.   Numerical solution of system (25) versus time with different initial histories for Rc < 1 and τ ≥ τ ∗.
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Hence, numerical simulations of Experiment 1 confirm the qualitative results in Theorem 2.
Experiment 2: Stability of COVID-19 endemic equilibrium. We consider two cases for the values of the 

parameters of system (25) as follows: 

	 (i)	 Let the parameters as in Table 1. Therefore, Rc = 4.0766 > 1 and these values fulfill the stability condi-
tions (17) at τ = 0 and the conditions (23) when τ > 0 . Figure 4 presents the solution curves arriving 
at the endemic equilibrium point, P1 = (0.3680, 0.1134, 0.0341, 0.2776, 0.0048) . Hence, the result of 
this experiment is consistent with the result of Theorem 4.

	 (ii)	 Let τ = 40 . For the vaccine parameters, we choose their values after vaccine production to be: 
r = 0.5, φ = 0.005, σ = 0.0055, f = 0.4, and α = 0.7. Then, Rc = 118.6757 > 1 . These values satisfy 
the stability conditions (17) at τ = 0 . However, G1 < 0 and G1G2G3 − (G2

1 + G2
3G0) < 0 , which means 

that the stability conditions (23) are not met. Figure 5 coincides with Theorem 5 where it illustrates the 
instability of the endemic equilibrium point P1.

In the remaining experiments, we consider the first initial history (IH1) in the analysis.
Experiment 3: Effect of the time delay on the system dynamics. We examine different time delay values, 

τ = 50, 100 , and 150. Let σ = 0.0001, f = 0.9, where the rest of the parameters are as in Table 1. Figure 6 displays 

0 50 100 150 200 250 300
 Time (days) 

-0.5

0

0.5

1

1.5

 in
di

vi
du

al
s 

S
E
I
R
V

(a) τ = 68

0 50 100 150 200 250 300
 Time (days) 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 in
di

vi
du

al
s 

S
E
I
R
V

(b) τ = 72

0 50 100 150 200 250 300
 Time (days) 

0

0.2

0.4

0.6

0.8

1
 in

di
vi

du
al

s 

S
E
I
R
V

(c) τ = 76

Figure 3.   The numerical solution of system (25) versus time for Rc < 1 and τ < τ ∗.
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Figure 4.   Numerical solution of system (25) versus time with different initial histories where Rc > 1 , and 
stability conditions (17) and (23) are satisfied.
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that as τ decreases, the model’s compartments oscillate and illustrate a behavior similar to the instability of the 
endemic equilibrium point, P1 . However, when τ increases, the compartments reach a stable equilibrium level. 
This is consistent with the result of the sensitivity analysis of Rc concerning τ in the next subsection (see Fig. 9); 
Rc increases with an increase in τ to a certain extent, and then reaches an equilibrium limit that is not affected by 
the rise in τ . Note that although instability occurs when τ is less than τ ∗ , the size of infected individuals decreases 
since as τ increases, Rc exceeds the value one.
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Figure 5.   Numerical solution of system (25) versus time with different initial histories where Rc > 1 , and the 
stability conditions (17) are satisfied, but conditions in (23) are not satisfied.
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Experiment 4:Effect of the vaccination rate and loss of immunity vaccine rate on infected class. Let 
σ = 0.0001, f = 0.9, and τ = 60 , where the remaining parameters are as in Table 1. We analyze the impact on the 
infected class when varying the vaccination rate, r, with the loss of immunity rate, φ . Figure 7 shows that when 
both rates take low values, r = φ = 0.1 , or high values r = φ = 0.8 the size of the infected class approaches a value 
near the equilibrium value. However, when the vaccination rate is high, r = 0.8, with a low loss of immunity rate, 
φ = 0.1, the equilibrium level of the infected class drops down. Meanwhile, if the vaccination rate is low, r = 0.1 
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Figure 6.   Numerical solution of system (25) versus time with different values for the time delay τ.
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with a high loss of immunity rate, φ = 0.8 , the size of the infected class rises to a higher level than the equilibrium 
value. This indicates the importance of increasing the vaccination rate while decreasing the loss of immunity rate.

