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Multimerin-1 (MMRN1) is a platelet protein with a role in haemostasis and coagulation. It
is also present in endothelial cells (ECs) and the extracellular matrix (ECM), where it may
be involved in cell adhesion, but its molecular functions and protein–protein interactions in
these cellular locations have not been studied in detail yet. In recent years, MMRN1 has
been identified as a differentially expressed gene (DEG) in various cancers and it has been
proposed as a possible cancer biomarker. Some evidence suggest that MMRN1 expression
is regulated by methylation, protein interactions, and non-coding RNAs (ncRNAs) in different
cancers. This raises the questions if a functional role of MMRN1 is being targeted during
cancer development, and if MMRN1’s differential expression pattern correlates with cancer
progression. As a result, it is timely to review the current state of what is known about
MMRN1 to help inform future research into MMRN1’s molecular mechanisms in cancer.

Background
Multimerin-1 (MMRN1) is a member of the EMILIN/multimerin family of proteins, found in platelets
(α-granules of resting platelets), megakaryocytes, endothelial cells (ECs, Weibel–Palade bodies) and the
extracellular matrix (ECM) [1–6]. In response to specific triggers, MMRN1 is secreted from platelet
α-granules and Weibel–Palade bodies of ECs [7–9]. MMRN1 platelet-related functions include platelet
adhesion [5,10–13], factor V regulation [14–18], and MMRN1 deficiency is associated with bleeding risks
in Quebec platelet disorder [19–21]. These functions, however, shall not be covered in the current article as
these have already been reviewed [22]. Instead, the focus will be on MMRN1’s non-platelet-related func-
tions, including mmrn1 differential gene expression and its proposed use as a cancer biomarker [23–25].
A bibliometric network analysis illustrates how the research on MMRN1’s platelet-related functions i.e.,
‘blood’, ‘platelets’, ‘factor V’, has shifted to the analysis of MMRN1 ‘gene expression’, ‘protein expression’,
using ‘bioinformatics’ over recent years (Figure 1). The reports on MMRN1’s differential gene expression
and also highlight the lack of molecular studies aimed to describe MMRN1’s physiological functions.

Whereas the role of other EMILIN/multimerin family members in cancer has been the focus of various
studies [26–37], a molecular mechanism for MMRN1 is yet to be described. It is also unclear if MMRN1’s
functions are indiscriminatory of its cellular locations, platelets, ECs and the ECM, which all play roles
in cancer. Platelets are associated with metastasis [38–40]. The interaction with platelets, facilitates circu-
lating cancer cells to evade natural killer cells and adhere to vascular walls. The cancer cells can subse-
quently cross the vascular endothelium and exit the circulation (extravasation), which can lead to metas-
tasis [39–41]. The recruitment of the ECM and granulocytes by activated platelets drives the formation
of the early metastatic niche that allows the cancer to survive and proliferate [39]. Activated platelets also
release pro-angiogenic growth factors (e.g., vascular endothelial growth factor (VEGF)) which regulate
tumour angiogenesis [41]. EC migration and proliferation are activated by VEGF [42] and interaction
between ECs and cancer cells can further promote angiogenesis [43]. The ECM is involved in various
processes including epithelial-to-mesenchymal transition and metastasis [44,45], the latter being an ex-
ample of cancer plasticity [46]. The tumour ECM, which is mainly derived from tumour-associated fi-
broblasts, is denser and stiffer and has an altered, tumour-specific molecular expression profile, which
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Figure 1. Bibliometric network analysis of MMRN1 in the scientific literatures

The network analysis was carried out using VosViewer (https://www.vosviewer.com, [202]). Over time, the research focus has shifted

from MMRN1’s role in platelets (purple, blue) to its differential gene expression (green, yellow) in recent years.

alters cell–ECM interactions and signalling cascades to support tumour growth. Cancer plasticity is associated with
changes in gene expression patterns, which is why MMRN1’s differential expression pattern in cancer is of great
interest.

