## **EXPERIMENTAL THERAPEUTICS**



# In Vitro, Ex Vivo, and In Vivo Activities of Diamidines against Trypanosoma congolense and Trypanosoma vivax

## Kirsten Gillingwater,<sup>a,b</sup> Christina Kunz,<sup>a,b</sup> Christiane Braghiroli,<sup>a,b</sup> David W. Boykin,<sup>c</sup> Richard R. Tidwell,<sup>d</sup> Reto Brun<sup>a,b</sup>

Antimicrobial Agents

MICROBIOLOGY and Chemotherapy®

AMERICAN SOCIETY FOR

Parasite Chemotherapy, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland<sup>a</sup>; University of Basel, Basel, Switzerland<sup>b</sup>; Department of Chemistry, Georgia State University, Atlanta, Georgia, USA<sup>c</sup>; Department of Pathology, University of North Carolina, Chapel Hill, North Carolina, USA<sup>d</sup>

ABSTRACT African animal trypanosomosis (AAT) is caused by the tsetse fly-transmitted protozoans Trypanosoma congolense and T. vivax and leads to huge agricultural losses throughout sub-Saharan Africa. Three drugs are available to treat nagana in cattle (diminazene diaceturate, homidium chloride, and isometamidium chloride). With increasing reports of drug-resistant populations, new molecules should be investigated as potential candidates to combat nagana. Dicationic compounds have been demonstrated to have excellent efficacy against different kinetoplastid parasites. This study therefore evaluated the activities of 37 diamidines, using in vitro and ex vivo drug sensitivity assays. The 50% inhibitory concentrations obtained ranged from 0.007 to 0.562  $\mu$ g/ml for T. congolense and from 0.019 to 0.607  $\mu$ g/ml for *T. vivax*. On the basis of these promising results, 33 of these diamidines were further examined using in vivo mouse models of infection. Minimal curative doses of 1.25 mg/kg of body weight for both T. congolense- and T. vivax-infected mice were seen when the diamidines were administered intraperitoneally (i.p.) over 4 consecutive days. From these observations, 15 of these 33 diamidines were then further tested in vivo, using a single bolus dose for administration. The total cure of mice infected with T. congolense and T. vivax was seen with single i.p. doses of 5 and 2.5 mg/kg, respectively. This study identified a selection of diamidines which could be considered lead compounds for the treatment of nagana.

**KEYWORDS** chemotherapy, diamidines, nagana, *Trypanosoma*, *in vitro* drug sensitivity assays, *in vivo* animal models

**T***ypanosoma congolense* (subgenus *Nannomonas*) and *Trypanosoma vivax* (subgenus *Dutonella*) are transmitted by tsetse flies (*Glossina* species) and remain the two main causative agents of African animal trypanosomosis (AAT), resulting in estimated economic losses of between \$1 billion and \$5 billion per annum throughout sub-Saharan Africa (1). Other causes of animal trypanosomosis include *Trypanosoma evansi*, *T. equiperdum*, and, to some extent, *T. brucei brucei*. Like *T. evansi* (which is found worldwide and which causes the disease surra), *T. vivax* is also found outside the African tsetse fly belt, adapting itself well to the South American continent via mechanical transmission. The chemotherapeutic treatment surrounding the control of *T. congolense* and *T. vivax* infections (nagana in cattle) within Africa has relied predominantly on three drugs, namely, diminazene diaceturate, homidium chloride, and isometamidium chloride is often administered prophylactically, as well as for the treatment of infections. Numerous reports (2–7) have clearly demonstrated that drug resistance has become a serious hindrance to the effective control of AAT in Africa. With such a small repertoire of potential drugs, limited success with the production of

Received 6 November 2016 Returned for modification 28 December 2016 Accepted 22 January 2017

Accepted manuscript posted online 13 February 2017

Citation Gillingwater K, Kunz C, Braghiroli C, Boykin DW, Tidwell RR, Brun R. 2017. *In vitro*, *ex vivo*, and *in vivo* activities of diamidines against *Trypanosoma congolense* and *Trypanosoma vivax*. Antimicrob Agents Chemother 61:e02356-16. https://doi.org/ 10.1128/AAC.02356-16.

**Copyright** © 2017 American Society for Microbiology. All Rights Reserved. Address correspondence to Kirsten Gillingwater, Kirsten.Gillingwater@unibas.ch. vaccines for use in the future, and the continued movement of animals to and from tsetse fly-infested areas, alternative chemotherapeutic agents are urgently required.

The activities and efficacies of diamidine (dicationic) compounds against a panel of different kinetoplastid parasites have previously been investigated (8–10), and these compounds have been demonstrated to have good efficacy against a variety of pathogens (11). Diamidines were also investigated for their *in vitro* activities and efficacies against *T. evansi* in animal models (12–14). With such promising data, it seemed appropriate to ascertain the potential activity that related diamidines (and their analogues) could exert against *T. congolense* and *T. vivax*. A selection of compounds was made on the basis of the *in vitro* activities of the compounds against *T. brucei*-related species found previously (8, 13). Hence, the aim of this study was to evaluate the *in vitro*, *ex vivo*, and *in vivo* (mouse) efficacies of 37 diamidine compounds against both *T. congolense* and *T. vivax* strains.

