
sensors

Article

A Rapid and Adaptive Alignment under Mooring
Condition Using Adaptive EKF and
CNN-Based Learning

Jong Nam Lim and Chan Gook Park *
Department of Aerospace Engineering, Seoul National University, Seoul 08826, Korea; ljn78@snu.ac.kr
* Correspondence: chanpark@snu.ac.kr; Tel.: +82-2-880-1675

Received: 25 May 2020; Accepted: 15 July 2020; Published: 22 July 2020
����������
�������

Abstract: Alignment of the inertial navigation system (INS) in the mooring environment should
take into account the movements of the waves or wind. The alignment of the INS is performed
through an extended Kalman filter (EKF) using zero velocity as a measurement. However, in the
mooring condition, this is not perfect stationary, thus the measurement error covariance matrix
should be adjusted. In addition, if the measurement error covariance matrix is fixed to one value,
the alignment time may take longer or the performance may be reduced depending on the change
in mooring conditions. To solve this problem, we propose an alignment method using adaptive
Kalman filter and convolution neural network (CNN)-based learning. The proposed method was
verified for the superiority of alignment time and accuracy through Monte Carlo simulation in a
mooring environment.

Keywords: convolution neural network (CNN); adaptive extended Kalman filter (EKF); alignment;
mooring environment; inertial navigation system (INS)

1. Introduction

The inertial navigation system (INS) is the most fundamental navigation system that provides
position, velocity, and attitude information using the gyro to measure angular velocity and the
accelerometer to measure the linear acceleration of the vehicle. The strapdown-based INS calculates
navigation solution in the navigation frame from the output of the inertial sensors attached to the
body frame through recursive integration and coordinate transformation based on initial information.
Therefore, it is necessary to find the initial attitude precisely, and this process is called alignment [1,2].

Alignment in the stationary state is performed using the Earth’s rate and gravitational acceleration.
To perform the alignment, a gyrocompassing method using a control law or an estimator based on a
Kalman filter technique capable of estimating errors of sensors as well as an attitude during alignment
has been applied.

The stationary state has a complete zero velocity, thus the alignment process is performed using the
zero-velocity information as a measurement in Kalman filter. However, if the alignment is performed
in a sea environment, the velocity and attitude are continuously changed by the wind and wave.
Therefore, it is essential for navigation systems operated on marine platforms, such as a ship and a
submarine, to apply the technique of performing alignment in sea environment [1–3].

We conducted a study on Extended Kalman Filter (EKF)-based alignment using INS in a mooring
environment. Here, EKF, which is a linearized Kalman filter, is applied with consideration to the
integration with the nonlinear system INS. The most crucial point is how to handle this linear velocity
and rotation that repeatedly occur in the mooring environment with wind or wave. These movements
appear as errors or disturbances that interfere with a stationary condition, thus EKF-based alignment
can be performed by setting the measurement error covariance large.

Sensors 2020, 20, 4069; doi:10.3390/s20154069 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s20154069
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/15/4069?type=check_update&version=2

Sensors 2020, 20, 4069 2 of 20

However, in the continuously changing mooring environment, this method may degrade
performance depending on changing situations and takes a long time to finish the alignment. Therefore,
we propose adaptive methods using adaptive EKF and CNN-based learning for alignment in the
mooring environment. The adaptive EKF uses innovation of the measurement to estimate the
measurement error covariance matrix continuously, and outputs an adaptive result according to the
condition of the measurement. The CNN-based learning method learns the optimal measurement
error covariance matrix to minimize the error in changing the mooring environment based on a large
number of data.

2. Related Work

Various methods of using digital filters such as FIR or IIR have been developed to deal with this
problem. Lian et al. proposed a method to reduce the effect of acceleration disturbance by using a
finite impulse response (FIR) filter [4]. Feng et al. applied the infinite impulse response (IIR) filter and
power spectrum analysis to compensate for the disadvantages of the FIR filter that must have a huge
order [5]. However, this digital filter method has a delay problem in real-time applications and has
limitations due to a fixed filter coefficient in a sea environment in which the magnitude or period of
motion continuously changes.

Gaiffe et al. proposed an inertial frame-based alignment (IFBA) technique to project gravity on an
inertial frame to estimate the coordinate transformation matrix between the inertial frame and the
body frame [6]. Since then, this IFBA technique has been used by many researchers for alignment in
mooring [5,7,8]. Gao et al supposed a fast alignment method using IFBA, and bidirectional Kalman
filter [7], and Sun et al applied the IFBA and hidden Markov model to prevent filter delay for alignment
in mooring [8].

If the conventional EKF is used for alignment in the mooring environment, the alignment is
disturbed by rate and moving. Therefore, it is necessary to set an appropriate error covariance, and the
time required for alignment is increased. The adaptive EKF has been applied to various cases in which
the environment or condition changes. It is classified into a case where the measurement changes
and a case where the system model changes [9,10]. The alignment in mooring uses zero velocity as a
measurement, and since the disturbance caused by the waves or wind can be regarded as an error in
the measurement, we use a measurement dependent adaptive EKF.

The deep learning technique has been widely used in fields that solve classification, recognition,
and estimation problems in various nonlinear environments using many data. Among various
deep learning techniques, CNN was first introduced by Lecun and applied to handwriting zip code
recognition. Then, it was generalized and expanded in concept, making it widely used in image
processing, recognition, and classification [11–13].

Recently, research to apply deep learning techniques to the Kalman filter has been conducted.
In the process of applying the Kalman filter to the pose estimation problem, Coskun et al. proposed a
long short-term memory–Kalman filter (LSTM-KF) that learn motion model, measurement model and
noise covariance of Kalman filter through three independent LSTM modules [14]. Martin proposed a
method to reduce navigation errors when driving a car by learning [15].

Lee and Bang calculated the filter coefficient of RBPF in terrain-aided navigation (TAN) through
the LSTM-based learning [16]. By estimating the measurement error covariance, system error
covariance, and measurement model using four LSTM modules, it showed high performance in the
TAN environment with strong nonlinearity.

3. Conventional Extended Kalman Filter Based Alignment in Mooring Environment

Since alignment is performed based on INS, the model of INS is used as the system model, and the
zero-velocity model is used as the measurement model for the Kalman filter. Furthermore, we apply
an indirect method based Conventional Extended Kalman filter (CEKF) that linearizes the Kalman
filter for the nonlinear INS model.

Sensors 2020, 20, 4069 3 of 20

As mentioned above, the easiest Kalman filter-based method to perform alignment in the mooring
environment is to set the filter coefficients with consideration of movement conservatively. When the
zero velocity is used as a measurement in the mooring environment, repetitive changes in velocity or
attitude due to wind or waves occur in the form of a sin wave. Since this can be regarded as the large
error of the measurement, the Kalman filter should be performed by setting the measurement error
covariance matrix R to be larger than the conventional case.

The conventional EKF recursively performs the measurement update and time propagation.
The nonlinear system model and measurement model are as follows.

.
x(t) = f(x(t)) + w(t) (1)

y(t) = h(x(t)) + v(t) (2)

w(t) ∼ N(0, Q) , v ∼ N(0, R) (3)

where f is a nonlinear function for the system equation; h is a nonlinear function for the measurement
equation; x is a state variable; y is a measurement; w is a noise of the system model; v is noise of the
measurement model, which follows a Gaussian Probability Density Function (PDF); Q is system error
covariance matrix; and R is measurement error covariance matrix.

The results of linearizing and discretizing Equations (1) and (2) and expressing them in error state
are as follows [1,3].