MMRN1 expression is significantly downregulated in 17 (bladder, breast, colon, oesophagous, liver, lung (adeno-
carcinoma and squamous cell carcinoma), ovary, prostate, rectum, renal (cell carcinoma and papillary cell carcinoma),
skin, stomach, testis, thyroid, uterus (uterine carcinosarcoma and uterine corpus endometrial carcinoma)) out of 22
cancer types, and significantly upregulated in acute myeloid leukaemia and pancreatic cancer (TNM plot pan-cancer
analysis [47]). MMRN1 is also expressed by various cancer cell lines. Despite such analyses and clinical observations
of MMRN1 differential expression in cancer [24,25], the molecular mechanisms driving these changes are currently
unknown and raises various questions: is MMRN1 differential expression merely a result of other cellular changes or
is it regulated by tumour cells to aid the disease development and/or progression? How is MMRN1 expression reg-
ulated in cancer? What are MMRN1 functions in different cell types? Can MMRN1 expression levels help diagnose
cancer and/or cancer stages? Does MMRN1 interact with tumour cells via protein–protein interactions? This review
is intended to provide an overview of the state-of-the-art in this field, with the aim to provide information towards
addressing these questions in future.

MMRN1 protein–protein interactions and their possible role
in cancer
MMRN1 is a large glycoprotein which contains an N-terminal EMI-domain, an epidermal growth factor (EGF)-like
domain, coiled-coil, and a C-terminal gC1q domain [6,48] (Figure 2). Some domains are shared between different
family members (EMI, gC1q) but their functions vary (Figure 3). The EMI domain of EMILIN-1 and EMILIN-3 has
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Figure 2. The protein domains of the EMILIN/multimerin family

Emu1 and Emu2 are also shown, which together with the EMILIN/multimerin family have been proposed to form the EDEN su-

perfamily. Red – signal peptide; blue ‘EMI’ – EMI domain; C – coiled-coil region; green ‘COL’ – collagen-like region; pink ‘P’ –

proline-rich region; purple ‘EG’ – EGF-like domain.

Figure 3. Known and proposed functions of protein domains found in the EMILIN/multimerin family

The domains and RGD motif of MMRN1 are shown on the left and the reported functions for EMLIN/multimerin family members

and other proteins are indicated. Abbreviation: PPI, protein–protein interaction.
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been shown to regulate TGF-β signalling [49,50], whereas in EMILIN-2 the EMI domain regulates Wnt signalling
in breast cancer [31]. The EMI domain also mediates protein–protein interactions including the interaction between
the EMILIN-1 EMI domain and the EMILN-2 gC1q domain [48,51], and heparin binding to EMILIN-3 [50]. The
EMI domain of MMRN1 is unique amongst family members as it has six cysteine residues instead of seven [52]. If the
MMRN1 EMI domain is also involved in protein–protein interactions and signalling events as its family members is
unclear.

Within the EMILIN/multimerin protein family, the EGF-like domain is unique to MMRN1. This domain is as-
sociated with calcium binding, mediating protein–protein interactions [53] and is found in proteins linked to cell
proliferation, differentiation and cancer, including various ECM proteins [54,55]. An MMRN1-derived peptide cor-
responding to 11 amino acids of the EGF-like domain has been shown to promote EC and keratinocyte proliferation
in vitro [56], but this function is yet to be confirmed for MMRN1 in vivo.

Best known as the globular head domain of the complement protein C1q [57], the gC1q domain plays a role in pro-
tein multimerisation and quaternary structure formation [6,58–60]. The EMILIN1 gC1q domain interacts with inte-
grins α4β1 and α9β1, regulating cell adhesion, lymphangiogenesis and tumorigenesis [61–64]. Interestingly, whereas
the EMILIN gCq1 domain exerts an anti-proliferative effect, an MMRN1 gC1q-derived peptide has been reported to
promote cell proliferation in vitro [56].

Common motifs in protein oligomerisation and macromolecular scaffolding [65], the coiled-coil domain is re-
quired for the oligomerisation of EMILIN1 [66] and EMILIN3 [50] and the same role has been inferred for MMRN1
and MMRN2. However, experimental evidence suggests additional roles of the coiled-coil region. Sheets et al. [56]
showed that peptides corresponding to MMRN1 coiled-coil regions promoted EC proliferation in vitro. The inter-
action between the MMRN2 coiled-coil region and CLEC14A and CD93 plays a role in tumour angiogenesis [67].