#### RESULTS

In total, the activities of two standard drugs and 37 diamidine compounds against a susceptible T. congolense strain (IL-3000) were investigated in vitro. The 50% inhibitory concentrations ( $IC_{50}$ s; in micrograms per milliliter) of each compound were obtained for three separate assay incubation times: 40, 48, and 72 h. These  $IC_{50}$ s are shown in Table 1, together with those of the two standard drugs, diminazene aceturate and isometamidium chloride. In summary, the in vitro IC<sub>50</sub>s of the standard drugs for IL-3000 for assay incubation times of 40, 48, and 72 h were observed to be 0.278, 0.076, and 0.066  $\mu$ g/ml, respectively, for diminazene and 0.0014, 0.0004, and 0.0003  $\mu$ g/ml, respectively, for isometamidium. The IC<sub>50</sub>s of the 37 diamidine compounds ranged from 0.039 to 2.721  $\mu$ g/ml for the 40-h assay, from 0.010 to 0.875  $\mu$ g/ml for the 48-h assay, and from 0.007 to 0.562  $\mu$ g/ml for the 72-h assay. In general, the IC<sub>50</sub>s consistently decreased as the incubation time increased. A similar trend was seen for the two standard drugs diminazene and isometamidium. The influence of the incubation time on the  $IC_{50}$ results could clearly be seen across the 40-, 48-, and 72-h in vitro assays with T. congolense. The IC<sub>50</sub>s did not differ greatly between the 48- and 72-h in vitro assays with T. congolense, with 31 of the 37 compounds tested showing less than 2-fold decreases in their  $IC_{so}s$ . Furthermore, the remaining 6 of the 37 compounds tested showed less than a 3-fold decrease in their  $IC_{50}s$ . In contrast, the  $IC_{50}s$  produced in the 40- and 72-h in vitro assays with T. congolense demonstrated a much wider range, with an up to 8-fold decrease in  $IC_{50}$ s being seen between the 40- and 72-h assay durations.

In comparison, all 37 diamidine compounds and the two standard drugs were investigated *ex vivo* using *T. congolense* (STIB 736/IL-1180) and *T. vivax* (STIB 719/ILRAD 560) strains, neither of which is currently adapted to axenic culture conditions. The *ex vivo* assay was adapted from the [<sup>3</sup>H]hypoxanthine incorporation assay (15) and was performed at 40 h for all compounds. The IC<sub>50</sub>s obtained for both strains are shown in Table 1. The *ex vivo* IC<sub>50</sub>s of the standards, diminazene and isometamidium, against both parasite strains were similar, namely, 0.095 and 0.0004 µg/ml, respectively, for *T. congolense* and 0.076 and 0.0008 µg/ml, respectively, for *T. vivax*. The IC<sub>50</sub>s of the 37 diamidine compounds tested against *T. congolense* ranged from 0.012 to 1.793 µg/ml, whereas the IC<sub>50</sub>s against *T. vivax* ranged from 0.019 to 0.607 µg/ml. The IC<sub>50</sub>s obtained for *T. vivax* were generally lower than those obtained for the *T. congolense* strain.

Subsequently, diminazene and isometamidium, together with 33 of the original 37 diamidine compounds, were further investigated for their *in vivo* efficacies against *T. congolense* and *T. vivax* in mouse models of infection. Four diamidine compounds had to be excluded from the *in vivo* experiments due to the discontinuation of product availability. The *in vivo* efficacy and the results of dose-response assays in which infected mice were intraperitoneally (i.p.) treated with the compounds on 4 consecutive days are shown in Table 2. For diminazene, 100% of *T. congolense*-infected mice were cured by doses of 20, 10, and 5 mg/kg of body weight given i.p. on 4 consecutive days, but only 75% (3/4) could be cured by a dose of 2.5 mg/kg. In comparison, 100% of *T. vivax*-infected mice could be cured only with a diminazene dose of 20 mg/kg given i.p.

| <b>TABLE 1</b> In vitro and ex vivo IC <sub>50</sub> s of two standard drugs and 37 novel diamidine compounds for <i>T. congolense</i> and <i>T. vivax</i> strains for |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| various assay incubation times                                                                                                                                         |