δx̂k+1 = (I + Fk∆t)δx̂k + wk (4)

δyk = Hkδx̂k + vk (5)

where

Fk =
∂fk
∂xk

∣∣∣∣∣
xk=x̂k

, Hk =
∂hk
∂xk

∣∣∣∣∣
xk=x̂k

(6)

The time update equation of EKF is as follows.

δx̂k+1|k = Fkδx̂k (7)

Pk+1|k = FkPkFT
k + Qk (8)

The measurement update equation of EKF is as follows.

δx̂k+1 = δx̂k+1|k + Kk(δzk −Hkδx̂k+1|k) (9)

Sk+1 = Hk+1Pk+1|kHT
k+1 + Rk+1 (10)

Kk+1 = Pk+1|kHT
k+1S−1

k+1 (11)

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1KT
k+1 (12)

The nonlinear error model of the INS system is as follows [1,2], and the system matrix Fk refers to
Appendix A.

δ
.

V
n
=

[
Cn

b fb
]
× δΦn

−

[
2ωn

ie +ωn
en

]
× δVn + Cn

bδfb + Vn
× [δωn

en]

δ
.

Φ
n
= δωn

in −ω
n
in × δΦn

−Cn
bδω

b
ib

δ
.
∇ = 0
δ

.
ε = 0

(13)

δx =
[
δVn δΦn δ∇ δε

]T
(14)

Sensors 2020, 20, 4069 4 of 20

where δVn is a velocity error, δΦn is an attitude error, δ∇ is an accelerometer error, δε is a gyro error,
Cn

b is a coordinate transformation matrix that converts from body frame to navigation frame, ωn
ie is an

angular rate due to the Earth rate in navigation frame, ωn
en is an angular rate due to the transpose

rate in navigation frame, gn is a gravity acceleration in navigation frame, and fb is a specific force in
body frame.

δyk =
[
δV̂n

k δV̂e
k δV̂d

k

]
δzk = Hkδxk + vk =

[
δV

n
k δV

e
k δV

d
k

]T
=

[
V

n
k − 0 V

e
k − 0 V

d
k − 0

]T (15)

where δV̂n
k is an error of propagated north-direction velocity, δV̂e

k is an error of propagated east-direction

velocity, δV̂d
k is an error of propagated down-direction velocity. V

n
k is a measured north-direction

velocity, V
e
k is a measured east-direction velocity, V

d
k is a measured down-direction velocity, δV

n
k is an

error of measured north-direction velocity, δV
e
k is an error of measured east-direction velocity, and δV

d
k

is an error of measured down-direction velocity.
However, in the case of using the fixed measurement error covariance matrix, performance and

convergence speed of the Kalman filter change according to sea conditions, which change with time
or position. In general, assuming that system error covariance matrix Q is appropriately fixed, if the
measurement error covariance matrix R becomes small, the filter believes the measurement more.
Since it is judged that the measurement is accurate, the performance is improved, and convergence
speed is fast. However, if the error of the actual measurement is larger than the expected measurement
error, performance of the filter degrades, and even the filter may diverge.

Conversely, if the measurement error covariance matrix R is large, the filter judges that the error
of the measurement is significant. Thus, the convergence speed becomes slow, but the divergence
of the filter can be avoided. In other words, if the error of the actual measurement in the mooring
environment is similar to the error of the expected measurement, the best result is estimated. Since the
error of actual measurement in the mooring environment is changing, conventional EKF using a fixed
measurement error covariance matrix may degrade performance.

Therefore, we propose two methods for alignment under the mooring condition, as described in
the next sections.

4. Adaptive EKF Based Alignment in Mooring Environment

The adaptive EKF is to adaptively change measurement error covariance matrix R using an
innovation sequence, which is defined as the difference between the measured value and the estimated
value. The innovation sequence is as follows [9].

ik = δzk −Hδx̂k = δzk −HFδx̂k−1 (16)

where ik is an innovation sequence, zk is a measurement, H is a measurement model matrix, and F is a
system model matrix.

Substituting the measurement in Equation (15) into Equation (16),

ik = δzk −HFδx̂k−1 = Hδxk + vk −HFδx̂k−1

= H(δxk − Fδx̂k−1) + vk = H
~
xk|k−1 + vk

(17)

Innovation sequence is a kind of indicator of real estimation errors that can be used for the
adaptive algorithm. The covariance of innovation is calculated using the above equation and is as
follows [9,10].

Ik = E
[
ikiT

k

]
= HPk|k−1HT + Rk (18)

Sensors 2020, 20, 4069 5 of 20

Therefore, an adaptive measurement error covariance matrix is as follows.

Rk = Ik −HPk|k−1HT (19)

where Ik is a covariance of innovation, ik is an innovation, H is an observation matrix, Pk|k−1 is a state
error covariance, and Rk is a measurement error covariance matrix.

In the stationary system and noise environment, Ik can be calculated by using the average as
following equation [17].

Îk =
1
k

k∑
m=1

imiT
m (20)

Moreover, converting the above equation to recurrent form is as follows.

Îk =
k− 1

k
Îk−1 +

1
k

ikiT
k (21)

Substituting Equation (21) into Equation (19), we can obtain the estimated adaptive measurement
error covariance matrix as follows.

R̂k = Îk −HPk|k−1HT (22)

At this time, to prevent R from becoming negative in the case Îk is too small, the following equation
is added.

i f diag
(
R̂k

)
< 0, then diag

(
R̂k

)
= 0 (23)

An innovation is obtained from the measurement, and the covariance of innovation is calculated
through data. Since the calculated covariance of innovation represents the condition of the
measurement, the measurement error covariance matrix is automatically adjusted according to
the current measurement. In other words, if the wave is large, the measurement error is large, so the
measurement error covariance matrix R is increased. Conversely, if the wave is small, the measurement
error is small, and then the measurement error covariance matrix R is decreased.

5. Learning-Based Alignment in Mooring Environment

5.1. Introduction of CNN

In this section, the measurement error covariance matrix R is adjusted according to the wave
condition using the trained network. In this paper, convolutional neural network (CNN) is applied to
learn time-series sensor data. Recursive neural network (RNN) is generally used to process this kind of
time series data. However, this time series data can also be processed as a convolution feature, thus this
study uses a one-dimensional convolution network. Compared to RNN, CNN has the advantage of
less complexity and reduced computation, and better extraction of data characteristics according to
conditions. In fact, in the field of audio generation and machine translation, CNN has shown good
results in the past few years.

CNN extracts important characteristic among related data. In other words, CNN is not just
learning a list of data as in the multi-layer perceptron (MLP) but learning spatial correlation by
assigning local connections between neurons in the adjacent layer. CNN compresses the characteristics
of the original signal through convolution. At this time, according to the filter used, a feature map is
constructed to output only the characteristics that can best represent the data. The feature map starts
from low-level feature information and synthesizes low-level features as the layer deepens to generate
high-level features.

Learning using this CNN has the advantage of being able to process many data at a time through
a convolution operation, and significantly reducing the number of parameters to be learned through
the sharing of weights and the receptive field. In addition, CNN can extract and learn spatial and

Sensors 2020, 20, 4069 6 of 20

temporal characteristics of data through spatial/temporal correlation, thus it has a robustness against
noise or external disturbance [18].

The input through sensors is continuous time-series data, and data of the previous time and
current time are dependent and have a relationship by system model.

5.2. Architecture of CNN

5.2.1. Architecture

In this paper, CNN is composed of an input layer that receives sensor input, a convolution layer
that performs synthesis, a ReLU activation function that adds nonlinearity, a dropout layer, and an
output layer. The output layer consists of a fully connected layer and outputs the measurement error
covariance matrix R, as shown in Figure 1.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 20

the sharing of weights and the receptive field. In addition, CNN can extract and learn spatial and
temporal characteristics of data through spatial/temporal correlation, thus it has a robustness against
noise or external disturbance [18].