Experiment 5: Effect of the vaccination rate and the vaccine efficiency on infected class. Let τ = 100 , where 
the remaining parameters are as in Table 1. Figure 8 displays that when the vaccination rate is low, r = 0.1, a 
high-efficiency vaccine ratio, f = 0.9 and σ = 0.0001, the infected class size tends to be near the equilibrium 
level. However, when the efficiency ratio of the vaccine is low, f = 0.2, and σ = 0.5, with a low vaccination 
rate, r = 0.1 , the size of the infected class rises above the equilibrium level. Meanwhile, if the vaccination rate is 
high, r = 0.9 ; the size of the infected class drops below the equilibrium level when the vaccine has a high ratio 
of efficiency, f = 0.9, and σ = 0.0001 ; and rises above the equilibrium when the ratio of vaccine efficiency is 
low, f = 0.2, and σ = 0.5.

This implies that even if the vaccination rate is high, the infected class’s size drops only if the vaccine has a 
high-efficiency ratio.

Sensitivity analysis for R
c
.  To know the effect of the parameters in system (7) on the control reproduc-

tion number Rc , we perform the sensitivity analysis on Rc . This analysis is investigated analytically through 
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computing ∂Rc/∂P , where, P = (η, β , ρ, SD, r, φ, γ , σ , δ, d, µ) . Note that, Rc for system (7) does not 
depend on α . The sensitivity of Rc to each parameter is as follows:

where,

Equation (26) shows that increasing some parameters such as β , γ , and σ causes an increase in Rc . On the 
other hand, an increase in other parameters, for example, SD, δ , and f, causes a decrease in Rc . The rate of change 
of Rc corresponding to τ , r , and φ depends on the value of � . If � is greater than one, then this allows Rc to 
decrease as r increases. At the same time, Rc increases as the time delay in vaccine production, τ , and the loss of 
vaccine immunity rate, φ , increase. Figures 9 and 10 demonstrate the analytic results with � > 1.

Furthermore, we evaluate the normalized sensitivity index (SI) of Rc with respect to the system’s parameters 
P by using the formula25:

The sensitivity index estimates the outcome value of Rc when increasing the value of the parameter P by 1% . 
When ŴP

Rc
 is positive, then Rc increases with respect to P . Contrary, if ŴP

Rc
 is negative, then Rc decreases with 

respect to P . Applying the formula in (27), we obtain

(26)

∂Rc

∂σ
=

ηre−µτ (1− f )

µ(δ + d + µ)(re−µτ + φ + µ)
> 0,

∂Rc

∂f
=

−re−µτ

µ(δ + d + µ)(re−µτ + φ + µ)
< 0,

∂Rc

∂τ
=

ησ re−µτ (φ + µ)(1− f )

(δ + d + µ)(re−µτ + φ + µ)2
(� − 1),

∂Rc

∂φ
=

ηre−µτ σ (1− f )

µ(δ + d + µ)(re−µτ + φ + µ)2
(� − 1),

∂Rc

∂r
=

ησ e−µτ (φ + µ)(1− f )

µ(δ + d + µ)(re−µτ + φ + µ)2
(1−�),

∂Rc

∂β
=

ηγρ(1− SD)(φ + µ)

µ(γ + µ)(δ + d + µ)(re−µτ + φ + µ)
> 0,

∂Rc

∂ρ
=

ηγβ(1− SD)(φ + µ)

µ(γ + µ)(δ + d + µ)(re−µτ + φ + µ)
> 0,

∂Rc

∂SD
=

−ηγβρ(φ + µ)

µ(γ + µ)(δ + d + µ)(re−µτ + φ + µ)
< 0,

∂Rc

∂γ
=

ηβρ(1− SD)(φ + µ)

(γ + µ)2(δ + d + µ)(re−µτ + φ + µ)
> 0,

∂Rc

∂δ
=

−η

[
γβρ(1− SD)(φ + µ)+ re−µτ σ (1− f )(γ + µ)

]