|                   |                     | $IC_{50}$ ( $\mu$ g/m          | l)              |         |                                  |                                    |  |
|-------------------|---------------------|--------------------------------|-----------------|---------|----------------------------------|------------------------------------|--|
|                   |                     | <i>In vitro</i> ass<br>IL-3000 | ays with T. con | golense | Ex vivo assays                   |                                    |  |
| Compound identity | Chemical family     | 40 h                           | 48 h            | 72 h    | T. congolense<br>STIB 736 (40 h) | <i>T. vivax</i><br>STIB 719 (40 h) |  |
| Diminazene        | Triazene diamidine  | 0.278                          | 0.076           | 0.066   | 0.095                            | 0.076                              |  |
| Isometamidium     | Triazene amidine    | 0.0014                         | 0.0004          | 0.0003  | 0.0004                           | 0.0008                             |  |
| DB 75             | Diphenylfuran       | 0.327                          | 0.146           | 0.084   | 0.166                            | 0.068                              |  |
| DB 283            | Diphenylpyrimidine  | 0.842                          | 0.225           | 0.187   | 0.212                            | 0.100                              |  |
| DB 320            | Diphenylpyrrole     | 0.532                          | 0.218           | 0.200   | 0.210                            | 0.139                              |  |
| DB 346            | Biphenyl            | 0.119                          | 0.061           | 0.036   | 0.041                            | 0.048                              |  |
| DB 820            | Pyridylfuran        | 0.316                          | 0.203           | 0.187   | 0.206                            | 0.195                              |  |
| DB 829            | Pyridylfuran        | 0.510                          | 0.204           | 0.198   | 0.212                            | 0.166                              |  |
| DB 867            | Pyridylfuran        | 0.258                          | 0.179           | 0.173   | 0.222                            | 0.062                              |  |
| DB 1052           | Thiazole            | 1.725                          | 0.533           | 0.562   | 0.815                            | 0.607                              |  |
| DB 1052           | Benzimidazole       | 0.373                          | 0.115           | 0.051   | 0.053                            | 0.040                              |  |
| DB 1033           | Indole              | 0.244                          | 0.088           | 0.069   | 0.091                            | 0.040                              |  |
| DB 1307           | Thiophene           | 0.465                          | 0.209           | 0.188   | 0.247                            | 0.089                              |  |
| DB 1406           | Diphenylpyrimidine  | 0.698                          | 0.209           | 0.188   | 0.259                            | 0.147                              |  |
| DB 1854           | Indole              | 0.039                          | 0.218           | 0.007   | 0.012                            | 0.032                              |  |
|                   |                     |                                |                 |         |                                  |                                    |  |
| DB 1866           | Thiophene           | 0.086                          | 0.021           | 0.019   | 0.053                            | 0.019                              |  |
| DB 1870           | Indole              | 0.087                          | 0.019           | 0.019   | 0.058                            | 0.066                              |  |
| DB 1893           | Indole              | 0.204                          | 0.062           | 0.058   | 0.089                            | 0.178                              |  |
| DB 1903           | Indole              | 0.261                          | 0.060           | 0.033   | 0.044                            | 0.023                              |  |
| DB 1915           | Biphenylbenzanilide | 0.476                          | 0.187           | 0.065   | 0.101                            | 0.074                              |  |
| DB 1917           | Biphenylbenzanilide | 2.721                          | 0.729           | 0.420   | 1.193                            | 0.032                              |  |
| DB 2017           | Thiazolothiazole    | 0.094                          | 0.040           | 0.034   | 0.016                            | 0.101                              |  |
| DB 2175           | Diphenylether       | 0.505                          | 0.208           | 0.169   | 0.236                            | 0.114                              |  |
| DB 2179           | Bifuran             | 0.685                          | 0.237           | 0.194   | 0.190                            | 0.031                              |  |
| DB 2180           | Selenophene         | 0.445                          | 0.144           | 0.177   | 0.363                            | 0.105                              |  |
| DB 2190           | Thiazole            | 0.520                          | 0.183           | 0.153   | 0.175                            | 0.155                              |  |
| 7 SAB 038         | Benzofuran          | 0.198                          | 0.074           | 0.059   | 0.084                            | 0.052                              |  |
| 10 SAB 078        | Benzofuran          | 2.623                          | 0.875           | 0.413   | 1.793                            | 0.130                              |  |
| 12 SAB 081        | Benzofuran          | 0.623                          | 0.220           | 0.118   | 0.703                            | 0.062                              |  |
| 13 SAB 017        | Benzofuran          | 0.272                          | 0.122           | 0.067   | 0.080                            | 0.040                              |  |
| 13 SAB 089        | Benzimidazole       | 0.139                          | 0.073           | 0.026   | 0.035                            | 0.027                              |  |
| 16 DAP 095        | Isoxazole           | 0.309                          | 0.155           | 0.072   | 0.220                            | 0.071                              |  |
| 17 SAB 085        | Triazole            | 0.116                          | 0.051           | 0.052   | 0.166                            | 0.121                              |  |
| 18 SAB 023        | Triazole            | 0.426                          | 0.186           | 0.174   | 0.241                            | 0.153                              |  |
| 19 DAP 025        | Naphthylene         | 0.336                          | 0.197           | 0.130   | 0.215                            | 0.189                              |  |
| 24 SMB 001        | Dithiophene         | 0.184                          | 0.124           | 0.066   | 0.070                            | 0.048                              |  |
| 27 DAP 060        | Dipyridylphenyl     | 0.248                          | 0.147           | 0.068   | 0.222                            | 0.176                              |  |
| 28 DAP 010        | Dipyridylphenyl     | 0.606                          | 0.226           | 0.195   | 0.586                            | 0.089                              |  |
| 32 DAP 022        | Pyridyloxazole      | 0.071                          | 0.027           | 0.016   | 0.043                            | 0.033                              |  |

on 4 consecutive days, while only 2/4 mice (50%) could be cured at doses of 10, 5, and 2.5 mg/kg. The minimal curative doses of isometamidium in *T. congolense-* and *T. vivax-*infected mice were observed to be 0.03125 mg/kg and 0.0625 mg/kg, respectively, when the drug was given i.p. on 4 consecutive days.

In summary, 16 of the 33 diamidine compounds investigated were found to provide a full cure (4/4) in *T. congolense*-infected mice when they given at the 5-mg/kg dose i.p. on 4 consecutive days. Eleven of the 33 diamidine compounds tested were found to provide at least a 75% curative efficacy (3/4) at the 2.5-mg/kg dose, and just 3 of the 33 diamidine compounds tested were found to be at least 75% curative when they were given at the 1.25-mg/kg dose i.p. on 4 consecutive days. In comparison, 15 of the 33 diamidine compounds investigated were found to provide a full cure (4/4) in *T. vivax*-infected mice when they were given at the 5-mg/kg dose i.p. on 4 consecutive days. Just 7 of the 33 diamidine compounds tested were found to provide at least 75% curative efficacy (3/4) when they were given at the 2.5-mg/kg dose, and just 4 of the 33 diamidine compounds tested were found to be at least 75% curative (3/4) when they were given at the 2.5-mg/kg dose, and just 4 of the 33 diamidine compounds tested were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4) when they were found to be at least 75% curative (3/4)

**TABLE 2** *In vivo* efficacy and dose-response for two standard drugs and 33 novel diamidine compounds given on 4 consecutive days i.p. in mouse models of *T. congolense* and *T. vivax* infection