The input through sensors is continuous time-series data, and data of the previous time and
current time are dependent and have a relationship by system model.

5.2. Architecture of CNN

5.2.1. Architecture

In this paper, CNN is composed of an input layer that receives sensor input, a convolution layer
that performs synthesis, a ReLU activation function that adds nonlinearity, a dropout layer, and an
output layer. The output layer consists of a fully connected layer and outputs the measurement error
covariance matrix R, as shown in Figure 1.

Figure 1. Architecture of CNN layers.

b
ibω is an angular rate that is the output of gyro, ba is a linear acceleration that is an output of

accelerometer, and Conv Set is composed of Conv1d representing one-dimensional convolution layer,
Rep_Pad1d, which creates one-dimensional padding by copying the boundary values, ReLU
activation function, and Dropout layer.

The input of learning is the output of the inertial sensors, which is linear acceleration and angular
rate. Since the values have different characteristics, normalization preprocessing is performed using
the average and variance of the sensor output. The output is measurement error covariance matrix R,
which is the parameter that controls the EKF.

5.2.2. Input Data and Normalization

The network inputs consist of three-axis gyros and accelerometers. When performing alignment
during mooring, the ship moves repeatedly depending on the size of the sea waves, so the parameter
of the filter must be adjusted according to this movement. Gyros measure rotation and accelerometers
measure linear acceleration, thus the networks input is the physical quantity measured by the gyros
and accelerometers.

The scale of the physical quantity measured by the gyros and accelerometers is not the same. In
the static condition, the acceleration on the horizontal x and y axes is not large. However, the z axis
accelerometer measures the Earth’s gravitational acceleration, thus it outputs a relatively large value.
In addition, the gyros measure the Earth rate, but its size is very small.

Therefore, normalization is performed to make the range of all physical quantities equal.
Normalization is performed using the mean and standard deviation as shown in Equations (24)–(27).

() /n m ean std= −u u u u (24)

where

Figure 1. Architecture of CNN layers.

ωb
ib is an angular rate that is the output of gyro, ab is a linear acceleration that is an output of

accelerometer, and Conv Set is composed of Conv1d representing one-dimensional convolution layer,
Rep_Pad1d, which creates one-dimensional padding by copying the boundary values, ReLU activation
function, and Dropout layer.

The input of learning is the output of the inertial sensors, which is linear acceleration and angular
rate. Since the values have different characteristics, normalization preprocessing is performed using
the average and variance of the sensor output. The output is measurement error covariance matrix R,
which is the parameter that controls the EKF.

5.2.2. Input Data and Normalization

The network inputs consist of three-axis gyros and accelerometers. When performing alignment
during mooring, the ship moves repeatedly depending on the size of the sea waves, so the parameter
of the filter must be adjusted according to this movement. Gyros measure rotation and accelerometers
measure linear acceleration, thus the networks input is the physical quantity measured by the gyros
and accelerometers.

The scale of the physical quantity measured by the gyros and accelerometers is not the same.
In the static condition, the acceleration on the horizontal x and y axes is not large. However, the z axis
accelerometer measures the Earth’s gravitational acceleration, thus it outputs a relatively large value.
In addition, the gyros measure the Earth rate, but its size is very small.

Therefore, normalization is performed to make the range of all physical quantities equal.
Normalization is performed using the mean and standard deviation as shown in Equations (24)–(27).

un = (u− umean)/ustd (24)

Sensors 2020, 20, 4069 7 of 20

where
u =

[
ωbx

ib ω
by
ib ωbz

ib | abx aby abz
]T

(25)

umean =
1
N

N∑
i=1

u(i) (26)

ustd =

√√√
1
N

 N∑
i=1

(
u(i) − umean

)2
 (27)

Since the calculation frequency of the inertial navigation and EKF filter is 10 Hz, the sampling
time of the input data for training is 0.1 s. For continuous time series data to output the measurement
error covariance matrix R, continuous sensor data of 20 s were used.

5.2.3. Convolution Layer

One-dimensional convolution layer is applied to perform the convolution operation of time series
sensor data. The output of the convolution layer is input to the ReLU activation function to add
nonlinearity, and the dropout layer is connected to the activation function to reduce the size and give
generality. Total convolution layers are composed of six consecutive Conv Sets.

One Conv Set is composed of one-dimensional convolution layer, one-dimensional padding layer,
one ReLU, and one dropout layer, as shown in Figure 2.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 20

Tbx by bz bx by bz
ib ib ib =  u ω ω ω a a a (25)

()

1

1 N
i

mean
iN =

= u u (26)

()2()

1

1 N
i

std mean
iN =

 = −  
u u u (27)

Since the calculation frequency of the inertial navigation and EKF filter is 10 Hz, the sampling
time of the input data for training is 0.1 s. For continuous time series data to output the measurement
error covariance matrix R, continuous sensor data of 20 s were used.

5.2.3. Convolution Layer

One-dimensional convolution layer is applied to perform the convolution operation of time
series sensor data. The output of the convolution layer is input to the ReLU activation function to add
nonlinearity, and the dropout layer is connected to the activation function to reduce the size and give
generality. Total convolution layers are composed of six consecutive Conv Sets.

One Conv Set is composed of one-dimensional convolution layer, one-dimensional padding
layer, one ReLU, and one dropout layer, as shown in Figure 2.

Figure 2. Block diagram of Conv Set.

In this paper, the conv1d function provided by PyTorch is applied to construct one-dimensional
convolution layer; the length of output sequence is determined by Equation (28).

2 (1) 1 1in
out

L P D KL
S

+ × − × − − = +  
 (28)

where o u tL is the length of output sequence, inL is the length of input sequence, P is the length

of padding, D is the length of dilation, K is the length of kernel (filter), S : length of stride

The values of each parameter for CNN layer used here are shown in Table 1 and the length of
the output sequence was designed to remain the same as the length of the input sequence.

Table 1. Convolution layer parameters.

Parameter Value

Figure 2. Block diagram of Conv Set.

In this paper, the conv1d function provided by PyTorch is applied to construct one-dimensional
convolution layer; the length of output sequence is determined by Equation (28).

Lout =

[
Lin + 2× P−D× (K − 1) − 1

S
+ 1

]
(28)

where Lout is the length of output sequence, Lin is the length of input sequence, P is the length of padding,
D is the length of dilation, K is the length of kernel (filter), S: length of stride.

The values of each parameter for CNN layer used here are shown in Table 1 and the length of the
output sequence was designed to remain the same as the length of the input sequence.

Sensors 2020, 20, 4069 8 of 20

Table 1. Convolution layer parameters.

Parameter Value

Lout: length of output sequence 200
Lin: length of input sequence 200

P: length of padding 4
D: length of dilation 2

K: length of kernel (filter) 5
S: length of stride 1

5.2.4. Fully Connected Layer and Network Output

The output of the convolutional layer is connected to the fully connected layers. The final output,
the measurement error covariance matrix R, is calculated through the output of a fully connected layer.
All fully connected layers are composed of four consecutive layer sets.

The output of the fully connected layer is connected to the ReLU activation function and goes
through the dropout layer to add generality. The last fully connected layer omits the ReLU and dropout
layer to output the measurement error covariance R.

The size of each fully connected layer is [200 × 2000], and this size remains the same in each
fully connected layer. The output size of the final fully connected layer is [200 × 6]. The output
value of network is finally converted to the measurement error covariance R using Equation (29).
Here, dimension of R is [200 × 3].

R = R0 × 10z (29)

where R is the measurement error covariance matrix, R0 is the initial measurement error covariance
matrix, z is output of network.