The N-terminal RGD motif of MMRN1 is common to integrin-interacting ECM proteins and mediates cell adhe-
sion. Integrin specificity, however, depends also on its conformational and spatial presentation [68]. MMRN1 binds
to αIIbβ3 and αvβ3 integrins on activated platelets [5], but the interactions of the RGD motif of MMRN1 found in
ECs and ECM with integrin has not been confirmed yet. However, adhesive interactions between tumour and ECs
form part of the metastasis process and cell–cell interaction may be required for the endothelial transdifferentiation
of metastatic melanoma cells to evade detection by the immune system [69]. When analyzing the interaction between
melanoma and human umbilical vein endothelial cells (HUVECs), MMRN1 was one of the 30 upregulated genes with
a possible role in cell–cell communication and tumour progression [70]. This may suggest a possible mechanism of
MMRN1-mediated cell adhesion and melanoma-HUVECs communication. For example, MMRN2’s interaction with
CD93 activates β1 integrin signalling, which leads to fibronectin fibrillogenesis and tumour angiogenesis [71]. Con-
sidering the importance of integrins in cancer [72], analysis of MMRN1–intergrin interactions in the context of ECs
and ECM in cancer may reveal new MMRN1 interaction partners and functions. Such investigations will also con-
firm the role of proposed MMRN1 protein–protein interactions with serglycin [73,74], which is associated with poor
prognosis of disease progression [75], and the oncogene TC2N [76]. The cell proliferative effect of various MMRN1
peptides indicates yet uncharacterised physiological roles of MMRN1 and will need further investigation.

MMRN1 expression profile during development and in
healthy tissue
In humans, MMRN1 is considered a marker of early neuroepithelium and is abundantly expressed in long-term
self-renewing neuroepithelial-like stem cells [77] and primary osteoblasts [78]. MMRN1 is one of top 20 genes with
specific expression in the adult lateral habenula [79]. There also appears to be a sex-specific expression pattern of
MMRN1 in human ECs [80].

During mouse development, MMRN1 expression levels are only detectable in differentiated embryonic stem cells,
including ECs lining blood vessels (perineural mesenchyme) and mesenchymal cells [81]. Whereas MMRN1 expres-
sion levels remain constant in most tissues throughout mouse development and following birth [81], MMRN1 levels
increase during the course of murine erythroblast maturation [82]. Although MMRN1 protein levels have been re-
ported to decrease with age [83], RNAseq of murine mammary epithelia and stroma suggests that the proportion and
gene expression of lymphatic ECs, for which MMRN1 expression is a marker, remain fairly constant [84].

Human MMRN1 is predominantly expressed in ECs, especially in the lung (Figure 4A, data from Human Protein
Atlas [85] (http://www.proteinatlas.org/)). It is an established EC marker [86] and mmrn1 has been included in the
group of ‘EC-restricted genes’ [87]. ECs show great heterogeneity, providing organ and tissue specific functions, and
single-cell RNA sequencing (scRNA) of human lung ECs also identified MMRN1 expression in pulmonary–venous
ECs [88]. MMRN1 also shows a distinct expression pattern in the lymphatic EC population in multiple human and
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Figure 4. Expression of MMRN1 in cell types and cancer cell lines

(A) The data show the expression of MMRN1 (nTPM > 2.0) in different healthy cell types. The expression data for these graphs

were obtained from the Human Protein Atlas (https://www.proteinatlas.org/ENSG00000138722-MMRN1/single+cell+type) [85]. The

inset shows the expression of MMRN1 in epithelial cells in specific organs/tissues. (B) Expression (TPM) of MMRN1 in various

cancer cell lines representing adult acute monocytic leukaemia (A), adult acute myeloid leukaemia (B), adult T acute lymphoblastic

leukaemia (C), alveolar rhabdomyosarcoma (D), blast phase chronic myelogenous leukaemia (BCR-ABL1 positive, E), childhood

acute megakaryoblastic leukaemia (F), duodenal adenocarcinoma (G), erythroleukemia (H), glioblastoma (I), high-grade ovarian

serous adenocarcinoma (J), large cell lung carcinoma (K), lung adenocarcinoma (L), ovarian endometrioid adenocarcinoma (M),

ovarian granulosa cell tumour (N), pancreatic adenocarcinoma (O), rhabdoid tumour of the kidney (P), small cell lung carcinoma