|                   |                        | T. congolense (STIB 736/IL-1180)  |                             | T. vivax (STIB 719/ILRAD 560)             |                |                    |
|-------------------|------------------------|-----------------------------------|-----------------------------|-------------------------------------------|----------------|--------------------|
| Compound identity | Dose tested<br>(mg/kg) | No. of mice<br>cured/no. infected | Relapse<br>day <sup>a</sup> | No. of mice cured/no.<br>of mice infected | Relapse<br>day | Chemical structure |
| iminazene         | 20                     | 4/4                               | NA <sup>b</sup>             | 4/4                                       | NA             | NH                 |
|                   | 10                     | 4/4                               | NA                          | 2/4                                       | 40             | HAN C              |
|                   | 5                      | 4/4                               | NA                          | 2/4                                       | 6              |                    |
|                   | 2.5                    | 3/4                               | 11                          | 2/4                                       | 1              |                    |
| omotomidium       | 0.0625                 | 4/4                               | NIA                         | 4/4                                       | NIA            | ~                  |
| sometamidium      | 0.0625                 | 4/4                               | NA                          |                                           | NA             | NH                 |
|                   | 0.03125                | 4/4                               | NA                          | 0/4                                       | 7<br>7         | HAN TO REAL        |
|                   | 0.015625               | 3/4                               | 41                          | 0/4                                       | /              | τţ                 |
| DB 75             | 5                      | 4/4                               | NA                          | 4/4                                       | NA             |                    |
|                   | 2.5                    | 3/4                               | 14                          | 4/4                                       | NA             | H <sub>2</sub> N   |
|                   | 1.25                   | 2/4                               | 4                           | 4/4                                       | NA             |                    |
|                   | 0.625                  | 0/4                               | 4                           | 0/4                                       | 2              |                    |
|                   |                        |                                   |                             |                                           |                | N N N              |
| DB 283            | 5                      | 0/4                               | 2                           | 3/4                                       | 17             | HN L               |
| DB 320            | 5                      | 0/4                               | 11                          | 1/4                                       | 6              |                    |
| 320               | C                      | 0/4                               |                             | 1/4                                       | 0              | HN                 |
| DB 346            | 5                      | 0/4                               | 12                          | 0/4                                       | 2              | H <sub>2</sub> N   |
| DB 820            | 2.5                    | 4/4                               | NA                          | 4/4                                       | NA             |                    |
|                   | 1.25                   | 2/4                               | 8                           | 4/4                                       | NA             | HN LIN OF L        |
|                   | 0.625                  | 0/4                               | 1                           | 0/4                                       | 1              | H2N                |
| DB 829            | 1.25                   | 4/4                               | NA                          | 4/4                                       | NA             |                    |
| 0 029             | 0.625                  | 0/4                               | 3                           | 0/4                                       | 1              |                    |
|                   |                        |                                   |                             |                                           |                |                    |
| DB 867            | 5                      | 4/4                               | NA                          | 4/4                                       | NA             |                    |
|                   | 2.5                    | 4/4                               | NA                          | 0/4                                       | 3              | HNYNON             |
|                   | 1.25                   | 3/4                               | 8                           | 0/4                                       | 1              | H <sub>N</sub>     |
|                   |                        |                                   |                             |                                           |                | an alla            |
| DB 1052           | 5                      | 0/4                               | 3                           | 2/4                                       | 9              |                    |
|                   | _                      |                                   |                             |                                           |                |                    |
| DB 1055           | 5                      | 0/4                               | 5                           | 0/4                                       | 7              |                    |
|                   | _                      |                                   | _                           |                                           | _              | HN                 |
| DB 1192           | 5                      | 0/4                               | 7                           | 0/4                                       | 9              | HĮNÝ Ľ             |
|                   |                        |                                   |                             |                                           |                |                    |
| B 1307            | 5                      | 0/4                               | 1                           | 0/4                                       | 7              | ~ <del>?</del> ~   |

(Continued on next page)