5.2.5. Loss Function

Mean squared error applies to the loss function. Since the measurement of the EKF becomes the
zero velocity, the error is the difference between the velocity estimate and the true velocity, as shown in
Equation (30).

Loss(γ) =
1
n

n∑
i=1

‖V̂n
i (γ) −Vn

i,True‖
2

(30)

where V̂n
i (γ) is estimated velocity vector at time i, Vn

i,True is true velocity vector at time i.

5.2.6. Optimizer

The purpose of this learning is to optimize the measurement error covariance matrix R for EKF that
minimizes the loss of Equation (30). This model updates the parameters using the gradient obtained
through backpropagation. In this paper, PyTorch framework is applied as a tool for learning, and the
optimizer used Adam optimizer that reflects the adaptive learning rate algorithm that combines the
ideas of momentum optimization and RMSprop for fast and stable learning.

Adam optimizer use two parameters (learning rate and weight decay) for optimization. In this
study, the learning rate of 0.00001 and the weight decay of 0.000001 were selected to satisfy the learning
speed and accuracy.

5.2.7. Parameter Tuning for CNN Architecture

If the length of this sequence is too long, the characteristics of the rapidly changing sea wave
cannot be learned well. It is also known that the size of an excessively long input window can
over-smooth the result [19]. Conversely, if the length of this sequence is too short, the coefficient of the
covariance changes too quickly, which can degrade the stability of the filter. Therefore, considering the
above characteristics, the input length of the sequence data for training was set to 20 s.

Sensors 2020, 20, 4069 9 of 20

In this paper, the architecture of the overall filter is superposition on the Conv Set structure to
which the one-dimensional filter of 5 × 1 size is applied. This repetitive placement of the Conv Set
utilizes non-linearity thorough the ReLU block and Dropout block in the middle of the Conv Set, thus it
can make the desired feature stand out more and is advantages in terms of computation amount.

Conv Set was designed by configuring filter block, padding block, and dilation block so that the
length of the input sequence and the output sequence are the same to keep the computation constant
and balance the system. That is, even after passing through one Conv Set, 200 (20 s × 10 Hz) sequence
data maintain their length.

Learning parameters for CNN architecture are shown in Table 2.

Table 2. Learning parameters.

Sub Parameter Value

Maximum epoch 200
Input dimension 6

Output dimension 3

Initial bias of CNN layer U
(
−

√
1

5Cin
,
√

1
5Cin

,
)

Initial weights of CNN layer U
(
−

√
1

5Cin
,
√

1
5Cin

,
)

Initial bias of fully connected layer U
(
−

√
1

5Fin
,
√

1
5Fin

,
)

Initial weights of fully connected layer U
(
−

√
1

5Fin
,
√

1
5Fin

,
)

Learning rate 0.00001
Gradient decay factor 0.000001

Optimizer Adam
Drop ratio of learning rate 0.9

Cin, size of input channel; Fin, size of each input sample; U, uniform distribution.

6. Simulation

6.1. Simulation Environment

To verify the performance of a proposed method, the mooring environment was simulated, and
convergence speed and performance accuracy were compared by performing the alignment for the
case of using a fixed measurement error covariance matrix, adaptive EKF, and learning as shown in
Figures 3–5.Sensors 2020, 20, x FOR PEER REVIEW 10 of 20

Figure 3. Test Case 1: CEKF with fixed R.

Figure 4. Test Case 2: Adaptive EKF.

Figure 5. Test Case 3: Learning-based EKF.

Figure 3 shows the case of using a fixed error covariance R. INS uses the acceleration and angular
velocity to calculate the navigation solutions. The EKF module located in the middle consists of the time
propagation and measurement update process. The measurement update process is performed by
applying the zero-velocity measurement and the fixed R value indicated in the red box. The compensated
is obtained by subtracting the estimated error state from EKF to the navigation solution from INS.

Figure 4 shows the case where the adaptive EKF described in the Section 4 is used. The other
parts are the same as in Figure 3. However, R is calculated adaptively in the red box labeled
“Innovation Based R adaptor”. The calculated R is used in the EKF measurement update in EKF.

Figure 5 shows the case where R calculated by learning is used. The error covariance matrix R is
calculated thorough the network updated by learning in the red box marked “Learning-based R
adaptor”. The calculated R is used in the EKF measurement update in EKF.

To simulate the mooring, linear motion and angular rate are generated by the following
equations and added to the gyro and accelerometer outputs.

Time
propagation

Measurement
Update

INS

Fixed R

δ x
x̂

ˆcompensated x

EKF

Zero Velocity

b
ib
b

ω
a

R

Time
propagation

Measurement
Update

b
ib
b

ω
a

INS

Innovation
Based R adaptor

δ x
x̂

R

Adaptive EKF

Zero Velocity

ˆcompensated x

Time
propagation

Measurement
Update

INS

Learning Based
R adaptor

δ x
x̂

EKF

Zero Velocity

ˆcompensated xb
ib
b

ω
a

R

Figure 3. Test Case 1: CEKF with fixed R.

Sensors 2020, 20, 4069 10 of 20

Sensors 2020, 20, x FOR PEER REVIEW 10 of 20

Figure 3. Test Case 1: CEKF with fixed R.

Figure 4. Test Case 2: Adaptive EKF.

Figure 5. Test Case 3: Learning-based EKF.

Figure 3 shows the case of using a fixed error covariance R. INS uses the acceleration and angular
velocity to calculate the navigation solutions. The EKF module located in the middle consists of the time
propagation and measurement update process. The measurement update process is performed by
applying the zero-velocity measurement and the fixed R value indicated in the red box. The compensated
is obtained by subtracting the estimated error state from EKF to the navigation solution from INS.

Figure 4 shows the case where the adaptive EKF described in the Section 4 is used. The other
parts are the same as in Figure 3. However, R is calculated adaptively in the red box labeled
“Innovation Based R adaptor”. The calculated R is used in the EKF measurement update in EKF.

Figure 5 shows the case where R calculated by learning is used. The error covariance matrix R is
calculated thorough the network updated by learning in the red box marked “Learning-based R
adaptor”. The calculated R is used in the EKF measurement update in EKF.

To simulate the mooring, linear motion and angular rate are generated by the following
equations and added to the gyro and accelerometer outputs.

Time
propagation

Measurement
Update

INS

Fixed R

δ x
x̂

ˆcompensated x

EKF

Zero Velocity

b
ib
b

ω
a

R

Time
propagation

Measurement
Update

b
ib
b

ω
a

INS

Innovation
Based R adaptor

δ x
x̂

R

Adaptive EKF

Zero Velocity

ˆcompensated x

Time
propagation

Measurement
Update

INS

Learning Based
R adaptor

δ x
x̂

EKF

Zero Velocity

ˆcompensated xb
ib
b

ω
a

R

Figure 4. Test Case 2: Adaptive EKF.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 20

Figure 3. Test Case 1: CEKF with fixed R.

Figure 4. Test Case 2: Adaptive EKF.

Figure 5. Test Case 3: Learning-based EKF.

Figure 3 shows the case of using a fixed error covariance R. INS uses the acceleration and angular
velocity to calculate the navigation solutions. The EKF module located in the middle consists of the time
propagation and measurement update process. The measurement update process is performed by
applying the zero-velocity measurement and the fixed R value indicated in the red box. The compensated
is obtained by subtracting the estimated error state from EKF to the navigation solution from INS.

Figure 4 shows the case where the adaptive EKF described in the Section 4 is used. The other
parts are the same as in Figure 3. However, R is calculated adaptively in the red box labeled
“Innovation Based R adaptor”. The calculated R is used in the EKF measurement update in EKF.