(Q), squamous cell lung carcinoma (R). The expression data were obtained from experiment E-MTAB-2770, EMBL-EBI Expression

Atlas (Human Protein Atlas proteinatlas.org, [85]).
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murine organs and tissues (heart, muscle, lung, fat, lymph nodes, trachea, liver, middle ear, the eye) [89–95]. Inter-
estingly, single-cell analysis of murine liver cancer identified a new lymphatic EC cluster, using MMRN1 and Pdpn
as marker genes [92]. These lymphatic ECs are associated with tumour tissue and have a different gene expression
profile to blood vessel ECs, which may suggest a possible relationship with immune cells.

MMRN1 differential expression in cancer
Transcriptome analysis of differentially expressed genes (DEGs) aids the identification of hub genes, biomarkers,
classification of cancer subtypes and monitoring tumour progression [96–99]. Causes of altered gene expression can
include gene mutations, deregulated transcription factors or the action of non-coding RNAs (ncRNAs), including
microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), which can regulate each
other (competitive endogenous RNA (ceRNA) hypothesis) [100,101].

MMRN1 is expressed in various cancer cell lines (Figure 4B), and a DEG in various cancers (Figure 5). It is a po-
tential cancer biomarker in cervical cancer [25] and in paediatric acute myeloid leukaemia [24], where its expression
is also positively correlated with the expression of the actin-binding protein Plastin 3 [127]. In rectal cancer, MMRN1
is one of five hub genes that act as prognostic biomarkers and elevated MMRN1 expression is associated with poor
prognosis [109]. MMRN1 downregulation is associated with chemoresistance in rectal cancer [111] and radiosen-
sitivity and associated clinical outcome in gastric cancer [128]. The mmrn1 gene is associated with glaucoma [129]
and bioinformatics analyses suggest mmrn1 as a hub gene in papillary thyroid cancer [130].

In acute myeloid leukaemia, mmrn1 is one of the genes that is upregulated by the action of the oncoprotein
MLL-AF6, which is a fusion of the histone methyltransferase mixed lineage leukaemia (MLL) and the cytoplasmic
protein AF6 as a result of gene rearrangement [131–133].

MMRN1 expression distinguishes leukaemia stem cells, which contribute to therapy resistance and disease relapse,
from leukaemia progenitor cells [134,135]. In adult acute myeloid leukaemia, MMRN1 was identified alongside 16
other genes (AKR1C3, ARHGAP22, CD34, CDK6, CPXM1, EMP1, GPR56, KIAA0125, LAPTM4B, NGFRAP1,
NYNRIN, SMIM24, SOCS2, DNMT3B, DPYSL3, ZBTB46), significantly correlated to leukaemia stemness and
chemoresistance [102]. This finding led to the 17-gene leukaemia stem cell score (17LSC) which provides a prognostic
measure of patient survival [102,136,137]. Similarly, MMRN1 expression levels alongside nine other mRNAs provide
a prognostic risk score for gastric cancer patients [138], and Cai et al. [139] included MMRN1 expression in a risk score
of papillary thyroid cancer. The observed correlation between MMRN1 expression and cancer risk scores highlights
MMRN1 relevance in the disease process. That MMRN1 differential expression is cancer-specific has been shown in
head and neck cancer, where MMRN1 downregulation is independent of Human Papilloma virus infections, which
is often observed in this cancer type [115]. MMRN1 expression patterns have also been correlated with the stage of
breast cancer [105], supporting its potential use in cancer diagnosis [24,139].

Considering the cancer-specific differential expression patterns of MMRN1 and possible application in cancer
diagnosis, details on the regulatory mechanisms driving these expression patterns is relatively scarce. Below, we are
discussing examples of potential regulatory mechanisms, including methylation, ncRNAs and transcription factors,
which have been associated with MMRN1 expression levels in cancers.

MMRN1 regulation via DNA methylation
Modulation of gene expression as a result of DNA methylation is commonly observed in cancer [140]. Although hy-
permethylation of MMRN1 has been reported in lung adenocarcinoma [117] and osteosarcoma [121], there appears
to be no correlation with overall survival in lung cancer or the disease process in osteosarcoma. However, MMRN1
has a possible role in bone remodelling which may be linked to the observation in osteosarcoma [141,142].