## TABLE 2 (Continued)

| 38 $4/4$ NA $4/4$ NA $4/4$ NA $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |      | T. congolense (STIB 736/IL-1180) |    | T. vivax (STIB 719/ILRAD 560) |    |                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|----------------------------------|----|-------------------------------|----|----------------------------------------------------------------------------------------------------------------|--|
| $38 1406$ $5 \\ 2 \\ 1.25$ $4/4$ $NA$ $4/4$ $NA$ $4/4$ $NA$ $10$ $4/4$ $NA$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$ $12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Compound identity |      |                                  |    |                               |    |                                                                                                                |  |
| 2.5 $0.4$ 10 $4.4$ NA $12$ $0.4$ $12$ $0.4$ $12$ $0.4$ $12$ $0.4$ $12$ $0.4$ $12$ $0.4$ $12$ $0.4$ $12$ $0.4$ $12$ $0.4$ $12$ $0.4$ $12$ $0.4$ $12$ $0.4$ $12$ $0.4$ $12$ $0.4$ $12$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$ $11$ $0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |      |                                  |    |                               |    | N_N                                                                                                            |  |
| 1.25       0.4       1       2.4       12       12         18       18       12       12       12       12         18       18       12       12       12       12         18       18       13       14       11       14       11       14       11       14       11       14       11       14       11       14       11       14       11       14       11       14       14       11       14       14       11       14       16       14       11       14       16       16       16       16       16       16       16       16       16       16       16       16       17       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | 2.5  |                                  |    |                               |    |                                                                                                                |  |
| NB 1854 $5$ $4'4$ NA $4'4$ NB $++$ NB 1866       5 $2/4$ 9 $1/4$ $11$ $-++++$ NB 1870 $5_{2.5}$ $4'_{4.4}$ NA $0/4$ $7_{1}$ $-+++++$ NB 1870 $5_{2.5}$ $4'_{4.4}$ NA $0/4$ $7_{1}$ $-++++++$ NB 1893 $5_{2.5}$ $4'_{4.4}$ NA $0/4$ $10$ $-+++++++$ NB 1903 $5$ $0/4$ $6$ $0/4$ $3$ $-++++++++++$ NB 1917 $5$ $0/4$ $2$ $3/4$ $10$ $-+++++++++++++$ NB 2170 $5$ $0/4$ $2$ $0/4$ $1$ $-++++++++++++++++++++++++++++++++++++$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |      |                                  |    |                               |    | HN CA                                                                                                          |  |
| 2.5       3/4       44       2/4       18 $\downarrow \downarrow \downarrow \downarrow \downarrow$ 98 1866       5       2/4       9       1/4       11 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ 98 1870 $\frac{5}{2.5}$ $\frac{4}{4}$ NA $0/4$ $\frac{7}{3}$ $\downarrow \downarrow \downarrow \downarrow \downarrow$ 98 1870 $\frac{5}{2.5}$ $\frac{4}{4}$ NA $0/4$ $\frac{7}{3}$ $\downarrow \downarrow \downarrow \downarrow \downarrow$ 98 1893 $\frac{5}{2.5}$ $\frac{4}{4}$ NA $0/4$ $\frac{10}{2}$ $\downarrow \downarrow \downarrow \downarrow$ 98 1903       5 $0/4$ 6 $0/4$ $\frac{2}{1}$ $\downarrow \downarrow \downarrow \downarrow$ 98 1917       5 $0/4$ 2 $3/4$ $10$ $\downarrow \downarrow \downarrow \downarrow$ 98 2017       5 $0/4$ 2 $0/4$ $1$ $\downarrow \downarrow \downarrow \downarrow$ 98 2190       5 $2/4$ $15$ $0/4$ $6$ $\downarrow \downarrow \downarrow$ $2$ 98 2180       5 $2/4$ $15$ $0/4$ $6$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |      | 0, 1                             |    | _/ ·                          |    | 140.52                                                                                                         |  |
| NB       1866       5       2/4       9       1/4       11 $m_{m_{1}}^{+}$ NB       125       4/4       NA       0/4       7       3 $\gamma < \gamma > \gamma < $ | DB 1854           |      |                                  |    |                               |    | o, <sup>Me</sup>                                                                                               |  |
| NA       O/4       7       7 $3/4$ NA       O/4       1 $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ <th< td=""><td></td><td>2.5</td><td>3/4</td><td>44</td><td>2/4</td><td>18</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 2.5  | 3/4                              | 44 | 2/4                           | 18 |                                                                                                                |  |
| NA       O/4       7       7 $3/4$ NA       O/4       1 $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ $3/4$ <th< td=""><td>DB 1866</td><td>5</td><td>2/4</td><td>9</td><td>1/4</td><td>11</td><td>HN</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DB 1866           | 5    | 2/4                              | 9  | 1/4                           | 11 | HN                                                                                                             |  |
| 25 $4/4$ NA $0/4$ $3$ $1$ $98$ $893$ $5$ $4/4$ NA $1/4$ $10$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 5    | 2/ 7                             | 2  | 1/ 1                          |    | ŃH <sub>2</sub>                                                                                                |  |
| 1.25       3/4       15       0/4       1         98 1893 $5 \\ 2.5 \\ 1.25$ $4/4 \\ 4/4$ NA $1/4 \\ 0.4 \\ 5$ 10 $3 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DB 1870           |      |                                  |    |                               |    | HN H <sub>3</sub> C                                                                                            |  |
| 1.25       3/4       15       0/4       1         98 1893 $5 \\ 2.5 \\ 1.25$ $4/4 \\ 4/4$ NA $1/4 \\ 0.4 \\ 5$ 10 $3 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |      | 4/4                              | NA | 0/4                           | 3  | H <sub>2</sub> N M                                                                                             |  |
| 25 $4/4$ NA $0/4$ $2$ $1$ $1$ $28$ $125$ $0/4$ $6$ $0/4$ $3$ $1$ $1$ $28$ $1903$ $5$ $0/4$ $6$ $0/4$ $3$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |      |                                  |    |                               |    |                                                                                                                |  |
| 1.25       0/4       5       0/4       1         98 1903       5       0/4       6       0/4       3 $\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\bullet}{}$ 98 1917       5       0/4       2       3/4       10 $\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\bullet}{}$ 98 1917       5       0/4       2       3/4       10 $\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\bullet}{}$ 98 2017       5       0/4       2       0/4       1 $\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\bullet}{}$ 98 2190       5       2/4       15       0/4       6 $\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\bullet}{}$ 98 2190       5       2/4       15       0/4       6 $\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\bullet}{}$ 0 5AB 078       5       0/4       3       0/4       3 $\overset{<}{}\overset{<}{}\overset{<}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\leftarrow}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{}\overset{\bullet}{\phantom}\overset{\bullet}{\phantom}\overset{\bullet}{\phantom}\overset{\bullet}{\phantom}\overset{\bullet}{\phantom}\overset{\bullet}{\phantom}\overset{\bullet}{\phantom}\overset{\bullet}{\phantom}\overset{\bullet}{\phantom}\overset{\bullet}{\phantom}\overset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DB 1893           |      |                                  |    |                               |    |                                                                                                                |  |