Figure 5 shows the case where R calculated by learning is used. The error covariance matrix R is
calculated thorough the network updated by learning in the red box marked “Learning-based R
adaptor”. The calculated R is used in the EKF measurement update in EKF.

To simulate the mooring, linear motion and angular rate are generated by the following
equations and added to the gyro and accelerometer outputs.

Time
propagation

Measurement
Update

INS

Fixed R

δ x
x̂

ˆcompensated x

EKF

Zero Velocity

b
ib
b

ω
a

R

Time
propagation

Measurement
Update

b
ib
b

ω
a

INS

Innovation
Based R adaptor

δ x
x̂

R

Adaptive EKF

Zero Velocity

ˆcompensated x

Time
propagation

Measurement
Update

INS

Learning Based
R adaptor

δ x
x̂

EKF

Zero Velocity

ˆcompensated xb
ib
b

ω
a

R

Figure 5. Test Case 3: Learning-based EKF.

Figure 3 shows the case of using a fixed error covariance R. INS uses the acceleration and
angular velocity to calculate the navigation solutions. The EKF module located in the middle consists
of the time propagation and measurement update process. The measurement update process is
performed by applying the zero-velocity measurement and the fixed R value indicated in the red box.
The compensated is obtained by subtracting the estimated error state from EKF to the navigation
solution from INS.

Figure 4 shows the case where the adaptive EKF described in the Section 4 is used. The other parts
are the same as in Figure 3. However, R is calculated adaptively in the red box labeled “Innovation
Based R adaptor”. The calculated R is used in the EKF measurement update in EKF.

Figure 5 shows the case where R calculated by learning is used. The error covariance matrix R
is calculated thorough the network updated by learning in the red box marked “Learning-based R
adaptor”. The calculated R is used in the EKF measurement update in EKF.

To simulate the mooring, linear motion and angular rate are generated by the following equations
and added to the gyro and accelerometer outputs.

φ = Aφ cos
[

2π
Tφ

t
]
, θ = Aθ cos

[
2π
Tθ

t
]
, ψ = Aψ cos

[
2π
Tψ

t
]

(31)

Pb
x = APbx sin

[
2π

TPbx
t
]
, Pb

y = APby sin
[

2π
TPby

t
]
, Pb

z = APbz sin
[

2π
TPbz

t
]

(32)

Velocity outputs can be expressed as follows.

Vb
x = APbx

2π
TPbx

cos
[

2π
TPbx

t
]
, Vb

y = APby
2π

TPby
cos

[
2π

TPby
t
]
, Vb

z = APbz
2π

TPbz
cos

[
2π

TPbz
t
]

(33)

Sensors 2020, 20, 4069 11 of 20

where Aφ, Aθ, Aψ are the amplitude of attitude movement [roll, pitch, heading], APbx, APby, APbz are
the amplitude of position movement [x, y, z], Tφ, Tθ, Tψ are the duration time of attitude movement
[roll, pitch, heading], and TPbx, TPby, TPbz are the duration time of position movement [x, y, z].

The IMU sensors (gyros and accelerometers), initial navigation error, and parameters used in
the simulation are shown in Table 3. To simulate the mooring environment, reference values for
position, velocity, and attitude were generated using the parameter values defined in Table 3 and
Equations (31)–(33). Figure 6 shows the position of a vehicle in the mooring condition. Figures 7 and 8
show the reference position and attitude generated under mooring conditions. Figures 9 and 10 show
the true output of the gyro sensors and accelerometers sensors generated under mooring conditions.

Table 3. Simulation conditions.

Sub Parameter Value

Sensor Error

Gyro Bias 0.001◦/hr (1σ, x/y/z axis)
Gyro ARW 0.0005◦/

√
hr (1σ, x/y/z axis)

Accelerometer Bias 30 ug (1σ, x/y/z axis)
Accelerometer Noise 20 ug (1σ, x/y/z axis)

Initial
Error

Position 10 m (1σ, latitude/longitude axis)
Velocity 0.1 m/s (1σ, north/east axis)
Attitude

(After Coarse Alignment) Roll/Pitch 0.1◦ (1σ), Heading 5◦ (1σ)

Wave Condition

Attitude Amplitude Aφ = 6◦, Aθ = 8◦, Aψ = 6◦

Attitude duration Tφ = 7 s, Tθ = 5 s, Tψ = 6 s
Velocity Amplitude APbx = 0.3 m, APby = 1.0 m, APbz = 1.2 m

Velocity duration TPbx = 7 s, TPby = 6 s, TPbz = 8 s

Mooring Condition
Small size of movement 10% of [Aφ, Aθ, APbx, APby, APbz]

Medium size of movement 50% of [Aφ, Aθ, APbx, APby, APbz]

large size of movement 100% of [Aφ, Aθ, APbx, APby, APbz]

Case
Case 1 CEKF with fixed R (R = [0.1 m/s 0.1 m/s 0.1 m/s]2)
Case 2 Adaptive EKF
Case 3 Learning-based EKF

Simulation Time 600 s
Sensors 2020, 20, x FOR PEER REVIEW 12 of 20

Figure 6. Trajectory in mooring environment.

Figure 7. Reference Position in mooring environment. (Top: East-directional position, Middle : North-

directional position, Bottom : Up-directional position).
Commented [M8]: Please check if there is Figure 7 citation

in this manuscript

Figure 6. Trajectory in mooring environment.

Sensors 2020, 20, 4069 12 of 20

Sensors 2020, 20, x FOR PEER REVIEW 12 of 20

Figure 6. Trajectory in mooring environment.

Figure 7. Reference Position in mooring environment. (Top: East-directional position, Middle : North-

directional position, Bottom : Up-directional position).
Commented [M8]: Please check if there is Figure 7 citation

in this manuscript

Figure 7. Reference Position in mooring environment. (Top: East-directional position, Middle:
North-directional position, Bottom: Up-directional position).Sensors 2020, 20, x FOR PEER REVIEW 13 of 20

Figure 8. Reference Attitude in mooring environment. (Top : Roll angle, Middle : Pitch angle, Bottom:

Heading angle).

Figure 9. Output of Gyro Sensor in mooring environment. (Top : X-directional gyro output, Middle :

Y-directional gyro output, Bottom : Z-directional gyro output).

Commented [M9]: Please check if there is Figure 8 citation

in this manuscript

Commented [M10]: Please check if there is Figure 9 citation

in this manuscript

Figure 8. Reference Attitude in mooring environment. (Top: Roll angle, Middle: Pitch angle, Bottom:
Heading angle).

Sensors 2020, 20, 4069 13 of 20

Sensors 2020, 20, x FOR PEER REVIEW 13 of 20

Figure 8. Reference Attitude in mooring environment. (Top : Roll angle, Middle : Pitch angle, Bottom:

Heading angle).

Figure 9. Output of Gyro Sensor in mooring environment. (Top : X-directional gyro output, Middle :

Y-directional gyro output, Bottom : Z-directional gyro output).

Commented [M9]: Please check if there is Figure 8 citation

in this manuscript

Commented [M10]: Please check if there is Figure 9 citation

in this manuscript

Figure 9. Output of Gyro Sensor in mooring environment. (Top: X-directional gyro output, Middle:
Y-directional gyro output, Bottom: Z-directional gyro output).Sensors 2020, 20, x FOR PEER REVIEW 14 of 20

Figure 10. Output of Accelerometer in mooring environment. (Top : X-directional accelerometer

output, Middle : Y-directional accelerometer output, Bottom : Z-directional accelerometer output).

Input data for learning were randomly generated using the values in Table 3. Based on the same

reference trajectory, sensor errors, initial navigation errors, and mooring conditions were changed.