MMRN1 regulation via ncRNAs: miRNAs, lncRNAs, circRNAs
The role of miRNAs and lncRNAs in cancer is an ongoing area of research. miRNAs regulate gene expression by
suppressing mRNA translation or degrading mRNAs, whereas lncRNAs are molecular scaffolds and form functional
complexes with proteins and RNAs to regulate transcription [101,143–145]. ncRNAs are targeting MMRN1 in var-
ious cancers (Table 1). Wang et al. [146] showed that an increase in miRNA has-miR-374a (miR-374a), which has
known oncogenic properties [147–149], downregulates MMRN1 expression in colorectal adenocarcinoma and col-
orectal cancer. miR-374a promotes cancer cell proliferation, migration and invasion by downregulating the tumour
suppressor gene SRCIN1 (also p140 cas-associated protein) in gastric cancer and regulates Wnt signalling pathways
in non-small-cell lung cancer and breast cancer. In colorectal cancer, MMRN1 is targeted by has-miR-99b-5p [143],
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Figure 5. A summary of MMRN1 differential expression in various cancers

The information is based on RNA-seq and proteomics data published in the stated references and databases. *: MMRN1 differential

gene expression as per the TNM plot pan-cancer analysis [47].

Table 1 Summary of known ncRNAs regulating MMRN1 in cancers

Cancer type miRNAs lncRNAs circRNAs

Colorectal cancer has-miR-374a
has-miR-99b-5p

Acute myeloid leukaemia KIAA0125

Papillary thyroid cancer has-miR-4709-3p LINC00506

Gastrointestinal stromal tumours hsa circ 0070442
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which is infrequently expressed in overall colorectal tumours, and its upregulation is associated with an increased
likelihood of dying.

MMRN1 expression is positively correlated with higher expression of the lncRNA KIAA0125, which, like MMRN1,
is included in the prognostic LSC17 for acute myeloid leukaemia [102] and is linked to a poorer prognosis, shorter
overall survival and disease-free survival [150].

In papillary thyroid cancer, MMRN1 is co-expressed with the lncRNA LINC00506 but also targeted by the miRNA
has-miR-4709-3p. The authors conclude that the interaction LINC00506–MMRN1–has-miR-4709-3p may be specific
to this cancer [151].

circRNAs are ncRNAs derived from pre-mRNAs by alternative splicing. Their functions include sponging miR-
NAs and regulating gene expression and are associated with human diseases including cancer [152]. circRNAs are
derived from the genetic information of a so-called ‘host gene’. In gastrointestinal stromal tumours, MMRN1 was
identified as the host gene of the circRNA hsa circ 0070442 and both are downregulated in this cancer. Interestingly,
has circ 0070442 is also one of the top 50 most downregulated circRNAs in lung squamous cell carcinoma [153], a
cancer in which MMRN1 expression is also downregulated (based on data in TNM plot [47] and Oncomine [154]).
However, a link between has circ 0070442 and MMRN1 in lung squamous cell carcinoma has not been reported yet.

ceRNAs can be either mRNAs, lncRNAs, circRNAs or even pseudogene gene transcripts, which regulate each other
by competitively binding to shared miRNAs [155]. Wen et al. [155] identified TRIB1 with MMRN1 as a ceRNA pair
in breast cancer.

Regulation of MMRN1 by ncRNAs is not restricted to disease processes. An integrated transcriptome analysis
identified has-miR-514a-3p, which targets MMRN1 in the ovulatory cascade [156].

MMRN1 regulation by transcription factors
Transcription factors control gene expression and their deregulation is associated with cancer [157]. The transcrip-
tion factor specificity protein 1 (SP1) is overexpressed in many cancers, including gastric cancer, and modulates cell
proliferation and survival [158,159]. SP1 regulates MMRN1 expression in vitro in a gastric cancer model. MNK28
cells, which are well-differentiated stomach adenocarcinoma cells, have a high expression of SP1. Silencing SP1 in
MNK28 cells with SP1 siRNA results in significant upregulation of MMRN1 (>2.5-fold) [112]. This aligns with the
observation that in gastric cancer, where SP1 levels are high, MMRN1 levels are downregulated (Figure 5).