| NB 1903       5 $0/4$ 6 $0/4$ 3 $-\frac{1}{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |      |                                  | NA |                               | 2  |                                                                                                                |  |
| DB 1917       5       0/4       2       3/4       10 $\checkmark \circ \circ \circ \circ \circ \circ$ DB 2017       5       0/4       2       0/4       1 $\backsim \circ \circ$ DB 2190       5       2/4       15       0/4       6 $\Rightarrow \circ \circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 1.25 | 0/4                              | 5  | 0/4                           | 1  |                                                                                                                |  |
| DB 1917       5       0/4       2       3/4       10 $\checkmark \circ \circ \circ \circ \circ \circ$ DB 2017       5       0/4       2       0/4       1 $\backsim \circ \circ$ DB 2190       5       2/4       15       0/4       6 $\Rightarrow \circ \circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |      |                                  |    |                               |    | H,N K                                                                                                          |  |
| DB 2017       5 $0/4$ 2 $0/4$ 1 $1 \rightarrow 0 \rightarrow 0 \rightarrow 0$ DB 2190       5 $2/4$ 15 $0/4$ 6 $= + + + + + + + + + + + + + + + + + + +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DB 1903           | 5    | 0/4                              | 6  | 0/4                           | 3  | . Chu                                                                                                          |  |
| DB 2017       5 $0/4$ 2 $0/4$ 1 $1 \rightarrow 0 \rightarrow 0 \rightarrow 0$ DB 2190       5 $2/4$ 15 $0/4$ 6 $= + + + + + + + + + + + + + + + + + + +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |      |                                  |    |                               |    |                                                                                                                |  |
| DB 2017       5 $0/4$ 2 $0/4$ 1 $1 \rightarrow 0 \rightarrow 0 \rightarrow 0$ DB 2190       5 $2/4$ 15 $0/4$ 6 $= + + + + + + + + + + + + + + + + + + +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1017              | r    | 0/4                              | 2  | 2/4                           | 10 | 000+0                                                                                                          |  |
| DB 2190       5       2/4       15       0/4       6 $f \leftarrow c \leftarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | 5    | 0/4                              | 2  | 3/4                           | 10 | n                                                                                                              |  |
| DB 2190       5       2/4       15       0/4       6 $f \leftarrow c \leftarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |      |                                  |    |                               |    | maria                                                                                                          |  |
| $^{1}$ SAB 038 $^{5}_{2.5}$ $^{4/4}_{3/4}$ NA $^{4/4}_{21}$ NA $^{11}_{2/4}$ NA $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DB 2017           | 5    | 0/4                              | 2  | 0/4                           | 1  |                                                                                                                |  |
| $^{1}$ SAB 038 $^{5}_{2.5}$ $^{4/4}_{3/4}$ NA $^{4/4}_{21}$ NA $^{11}_{2/4}$ NA $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$ $^{11}_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |      |                                  |    |                               |    | N                                                                                                              |  |
| 0 SAB 078       5       0/4       3       0/4       3 $\stackrel{(+)}{}_{01}$ 2 SAB 081       5       0/4       8       4/4       NA $\stackrel{(+)}{}_{01}$ 2 SAB 081       5       0/4       1       4/4       NA $\stackrel{(+)}{}_{01}$ 1.25       0/4       1       3/4       39 $\stackrel{(+)}{}_{01}$ $\stackrel{(+)}{}_{01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OB 2190           | 5    | 2/4                              | 15 | 0/4                           | 6  | $= \sum_{i=1}^{n-1} O_i \langle O_i \langle O_i \rangle \rangle = O_i \langle O_i \langle O_i \rangle \rangle$ |  |
| 0 SAB 078       5       0/4       3       0/4       3 $\stackrel{(+)}{}_{01}$ 2 SAB 081       5       0/4       8       4/4       NA $\stackrel{(+)}{}_{01}$ 2 SAB 081       5       0/4       1       4/4       NA $\stackrel{(+)}{}_{01}$ 1.25       0/4       1       3/4       39 $\stackrel{(+)}{}_{01}$ $\stackrel{(+)}{}_{01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |      |                                  |    |                               |    |                                                                                                                |  |
| 0 SAB 078       5       0/4       3       0/4       3 $\stackrel{(+)}{}_{01}$ 2 SAB 081       5       0/4       8       4/4       NA $\stackrel{(+)}{}_{01}$ 2 SAB 081       5       0/4       1       4/4       NA $\stackrel{(+)}{}_{01}$ 1.25       0/4       1       3/4       39 $\stackrel{(+)}{}_{01}$ $\stackrel{(+)}{}_{01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 SAB 038         | 5    | 4/4                              | NA | 4/4                           | NA |                                                                                                                |  |
| 2 SAB 081 5 0/4 8 4/4 NA ну<br>2.5 0/4 1 4/4 NA ну<br>1.25 0/4 1 3/4 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | 2.5  | 3/4                              | 11 | 2/4                           | 21 |                                                                                                                |  |
| 2 SAB 081 5 0/4 8 4/4 NA ну<br>2.5 0/4 1 4/4 NA ну<br>1.25 0/4 1 3/4 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |      |                                  |    |                               |    |                                                                                                                |  |
| 1.25 0/4 1 3/4 39 <sup>он но</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 SAB 078        | 5    | 0/4                              | 3  | 0/4                           | 3  |                                                                                                                |  |
| 1.25 0/4 1 3/4 39 <sup>он но</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |      |                                  |    |                               |    | ort                                                                                                            |  |
| 1.25 0/4 1 3/4 39 <sup>он но</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12 SAB 081        | 5    |                                  | 8  |                               | NA | H_N                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | 2.5  | 0/4                              |    | 4/4                           | NA |                                                                                                                |  |
| 3 SAB 017 5 4/4 NA 4/4 NA +0<br>2.5 0/4 12 0/4 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 1.25 | 0/4                              | 1  | 3/4                           | 39 | он но                                                                                                          |  |
| 2.5 0/4 12 0/4 11 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 SAB 017         | 5    |                                  | NA |                               | NA | HN HO                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | 2.5  |                                  | 12 |                               | 11 |                                                                                                                |  |