The inertial sensor measurements were generated by randomly defining bias and noise with values

that follow a normal distribution. In the same way, the initial navigation errors were generated by

randomly defining the initial position errors, initial velocity errors, and initial attitude errors with

values that follow a normal distribution. The mooring condition was generated by randomly defining

the size and duration time of waves with values follow uniform distribution. The network was

trained using the generated input data, and the training was repeatedly performed up to the

maximum epoch, as defined in Table 2 for each data sequence.

The simulation was performed by dividing the mooring condition into three movements:

(1) small size of movement; (2) medium size of movement; and (3) large size of movement. As shown

in Table 3, the small size of the movement is defined as 10% of the amplitude of the large size of

movement, and medium-size movement is defined as 50% of the amplitude of the large size of

movement. Alignment is performed in each case to compare the alignment accuracy and speed

according to the method of applying the measurement error covariance matrix. As described above,

it is divided into a method using CEKF with a fixed measurement error covariance matrix R, a method

using adaptive EKF, and a method using CNN-based learning.

For coarse alignment, a feedback-based alignment technique can generally be applied in a

mooring environment [9,10]. However, this paper focuses on fine alignment using Kalman filter and

zero-velocity measurement, assuming that coarse alignment has been performed.

In consideration of the mooring environment, the initial attitude error after coarse alignment

was set to 0.1° (roll/pitch, 1 σ) and 5° (heading, 1 σ). To perform the Monte Carlo simulation, sensor

errors and initial errors were randomly generated. Repeated simulation was performed 100 times in each

case, and the results were analyzed for the RMS error, alignment speed, and final error values.

6.2. Simulation Results

Simulation results are shown in Figures 11–19 and Table 4–9. In the figures, the green lines show

the results of 100 evolutions of Monte Carlo simulations with randomly set initial values. The red line

is the RMS value of the result of 100 evolutions. Tables 4, 6, and 8 show the RMS value of the error

Figure 10. Output of Accelerometer in mooring environment. (Top: X-directional accelerometer output,
Middle: Y-directional accelerometer output, Bottom: Z-directional accelerometer output).

Input data for learning were randomly generated using the values in Table 3. Based on the same
reference trajectory, sensor errors, initial navigation errors, and mooring conditions were changed.
The inertial sensor measurements were generated by randomly defining bias and noise with values
that follow a normal distribution. In the same way, the initial navigation errors were generated by
randomly defining the initial position errors, initial velocity errors, and initial attitude errors with
values that follow a normal distribution. The mooring condition was generated by randomly defining
the size and duration time of waves with values follow uniform distribution. The network was trained
using the generated input data, and the training was repeatedly performed up to the maximum epoch,
as defined in Table 2 for each data sequence.

The simulation was performed by dividing the mooring condition into three movements: (1) small
size of movement; (2) medium size of movement; and (3) large size of movement. As shown in Table 3,
the small size of the movement is defined as 10% of the amplitude of the large size of movement,
and medium-size movement is defined as 50% of the amplitude of the large size of movement.

Sensors 2020, 20, 4069 14 of 20

Alignment is performed in each case to compare the alignment accuracy and speed according to the
method of applying the measurement error covariance matrix. As described above, it is divided into a
method using CEKF with a fixed measurement error covariance matrix R, a method using adaptive
EKF, and a method using CNN-based learning.

For coarse alignment, a feedback-based alignment technique can generally be applied in a
mooring environment [9,10]. However, this paper focuses on fine alignment using Kalman filter and
zero-velocity measurement, assuming that coarse alignment has been performed.

In consideration of the mooring environment, the initial attitude error after coarse alignment was
set to 0.1◦ (roll/pitch, 1 σ) and 5◦ (heading, 1 σ). To perform the Monte Carlo simulation, sensor errors
and initial errors were randomly generated. Repeated simulation was performed 100 times in each
case, and the results were analyzed for the RMS error, alignment speed, and final error values.

6.2. Simulation Results

Simulation results are shown in Figures 11–19 and Tables 4–9. In the figures, the green lines show
the results of 100 evolutions of Monte Carlo simulations with randomly set initial values. The red line
is the RMS value of the result of 100 evolutions. Table 4, Table 6, and Table 8 show the RMS value of
the error during the entire time for each case. Table 5, Table 7, and Table 9 show the RMS value of the
last error for each case. In Table 4, Table 6, and Table 8, the times of convergence is defined as the time
when the heading error (RMS) is within 20% of the initial heading error.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 20

during the entire time for each case. Tables 5, 7, and 9 show the RMS value of the last error for each
case. In Tables 4, 6, and 8, the times of convergence is defined as the time when the heading error
(RMS) is within 20% of the initial heading error.

Figure 11. Heading error of alignment with CEKF (Case 1) in small size of movement.

Figure 12. Heading error of alignment with Adaptive EKF (Case 2) in small size of movement.

Figure 13. Heading error of alignment with learning-based EKF (Case 3) in small size of movement.

Figure 14. Heading error of alignment with CEKF (Case 1) in medium size of movement.

Figure 11. Heading error of alignment with CEKF (Case 1) in small size of movement.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 20

during the entire time for each case. Tables 5, 7, and 9 show the RMS value of the last error for each
case. In Tables 4, 6, and 8, the times of convergence is defined as the time when the heading error
(RMS) is within 20% of the initial heading error.

Figure 11. Heading error of alignment with CEKF (Case 1) in small size of movement.

Figure 12. Heading error of alignment with Adaptive EKF (Case 2) in small size of movement.

Figure 13. Heading error of alignment with learning-based EKF (Case 3) in small size of movement.

Figure 14. Heading error of alignment with CEKF (Case 1) in medium size of movement.

Figure 12. Heading error of alignment with Adaptive EKF (Case 2) in small size of movement.

Sensors 2020, 20, 4069 15 of 20

Sensors 2020, 20, x FOR PEER REVIEW 15 of 20

during the entire time for each case. Tables 5, 7, and 9 show the RMS value of the last error for each
case. In Tables 4, 6, and 8, the times of convergence is defined as the time when the heading error
(RMS) is within 20% of the initial heading error.

Figure 11. Heading error of alignment with CEKF (Case 1) in small size of movement.

Figure 12. Heading error of alignment with Adaptive EKF (Case 2) in small size of movement.

Figure 13. Heading error of alignment with learning-based EKF (Case 3) in small size of movement.

Figure 14. Heading error of alignment with CEKF (Case 1) in medium size of movement.

Figure 13. Heading error of alignment with learning-based EKF (Case 3) in small size of movement.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 20

during the entire time for each case. Tables 5, 7, and 9 show the RMS value of the last error for each
case. In Tables 4, 6, and 8, the times of convergence is defined as the time when the heading error
(RMS) is within 20% of the initial heading error.

Figure 11. Heading error of alignment with CEKF (Case 1) in small size of movement.

Figure 12. Heading error of alignment with Adaptive EKF (Case 2) in small size of movement.

Figure 13. Heading error of alignment with learning-based EKF (Case 3) in small size of movement.

Figure 14. Heading error of alignment with CEKF (Case 1) in medium size of movement. Figure 14. Heading error of alignment with CEKF (Case 1) in medium size of movement.Sensors 2020, 20, x FOR PEER REVIEW 16 of 20

Figure 15. Heading error of alignment with Adaptive EKF (Case 2) in medium size of movement.

Figure 16. Heading error of alignment with learning-based EKF (Case 3) in medium size of movement.

Figure 17. Heading error of alignment with CEKF (Case 1) in large size of movement.

Figure 18. Heading error of alignment with Adaptive EKF (Case 2) in large size of movement.