Most information on possible transcription factors that target MMRN1 in various cancers is currently available
through bioinformatics analyses and offer an interesting starting point for future in vitro and in vivo experiments.
Network analyses identified the transcription factors SP1 and NFIC as regulators of MMRN1 in lung adenocarcinoma
[160] and lung squamous cell carcinoma respectively [119]. An association between transcription factor FOX3A
and MMRN1 has been reported in anaplastic thyroid carcinoma [161]. The transcription factor-binding sites for
ETS-FOXC2 and ETS are present in the mmrn1 gene [162], but there is currently no information if these are targeted
to regulate MMRN1 expression in cancers.

MMRN1 alternative splicing and copy number alterations in
cancer
The mmrn1 gene is located on chromosome 4 (4q22.1) and contains 11 distinct introns which code for six different
isoforms [163]; exon skip events for platelet MMRN1 have been reported previously [164]. Transcriptome analysis of
colorectal adenocarcinoma samples identified MMRN1 as one of the 206 genes involved in alternative splicing events
in colorectal cancer [165]. In this study, other genes coding for proteins with a role in cell adhesion were identified,
but of the original 206 genes, only 18 gene candidates (not including MMRN1) were considered as relevant to cancer
development. At the point of writing this review, no other evidence of mmrn1 alternative splicing events in cancer
or another disease process was found in the literature.

In non-germinomatous malignant germ cell tumours (NGMGCTs), which are a type of intracranial paediatric germ
cell tumour, the mmrn1 gene is deleted due to copy number variations at cytobands 4q13.3-4q28.3 [166]. Studying
BIN-67 cells, a model for the rare and aggressive form of small cell ovarian carcinoma of the hypercalcaemic type, SNP
array analyses identified copy number loss of 4q22.1, which entails the SNCA and MMRN1 gene [167]. BIN-67 cells
are resistant to conventional chemotherapeutics and NGMGCTs are less perceptive to drug and radiation treatment
than other germ cell tumours [166]. Although there is no clear involvement of MMRN1 in these cancers on the basis
of the studies, it is interesting that these cancers are less responsive to treatment as are other cancers with differential
MMRN1 expression e.g., rectal cancer [111].
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The effect of signalling cascades and hormones on MMRN1
expression
MMRN1 was classified as an immune-related gene that was only expressed in glioblastoma with high interleukin-13
receptor α2 mRNA expression [168]. Dieterich et al. [113] reported MMRN1 as one of the 78 upregulated genes in
the vasculature of grade IV glioma in response to increased VEGF-A and TGFβ2 signalling in the tumour microen-
vironment. This suggests a possible role of MMRN1 and the other upregulated genes in angiogenesis and VEGFR
signalling which are involved in tumorigenesis and metastasis [169].

Hormones like oestrogen and progestogens contribute to breast cancer risk [170,171] and oestrogen can affect
gene expression patterns [172,173], including MMRN1. Pitteri et al. [174] reported an increase in serum MMRN1
protein concentration in healthy postmenopausal women who had taken oestrogen and progestin (an exogenous
synthetic progestogen) versus oestrogen only. MMRN1 mRNA levels were upregulated in both endometrial stromal
cells treated with β-oestradiol [175] and in the endometrium in response to a high serum progesterone level [176].
Whereas MMRN1 levels appear high in these healthy conditions, MMRN1 levels are downregulated in the majority
of reported breast cancer datasets (Figure 5). Considering the role of hormones in types of breast cancer, it would be
interesting to investigate if MMRN1 is hormonally regulated in the future.