(Continued on next page)

### TABLE 2 (Continued)

|                        | T. congolense (STIB 736/IL-1180)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                               | T. vivax (STIB 719/ILRAD                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dose tested<br>(mg/kg) | No. of mice<br>cured/no. infected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Relapse<br>day <sup>a</sup>                                                                                                                                                                                                                                                                                   | No. of mice cured/no.<br>of mice infected                                                                                                                                                                                                                                                                                                                                       | Relapse<br>day                                                                                                                                                                                                                                                                                                       | Chemical structure                                                                                                                                                                                                                                                                                                                                                    |
| 5                      | 4/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                            | 4/4                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                   | Â.                                                                                                                                                                                                                                                                                                                                                                    |
| 2.5                    | 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                                                                                                                                                                                                                                                            | 4/4                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                   | . A-0-0-0-0                                                                                                                                                                                                                                                                                                                                                           |
| 1.25                   | 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                             | 0/4                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                       |
| 5                      | 2/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                                                                                                                                                                                                                                                                                                            | 4/4                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |
| 2.5                    | 0/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                            | 2/4                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                   | HN 🖌 🗸 NH                                                                                                                                                                                                                                                                                                                                                             |
| 5                      | 4/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                            | 1/4                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                    | HN                                                                                                                                                                                                                                                                                                                                                                    |
| 2.5                    | 4/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                            | 0/4                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                       |
| 1.25                   | 0/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                             | 0/4                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                    | H <sub>2</sub> N V V                                                                                                                                                                                                                                                                                                                                                  |
| 5                      | 4/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                            | 4/4                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |
| 2.5                    | 0/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                            | 3/4                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                    | hịn 🖵 🔍 Lồi Nhị                                                                                                                                                                                                                                                                                                                                                       |
| 5                      | 4/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                            | 4/4                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |
| 2.5                    | 0/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                             | 0/4                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                    | H,N                                                                                                                                                                                                                                                                                                                                                                   |
| 5                      | 0/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                             | 4/4                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |
| 2.5                    | 0/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                             | 0/4                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                    | H <sub>N</sub> N S <sup>N</sup> <sup>V</sup> <sup>V</sup> <sup>V</sup> <sup>S</sup> <sup>NH</sup>                                                                                                                                                                                                                                                                     |
| 5                      | 4/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                            | 4/4                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |
| 2.5                    | 0/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                             | 0/4                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                       |
| 5                      | 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38                                                                                                                                                                                                                                                                                                            | 3/4                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                       |
| 2.5                    | 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                                                                                                                                                            | 0/4                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                       |
| 5                      | A/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ΝΔ                                                                                                                                                                                                                                                                                                            | 2/4                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                   | NH                                                                                                                                                                                                                                                                                                                                                                    |
| 2.5                    | 2/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                                                                                                                                                                                                                                                                                            | 0/4                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                    | H,N-K-K-NH,                                                                                                                                                                                                                                                                                                                                                           |
|                        | (mg/kg)<br>5<br>2.5<br>1.25<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>2.5<br>5<br>5<br>2.5<br>5<br>5<br>2.5<br>5<br>5<br>2.5<br>5<br>5<br>2.5<br>5<br>5<br>5<br>2.5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Dose tested<br>(mg/kg)         No. of mice<br>cured/no. infected           5 $4/4$ 2.5 $3/4$ 1.25 $1/4$ 5 $2/4$ 2.5 $0/4$ 5 $4/4$ 2.5 $0/4$ 5 $4/4$ 2.5 $0/4$ 5 $4/4$ 2.5 $0/4$ 5 $4/4$ 2.5 $0/4$ 5 $4/4$ 2.5 $0/4$ 5 $0/4$ 5 $0/4$ 5 $0/4$ 5 $0/4$ 5 $0/4$ 5 $0/4$ 5 $0/4$ 5 $3/4$ 2.5 $3/4$ 5 $3/4$ 5 $3/4$ | Dose tested<br>(mg/kg)No. of mice<br>cured/no. infectedRelapse<br>daya5 $4/4$ NA2.5 $3/4$ 181.25 $1/4$ 55 $2/4$ 142.5 $0/4$ 105 $4/4$ NA2.5 $0/4$ 105 $4/4$ NA2.5 $0/4$ 15 $4/4$ NA2.5 $0/4$ 15 $4/4$ NA2.5 $0/4$ 125 $4/4$ NA2.5 $0/4$ 15 $4/4$ NA2.5 $0/4$ 15 $4/4$ NA2.5 $0/4$ 85 $0/4$ 62.5 $0/4$ 15 $4/4$ NA2.5 $0/4$ 15 $3/4$ $38$ 5 $3/4$ $38$ 5 $3/4$ $38$ 5 $3/4$ $15$ | Dose tested<br>(mg/kg)No. of mice<br>cured/no. infectedRelapse<br>day"No. of mice cured/no.<br>of mice infected54/4NA4/42.53/4184/41.251/450/452/4144/42.50/4102/454/4NA1/42.50/410/454/4NA0/41.250/410/454/4NA4/42.50/410/454/4NA4/42.50/4123/454/4NA4/450/464/450/410/454/4NA4/450/480/453/480/453/4383/453/4150/4 | Dose tested<br>(mg/kg)No. of mice cured/no.<br>infectedRelapse<br>dayNo. of mice cured/no.<br>of mice infectedRelapse<br>day54/4NA4/4NA2.53/4184/4NA1.251/450/4952/4144/4NA2.50/4102/41654/4NA1/422.50/4102/41654/4NA0/411.250/410/4154/4NA1/4NA2.50/410/4154/4NA4/4NA2.50/4123/4754/4NA80/4950/464/4NA2.50/410/4554/4NA80/4950/480/4950/410/4553/4383/492.53/4150/47 |

<sup>a</sup>Relapse day, the day on which the mice were monitored, beginning from the day after final drug administration.

<sup>b</sup>NA, not applicable, as no relapse was seen during the complete 60-day monitoring phase.

were given at the 1.25-mg/kg dose i.p. on 4 consecutive days. The compound providing 100% curative efficacy for both *T. congolense-* and *T. vivax-*infected mice when it was given at the minimal curative dose of 1.25 mg/kg i.p. on 4 consecutive days was compound DB 829.

Consequently, the two standard drugs and 15 of the 33 diamidine compounds previously tested *in vivo* were additionally examined for their curative efficacy when they were given to *T. congolense-* and *T. vivax-*infected mice as a single bolus treatment dose i.p. The resulting *in vivo* efficacy data can be viewed in Table 3. The minimal dose showing a 100% curative efficacy of diminazene against both parasites when it was given i.p. as a single bolus dose was observed to be 10 mg/kg. A single bolus dose of 5 mg/kg given i.p. was found to have insufficient efficacy (1/4 or 0/4) against both trypanosome species. For isometamidium, the minimal curative dose showing a 100% rate of cure for *T. congolense-* and *T. vivax-*infected mice was 0.25 mg/kg given i.p. A single bolus dose of 0.125 mg/kg given i.p. cured 3 out of 4 *T. vivax-*infected mice but only 1 out of 4 *T. congolense-* infected mice.

In summary, 4 of the 15 diamidine compounds evaluated were found to provide the full cure (4/4) of both *T. congolense-* and *T. vivax-*infected mice when given as a single bolus dose of 10 mg/kg i.p. Two of the 15 diamidine compounds tested were found to provide at least a 75% cure (3/4) of both *T. congolense-* and *T. vivax-*infected mice when