Figure 15. Heading error of alignment with Adaptive EKF (Case 2) in medium size of movement.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 20

Figure 15. Heading error of alignment with Adaptive EKF (Case 2) in medium size of movement.

Figure 16. Heading error of alignment with learning-based EKF (Case 3) in medium size of movement.

Figure 17. Heading error of alignment with CEKF (Case 1) in large size of movement.

Figure 18. Heading error of alignment with Adaptive EKF (Case 2) in large size of movement.

Figure 16. Heading error of alignment with learning-based EKF (Case 3) in medium size of movement.

Sensors 2020, 20, 4069 16 of 20

Sensors 2020, 20, x FOR PEER REVIEW 16 of 20

Figure 15. Heading error of alignment with Adaptive EKF (Case 2) in medium size of movement.

Figure 16. Heading error of alignment with learning-based EKF (Case 3) in medium size of movement.

Figure 17. Heading error of alignment with CEKF (Case 1) in large size of movement.

Figure 18. Heading error of alignment with Adaptive EKF (Case 2) in large size of movement.

Figure 17. Heading error of alignment with CEKF (Case 1) in large size of movement.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 20

Figure 15. Heading error of alignment with Adaptive EKF (Case 2) in medium size of movement.

Figure 16. Heading error of alignment with learning-based EKF (Case 3) in medium size of movement.

Figure 17. Heading error of alignment with CEKF (Case 1) in large size of movement.

Figure 18. Heading error of alignment with Adaptive EKF (Case 2) in large size of movement. Figure 18. Heading error of alignment with Adaptive EKF (Case 2) in large size of movement.Sensors 2020, 20, x FOR PEER REVIEW 17 of 20

Figure 19. Heading error of alignment with learning-based EKF (Case 3) in large size of movement.

Table 4. Attitude RMS error of alignment in small size of movement (100 evolutions).

Case Roll (°) Pitch (°) Heading (°) Convergence Times (s)
CEKF 0.01914 0.02767 3.88458 443.5

Adaptive EKF 0.00773 0.00698 1.81203 119.5
Learning-based EKF 0.00524 0.00517 1.78866 101.6

Table 5. Last attitude error of alignment in small size of movement (100 evolutions).

Case Roll (°) Pitch (°) Heading (°)
CEKF 0.00235 0.00619 0.34707

Adaptive EKF 0.00159 0.00162 0.01579
Learning-based EKF 0.00159 0.00163 0.01252

Table 6. Attitude RMS error of alignment in medium size of movement (100 evolutions).

Case Roll (°) Pitch (°) Heading (°) Convergence Times (s)
CEKF 0.03147 0.03316 3.89140 444.3

Adaptive EKF 0.02995 0.03286 3.66340 435.6
Learning-based EKF 0.03479 0.04540 1.48509 146.7

Table 7. Last attitude error of alignment in medium size of movement (100 evolutions).

Case Roll (°) Pitch (°) Heading (°)
CEKF 0.00220 0.02694 0.34814

Adaptive EKF 0.00197 0.02722 0.39209
Learning-based EKF 0.00186 0.02362 0.10507

Table 8. Attitude RMS error of alignment in large size of movement (100 evolutions).

Case Roll (°) Pitch (°) Heading (°) Convergence Times (s)
CEKF 0.09804 0.07607 3.91701 447.6

Adaptive EKF 0.09842 0.07782 4.06675 545.3
Learning-based EKF 0.09978 0.08042 1.54649 112.1

Table 9. Last attitude error of alignment in large size of movement (100 evolutions).

Case Roll (°) Pitch (°) Heading (°)
CEKF 0.00879 0.10111 0.36676

Adaptive EKF 0.01031 0.10460 0.87981
Learning-based EKF 0.00963 0.09532 0.16823

Figure 19. Heading error of alignment with learning-based EKF (Case 3) in large size of movement.

Table 4. Attitude RMS error of alignment in small size of movement (100 evolutions).

Case Roll (◦) Pitch (◦) Heading (◦) Convergence Times (s)

CEKF 0.01914 0.02767 3.88458 443.5
Adaptive EKF 0.00773 0.00698 1.81203 119.5

Learning-based EKF 0.00524 0.00517 1.78866 101.6

Table 5. Last attitude error of alignment in small size of movement (100 evolutions).

Case Roll (◦) Pitch (◦) Heading (◦)

CEKF 0.00235 0.00619 0.34707
Adaptive EKF 0.00159 0.00162 0.01579

Learning-based EKF 0.00159 0.00163 0.01252

Sensors 2020, 20, 4069 17 of 20

Table 6. Attitude RMS error of alignment in medium size of movement (100 evolutions).

Case Roll (◦) Pitch (◦) Heading (◦) Convergence Times (s)

CEKF 0.03147 0.03316 3.89140 444.3
Adaptive EKF 0.02995 0.03286 3.66340 435.6

Learning-based EKF 0.03479 0.04540 1.48509 146.7

Table 7. Last attitude error of alignment in medium size of movement (100 evolutions).

Case Roll (◦) Pitch (◦) Heading (◦)

CEKF 0.00220 0.02694 0.34814
Adaptive EKF 0.00197 0.02722 0.39209

Learning-based EKF 0.00186 0.02362 0.10507

Table 8. Attitude RMS error of alignment in large size of movement (100 evolutions).

Case Roll (◦) Pitch (◦) Heading (◦) Convergence Times (s)

CEKF 0.09804 0.07607 3.91701 447.6
Adaptive EKF 0.09842 0.07782 4.06675 545.3

Learning-based EKF 0.09978 0.08042 1.54649 112.1

Table 9. Last attitude error of alignment in large size of movement (100 evolutions).

Case Roll (◦) Pitch (◦) Heading (◦)

CEKF 0.00879 0.10111 0.36676
Adaptive EKF 0.01031 0.10460 0.87981

Learning-based EKF 0.00963 0.09532 0.16823

The figures show the heading angle error, which has a relatively large initial error and is the
main goal of fine alignment. Moreover, the errors of the horizontal angle, such as roll and pitch,
are summarized in the tables.

In Figures 11–13 and Tables 4 and 5, which are the cases where there is almost no disturbance,
Case 1 (CEKF) converges very slowly. In contrast, Cases 2 (Adaptive EKF) and 3 (Learning-based EKF)
converge quickly, and the last value shows a small error. This shows that the current mooring condition
is almost static, thus the smaller is the measurement error covariance matrix, the better is the convergence
and accuracy. In Cases 2 (Adaptive EKF) and 3 (Learning-based EKF), the measurement error covariance
matrix value was adjusted to be small to adapt to the static environment, while Case 1 (CEKF) was
maintained at a relatively large value in consideration of disturbance, thus reducing performance.

In Figures 14–16 and Tables 6 and 7, which are the cases where the size of the disturbance is
medium, Cases 1 (CEKF) and 2 (Adaptive EKF) show that the alignment was performed despite the
disturbance. However, in Case 1 (CEKF), it can be seen that the alignment was performed slowly by a
relatively large measurement error covariance matrix designed for stability against the disturbance.
In Case 2 (Adaptive EKF), the measurement error covariance matrix value was adaptively increased
for the disturbance, but this matrix value is not considered to be optimized. In Case 3 (Learning-based
EKF), since the optimization was performed to reduce the error by learning, the alignment was
performed quickly and accurately despite the disturbance.

In Figures 17–19 and Tables 8 and 9, which are the cases where the size of the disturbance is
relatively large, the overall result is similar to that of medium size of the movement, except that
the performance is slightly worse as the size of the disturbance increase. In Case 2 (Adaptive EKF),
the measurement error covariance matrix value was adaptively adjusted according to the size of the
disturbance, but the performance was worse than in Case 1 due to the unoptimized value.