MMRN1 protein detection in cancer
Most of the data of MMRN1 in cancer are based on transcriptional analysis, but MMRN1 protein levels in bodily
fluids are being explored in cancer diagnostics Although MMRN1 is considered undetectable in plasma [5], MMRN1
levels have been detected in the plasma, serum, urine and saliva of cancer patients [107,122,123]. Saini et al. [122]
report detection of MMRN1 in the saliva of epithelial ovarian cancer patients but comment that the route by which
MMRN1 enters the saliva remains unclear. Vizecoumar et al. [177] identified MMRN1 as a downregulated gene
whose protein product is detectable in the plasma in gastro-oesophageal cancer patients. Using mass spectrometry
techniques, changes in MMRN1 protein levels were detected in the sera of multiple myeloma patients [178] and
hepatocellular carcinoma patients [116] and in cell lysates from bone marrow aspirates from patients with amyloid
leukaemia [179]. Multi-lectin chromatography, followed by LC-MS/MS identified elevated MMRN1 protein levels
in sera from patients with prostate cancer and benign prostate hyperplasia [126]. SWATH-MS identified a positive
correlation between MMRN1 and thrombospondin 1 expression, which is differentially regulated in cancers, in the
blood plasma of five cancers (colorectal, pancreatic, lung, prostate, ovarian) [180]. Perhaps MMRN1’s presence in
various bodily fluids is not entirely a surprise. It has been postulated that proteins are secreted or shed from cancer
tissues [180] and it has been shown that MMRN1 is being released via exosomes by duodenal cancer cells [181] (for
MMRN1 expression in duodenum adenocarcinoma cell line HuTu80, see Figure 4B), bladder cancer cells [182], and
medulloblastoma cells [183]. Exosomes released by UM-SCC6 head-and-neck cancer cells which were treated with
ionising radiation had upregulated MMRN1 levels [114]. Exosomes are able to promote metastasis [184], but how
MMRN1 exosomal release is associated with cancer progression has not been investigated yet. Elevation of MMRN1
levels in serum exosomes has also been observed in burn patients [185] and patients with tuberculosis infection [186].

Future directions on the functional roles of MMRN1
MMRN1’s potential as a biomarker in certain cancers, including diagnosis of cancer stages, is a strong possibility
[23–25,105]. However, detail on MMRN1 protein interactions and involvement in signalling events is required to
describe MMRN1 molecular mechanisms and if and how this correlates with its differential expression. If MMRN1 is
to be used for cancer diagnosis, detection methods need to be optimised and standardised to provide reliable MMRN1
detection, which can be carried out in a clinical/diagnostic setting e.g., in cervical cancer MMRN1 expression is
observed to be either up- or downregulated, depending on whether urine [107] or plasma [25] was analysed (Figure
5). This opposing trend does not exclude MMRN1’s feasibility as biomarker; MMRN1 protein is specifically detected
in ovarian cancer [187]. Instead, it highlights the lack of detail to explain MMRN1 protein levels in different bodily
fluids and why they vary with disease. For example, MMRN1 has notable mRNA levels in the cervix and cervical
mucus, which is a known component of first-void urine samples [188] which may explain MMRN1 detection in
urine, but this will need to be verified to support the use MMRN1 as a biomarker in cervical cancer.

Currently, it is difficult to confirm any specific MMRN1 role that may aid or hinder cancer progression, but
MMRN1 downregulation in non-small-cell lung cancer has been hypothesised to contribute to vessel leakage and
poor blood vessel repair, which would facilitate access of oxygen and nutrients to cancer cells [120]. The in vitro data
on MMRN1 peptides corresponding to EGF, gC1q and coiled-coil regions in promoting cell proliferation [56], as well
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as MMRN1’s potential role in cell adhesion and cell–cell communication [70], certainly warrant further investigations
into MMRN1 physiological roles in cancer. Therefore, biochemical and structural studies into MMRN1’s mechanistic
roles are needed and may provide support for MMRN1’s use in cancer diagnosis and prognosis.

The role of MMRN1’s cellular localisation is also little understood. Platelets, ECs and the ECM play key roles
in cancer. Cross-talk between platelets and tumour cells drives cancer development and progression [41,189] and
can facilitate metastasis of solid tumours [40,190]. Malignant tumours also stimulate platelet production (parane-
oplastic thrombocytosis), and high platelet numbers correlated with poor cancer prognosis [41,191]. The ECM is
remodelled by tumours to create optimal tumorigenic conditions [192]. ECs are embedded in the ECM, both form-
ing part of the tumour microenvironment. Tumour cells regulate ECs to induce processes like angiogenesis, which
support their growth and the process of endothelial-to-mesenchymal transition is involved in tumour progression
[193]. High-resolution microscopy, proteomics and protein interaction studies can provide information on MMRN1
protein distribution, abundance and interactions in health and disease states and help characterise MMRN1 function
in different cellular localisations.