µ(γ + µ)(δ + d + µ)2(re−µτ + φ + µ)
< 0,

∂Rc

∂d
=

−η

[
γβρ(1− SD)(φ + µ)+ re−µτ σ (1− f )(γ + µ)

]

µ(γ + µ)(δ + d + µ)2(re−µτ + φ + µ)
< 0,

∂Rc

∂η
=

γβρ(1− SD)(φ + µ)

µ(γ + µ)(δ + d + µ)(re−µτ + φ + µ)
+

re−µτ σ (1− f )

µ(δ + d + µ)(re−µτ + φ + µ)
> 0,

∂Rc

∂µ
=

−η

[
γβρ(1− SD)�1 + re−µτ σ (1− f )(γ + µ)2�2

]

µ2(γ + µ)2(δ + d + µ)2(re−µτ + φ + µ)2
< 0,

�1 = µ(φ + µ)

[
(γ + µ)(δ + d + µ)(1− re−µτ τ)+ (re−µτ + φ + µ)(δ + d + γ + 2µ)

]

+ φ(γ + µ)(δ + d + µ)(re−µτ + φ + µ),

�2 = (δ + d + µ)

[
re−µτ + τµ(φ + µ)+ φ + µ+ 1

]
+ µ(re−µτ + φ + µ),

� =
γβρ(1− SD)

(γ + µ)σ(1− f )
.

(27)ŴP
Rc

=
∂Rc

∂P

P

Rc
.
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Figure 9.   The sensitivity of Rc of system (7) with respect to the parameters η, τ , β , r, f  , and σ.
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Figure 10.   The sensitivity of Rc of system (7) with respect to the parameters φ, SD, ρ, δ, γ , d , and µ.

Table 2.   The sensitivity index of Rc with respect to the parameters P of system (7).

Parameter P Value Sensitivity index ŴP

Rc

η 1250 1

τ 120 0.4035

β 1.0063× 10
−4 0.9754

ρ 0.85 0.9754

γ 0.167 0.1885

δ 0.32772 −0.5417

d 0.23724 −0.3922

µ 0.04 −0.7681

SD 0.3 −0.4180

r 0.6 −0.0841

f 0.9 −0.2216

σ 0.0001 0.0246

φ 0.0005 0.001
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where χ = γβρ(1− SD)(φ + µ)+ re−µτ σ (1− f )(γ + µ) . The sensitivity index values for Rc are presented 
in Table 2, where we have chosen the values of the parameters to satisfy � > 1 . We conclude that increasing the 
vaccination rate, the efficiency of the vaccine, and the social distancing aids in decreasing the Rc . In contrast, 
increasing the time delay, transmission rate, loss of vaccine immunity rate, and infection after vaccine contributes 
to the enlargement in Rc.

Conclusion
This paper presented a mathematical model to study the effect of a time delay in vaccine production on the spread 
of COVID-19. The model was analyzed qualitatively and numerically. Qualitative analysis showed that the system 
variables are biologically meaningful, bounded, and non-negative. Also, two equilibrium points of the model 
were discussed: the free equilibrium point, which exists without conditions, and the endemic equilibrium point, 
which exists provided that the control reproduction number, Rc , is greater than unity. Moreover, the formula 
for the threshold quantity Rc was calculated.

In addition, the local stability of equilibrium points was investigated. The free equilibrium point is locally 
asymptotically stable if Rc < 1 and the time delay, τ , is greater than or equal to a critical value ( τ ∗ ). In contrast, 
when the time delay is less than τ ∗ , the stability of the free equilibrium changes, and a Hopf bifurcation occurs. 
Furthermore, the conditions for the stability of the endemic equilibrium were discussed.

The numerical analysis showed agreement with the results of the qualitative analysis. Also, the effect of the 
vaccine’s time delay, vaccine rate, and efficiency on the model dynamics was studied. Finally, the sensitivity 
analysis was delivered for Rc.

The model analysis revealed the significance of raising the vaccination rate while reducing the vaccine loss 
immunity rate. However, if vaccines are not highly effective, raising the vaccination rate will not lower the size 
of the infected class.

Data availibility
All data generated or analysed during this study are included in this published article.
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