Sensors 2020, 20, 4069 18 of 20

7. Conclusions

In this paper, we propose adaptive EKF and learning-based EKF to perform alignment using a
Kalman filter in the mooring environment. Since the size of the wave in the mooring environment
continuously changes with time and position, the conventional alignment method using a fixed
measurement error covariance matrix has limitations. Therefore, as a method of adaptively adjusting
the measurement error covariance matrix according to the disturbance, an alignment using an
innovation-based adaptive EKF and a CNN-based learning method was applied.

The Monte Carlo simulation was performed by changing the initial errors and sensor errors and
dividing the mooring condition into three types: small, medium, and large size of waves.

As a result, in Case 1 (CEKF), the alignment was performed without the filter diverging despite the
existence of disturbance. However, in all mooring conditions, alignment was performed very slowly
regardless of the disturbance. In Case 2 (Adaptive EKF), a convergence of filter was fast and accurate
when there was little disturbance, and it showed adaptive results that alignment was performed even
when there was a disturbance. However, alignment was performed relatively slowly depending on
the size of the disturbance because optimization was not applied. In Case 3 (Learning-based EKF),
when there was little disturbance, alignment was high-speed and accurate, as if the alignment was
performed in a static condition. Moreover, even if a disturbance occurs, it shows the best result
regardless of the size of disturbance.

In the case of CNN-based alignment, it is necessary to learn various data in changing mooring
conditions, but it enables fast and accurate alignment when performing alignment in a mooring.
Therefore, it can be usefully applied to systems requiring fast and accurate alignment according to
missions, such as surface vessel, ship, and submarine.

Author Contributions: Conceptualization, J.N.L. and C.G.P.; methodology, software, validation,
and writing—original draft preparation, J.N.L.; and writing—review and Supervision, C.G.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Hanwha Corporation of South Korea.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The system matrix for the Kalman filter is as follows:

Fk =


F11 F12 F13 03×3

F21 F22 03×3 F24

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3



F11 =


vD

Rm+h 2ρD + 2ΩD −ρE

−2ΩD − ρD
vN tan L+vD

Rt+h 2ΩN + ρN

2ρE −2ΩN − 2ρN 0


F12 =


0 − fD fE
fD 0 − fN
− fE fN 0


F13 = Cn

b

Sensors 2020, 20, 4069 19 of 20

F21 =


0 1

Rt+h 0

−
1

Rm+h 0 0

0 −
tan L
Rt+h 0


F22 =


0 ΩD + ρD −ρE

−ΩD − ρD 0 ΩN + ρN

ρE −ΩN − ρN 0


F24 = −Cn

b

03×3 =


0 0 0
0 0 0
0 0 0


H =


1 0 0
0 1 0 03×3 03×3 03×3

0 0 1


where Rm is the meridian radius of the curvature, Rt is the transverse radius of the curvature in prime
vertical, L is the latitude, h is the height, Cn

b is the direction cosine matrix that converts from the body

frame to the navigation frame,
[

fN fE fD
]T

is the specific force in the NED navigation frame,[
ΩN ΩE ΩD

]T
is the Earth’s rotation rate in the NED navigation frame,

[
ρN ρE ρD

]T
is the

transport rate in the NED navigation frame [1], and H is a measurement matrix.

References

1. Titterton, D.H.; Weston, J.L. Strapdown Inertial Navigation Technology; Institution of Electronic Engineers:
Stevenage, UK, 2004.

2. Siouris, G.M. Missile Guidance and Control Systems; Springer: New York, NY, USA, 2004.
3. Chen, Z. From Kalman filters to particle filters, and beyond. Statistics 2003, 182, 1–69.
4. Lian, X.; Hu, D.; Wu, Y.; Hu, X. Research on SINS alignment algorithm based on FIR filters. J. Beijing Inst.

Technol. 2007, 16, 437–442.
5. Sun, F.; Sun, W. Mooring alignment for marine SINS using the digital filter. Measurement 2010, 43, 1489–1494.

[CrossRef]
6. Gaiffe, T.; Cottreau, Y.; Faussot, N.; Hardy, G.; Simonpietri, P.; Arditty, H. Highly compact fiber optic

gyrocompass for applications at depths up to 3000 meters. In Proceedings of the 2000 International
Symposium on Underwater Technology (Cat. No. 00EX418), Tokyo, Japan, 23–26 May 2000; pp. 155–160.

7. Gao, W.; Ben, Y.; Zhang, X.; Li, Q.; Fu, F. Rapid fine strapdown INS alignment method under marine mooring
condition. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 2887–2896. [CrossRef]

8. Sun, F.; Lan, H.; Yu, C.; El-Sheimy, N.; Zhou, G.; Cao, T.; Liu, H. A robust self-alignment method for ship’s
strapdown INS under mooring conditions. Sensors 2013, 13, 8103–8139. [CrossRef] [PubMed]

9. Salychev, O.S. Applied Inertial Navigation: Problems and Solutions; BMSTU Press: Moscow, Russia, 2004.
10. Salychev, O.S. MEMS-Based Inertial Navigation: Expectations and Reality; BMSTU Press: Moscow, Russia, 2012.
11. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation

applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]
12. Behnke, S. Hierarchical Neural Networks for Image Interpretation; Springer: Berlin/Heidelberg, Germany, 2003.
13. Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best practices for convolutional neural networks applied to visual

document analysis. In Proceedings of the Seventh International Conference on Document Analysis and
Recognition, Edinburgh, UK, 6 August 2003.

14. Coskun, H.; Achilles, F.; DiPietro, R.; Navab, N.; Tombari, F. Long short-term memory kalman filters:
Recurrent neural estimators for pose regularization. In Proceedings of the IEEE International Conference on
Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5524–5532.

http://dx.doi.org/10.1016/j.measurement.2010.08.008
http://dx.doi.org/10.1109/TAES.2011.6034671
http://dx.doi.org/10.3390/s130708103
http://www.ncbi.nlm.nih.gov/pubmed/23799492
http://dx.doi.org/10.1162/neco.1989.1.4.541

Sensors 2020, 20, 4069 20 of 20

15. Brossard, M.; Barrau, A.; Bonnabel, S. AI-IMU dead-reckoning. arXiv 2019, arXiv:1904.06064. [CrossRef]
16. Lee, J.; Bang, H. A robust terrain aided navigation using the Rao-Blackwellized particle filter trained by long

short-term memory networks. Sensors 2018, 18, 2886. [CrossRef] [PubMed]
17. Jazwinski, A.H. Stochastic Processes and Filtering Theory; Courier Corporation: Mineola, NY, USA, 2007.
18. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc.

IEEE 1998, 86, 2278–2324. [CrossRef]
19. Xie, B.; Zhang, H.; Xue, J. Deep convolutional neural network for mapping smallholder agriculture using

high spatial resolution satellite image. Sensors 2019, 19, 2398. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIV.2020.2980758
http://dx.doi.org/10.3390/s18092886
http://www.ncbi.nlm.nih.gov/pubmed/30200352
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.3390/s19102398
http://www.ncbi.nlm.nih.gov/pubmed/31130667
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Conventional Extended Kalman Filter Based Alignment in Mooring Environment
	Adaptive EKF Based Alignment in Mooring Environment
	Learning-Based Alignment in Mooring Environment
	Introduction of CNN
	Architecture of CNN
	Architecture
	Input Data and Normalization
	Convolution Layer
	Fully Connected Layer and Network Output
	Loss Function
	Optimizer
	Parameter Tuning for CNN Architecture

	Simulation
	Simulation Environment
	Simulation Results

	Conclusions
	
	References