In addition to cancer, MMRN1 is differentially expressed in other diseases including inflammation and bacte-
rial and viral infections [186,194–197]. Upregulation of MMRN1 has also been observed in injuries including septic
shock-associated kidney injury [198] and in serum exosomes from burn patients [185]. MMRN1 may also play a role
in human pathogen interactions. The MMRN1 protein is the target of Staphylococcus aureus extracellular fibrino-
gen binding protein (Efb) [199], the Helicobacter pylori vacuolating cytotoxin VacA [200], and MMRN1-derived
peptides inhibit Streptococcus pneumoniae adhesion to ECs [201].

The current information indicates that MMRN1 is involved in various disease states that are of medical interest.
Transcriptome and bioinformatics analyses have provided the evidence on MMRN1 differential expression. In the
next step, characterisation of MMRN1’s physiological functions and molecular mechanisms in ECs and the ECM will
be necessary to identify new diagnostic and treatment strategies.
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196 Blaabjerg, M., Hemdrup, A.L., Drici, L., Ruprecht, K., Garred, P., Höftberger, R. et al. (2018) Omics-based approach reveals complement-mediated
inflammation in chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Front. Immunol. 9, 741,
https://doi.org/10.3389/fimmu.2018.00741

197 Zhang, J., Wang, N. and Xu, A. (2018) Screening of genes associated with inflammatory responses in the endolymphatic sac reveals underlying
mechanisms for autoimmune inner ear diseases. Exp. Ther. Med. 16, 2460–2470

198 Basu, R.K., Standage, S.W., Cvijanovich, N.Z., Allen, G.L., Thomas, N.J., Freishtat, R.J. et al. (2011) Identification of candidate serum biomarkers for
severe septic shock-associated kidney injury via microarray. Crit. Care 15, r273, https://doi.org/10.1186/cc10554

199 Posner, M.G., Upadhyay, A., Abubaker, A.A., Fortunato, T.M., Vara, D., Canobbio, I. et al. (2016) Extracellular fibrinogen-binding protein (Efb) from
Staphylococcus aureus inhibits the formation of platelet-leukocyte complexes. J. Biol. Chem. 291, 2764–2776,
https://doi.org/10.1074/jbc.M115.678359

200 Satoh, K., Hirayama, T., Takano, K., Suzuki-Inoue, K., Sato, T., Ohta, M. et al. (2013) VacA, the vacuolating cytotoxin of Helicobacter pylori, binds to
multimerin 1 on human platelets. Thrombosis J. 11, 23, https://doi.org/10.1186/1477-9560-11-23

201 Mizrachi Nebenzahl, Y., Blau, K., Kushnir, T., Shagan, M., Portnoi, M., Cohen, A. et al. (2016) Streptococcus pneumoniae cell-wall-localized
phosphoenolpyruvate protein phosphotransferase can function as an adhesin: identification of its host target molecules and evaluation of its potential
as a vaccine. PLoS ONE 11, e0150320, https://doi.org/10.1371/journal.pone.0150320

202 van Eck, N.J. and Waltman, L. (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84, 523–538,
https://doi.org/10.1007/s11192-009-0146-3

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

17

https://doi.org/10.1002/pmic.201300477
https://doi.org/10.1016/j.jnci.2015.02.002
https://doi.org/10.1371/journal.pone.0042064
https://doi.org/10.33160/yam.2019.06.002
https://doi.org/10.1016/j.sjbs.2020.06.024
https://doi.org/10.3389/fmicb.2017.01051
https://doi.org/10.1186/1559-0275-11-23
https://doi.org/10.1016/j.ejogrb.2017.06.036
https://doi.org/10.3390/ijms21030788
https://doi.org/10.1038/sj.bjp.0706013
https://doi.org/10.1182/blood-2014-03-562538
https://doi.org/10.1038/s41467-020-18794-x
https://doi.org/10.3389/fcell.2020.00747
https://doi.org/10.1016/j.ijid.2020.02.026
https://doi.org/10.1016/j.heliyon.2020.e05143
https://doi.org/10.3389/fimmu.2018.00741
https://doi.org/10.1186/cc10554
https://doi.org/10.1074/jbc.M115.678359
https://doi.org/10.1186/1477-9560-11-23
https://doi.org/10.1371/journal.pone.0150320
https://doi.org/10.1007/s11192-009-0146-3