**TABLE 3** *In vivo* efficacy and dose-response for two standard drugs and 15 novel diamidine compounds given as a single bolus dose i.p. in mouse models of *T. congolense* and *T. vivax* infection

|                   | T. congolense (STIB 7  |                                   | 36/IL-1180)                 | T. vivax (STIB 719/ILRAD 560)     |             |                        |
|-------------------|------------------------|-----------------------------------|-----------------------------|-----------------------------------|-------------|------------------------|
| Compound identity | Dose tested<br>(mg/kg) | No. of mice<br>cured/no. infected | Relapse<br>day <sup>a</sup> | No. of mice<br>cured/no. infected | Relapse day | Chemical structure     |
| Diminazene        | 20                     | 4/4                               | NA <sup>b</sup>             | 4/4                               | NA          | NH N                   |
| Jiminazene        |                        |                                   |                             |                                   |             |                        |
|                   | 10                     | 4/4                               | NA                          | 4/4                               | NA          |                        |
|                   | 5                      | 1/4                               | 11                          | 0/4                               | 6           |                        |
|                   | 2.5                    | 0/4                               | 12                          | 0/4                               | 1           |                        |
| ometamidium       | 1                      | 4/4                               | NA                          | 4/4                               | NA          | Ô                      |
|                   | 0.5                    | 4/4                               | NA                          | 4/4                               | NA          | . Internet             |
|                   | 0.25                   | 4/4                               | NA                          | 4/4                               | NA          |                        |
|                   | 0.125                  | 1/4                               | 11                          | 3/4                               | 14          |                        |
|                   | 0.0625                 | 0/4                               | 8                           | 0/4                               | 6           |                        |
| DB 75             | 10                     | 4/4                               | NA                          | 4/4                               | NA          |                        |
|                   | 5                      | 4/4                               | NA                          | 4/4                               | NA          | H <sub>N</sub> N       |
|                   | 2.5                    | 0/4                               | 6                           | 4/4                               | NA          |                        |
|                   |                        |                                   |                             |                                   |             |                        |
|                   | 1.25                   | 0/4                               | 1                           | 0/4                               | 7           |                        |
| DB 820            | 10                     | 4/4                               | NA                          | 4/4                               | NA          | HN                     |
|                   | 5                      | 0/4                               | 10                          | 1/4                               | 19          | H <sub>2</sub> N W     |
|                   |                        |                                   |                             |                                   |             |                        |
| DB 829            | 10                     | 4/4                               | NA                          | 4/4                               | NA          |                        |
|                   | 5                      | 3/4                               | 14                          | 3/4                               | 7           |                        |
|                   |                        |                                   |                             |                                   |             |                        |
| DB 867            | 10                     | 4/4                               | NA                          | 0/4                               | 7           | $ \land \square \land$ |
|                   | 5                      | 0/4                               | 8                           | 0/4                               | 1           | HN COC                 |
|                   | 5                      | 0/1                               | 0                           | 0/-1                              | ·           | H <sub>2</sub> Ň       |
| 1400              | 10                     |                                   |                             | 4/4                               | NIA         | ~                      |
| DB 1406           | 10                     | 4/4                               | NA                          | 4/4                               | NA          |                        |
|                   | 5                      | 0/4                               | 3                           | 0/4                               | 3           | HN HI                  |
|                   |                        |                                   |                             |                                   |             |                        |
| DB 1854           | 10                     | 2/4                               | 8                           | 2/4                               | 4           | O <sup>Me</sup>        |
|                   | 5                      | 2/4                               | 1                           | 2/4                               | 1           |                        |
|                   |                        | _, .                              |                             | _, .                              |             | H <sub>2</sub> N N     |
|                   |                        |                                   |                             |                                   |             |                        |
| OB 1870           | 10                     | 4/4                               | NA                          | 2/4                               | 14          | HN H <sub>3</sub> C    |
|                   | 5                      | 3/4                               | 33                          | 1/4                               | 3           |                        |
|                   | 2.5                    | 0/4                               | 11                          | 0/4                               | 1           | - н 🛩                  |
| 1002              | 10                     | 4/4                               | NIA                         | 2/4                               | 7           |                        |
| DB 1893           | 10                     | 4/4                               | NA<br>10                    | 2/4                               | 7           |                        |
|                   | 5                      | 0/4                               | 10                          | 0/4                               | 2           |                        |
|                   |                        |                                   |                             |                                   |             |                        |
| ' SAB 038         | 10                     | 0/4                               | 11                          | 2/4                               | 17          | H <sub>2</sub> N       |
|                   | 5                      | 0/4                               | 4                           | 2/4                               | 5           | HN ULO                 |
|                   |                        |                                   |                             |                                   |             |                        |
| 12 SAB 081        | 10                     | 0/4                               | 1                           | 4/4                               | NA          | H_N                    |
|                   | 5                      | 0/4                               | 1                           | 4/4                               | NA          | HN″ LLO                |
|                   | 2.5                    | 0/4                               | 1                           | 4/4                               | NA          | он но                  |
|                   | 1.25                   | 0/4                               | 1                           | 0/4                               | 3           |                        |
|                   | 10                     | 0/4                               | 8                           | 2/4                               | 10          | $\sim$                 |
| 2 CAD 000         |                        |                                   | ~                           | //4                               | 10          | 1. 6                   |
| 13 SAB 089        | 5                      | 0/4                               | 6                           | 2/4                               | 5           | Mar -                  |

(Continued on next page)

#### **TABLE 3** (Continued)

| Compound identity |                        | T. congolense (STIB 736/IL-1180)  |                             | T. vivax (STIB 719/ILRAD 560)     |             |                                         |  |
|-------------------|------------------------|-----------------------------------|-----------------------------|-----------------------------------|-------------|-----------------------------------------|--|
|                   | Dose tested<br>(mg/kg) | No. of mice<br>cured/no. infected | Relapse<br>day <sup>a</sup> | No. of mice<br>cured/no. infected | Relapse day | Chemical structure                      |  |
| 18 SAB 023        | 10                     | 0/4                               | 9                           | 4/4                               | NA          |                                         |  |
|                   | 5                      | 0/4                               | 8                           | 2/4                               | 1           | H <sub>I</sub> NÍ 💭 * 🏎 NH <sub>2</sub> |  |
| 19 DAP 025        | 10                     | 1/4                               | 8                           | 2/4                               | 17          | HNNH                                    |  |
|                   | 5                      | 0/4                               | 7                           | 2/4                               | 7           | H <sub>I</sub> N V U V NH <sub>2</sub>  |  |
| 28 DAP 010        | 10                     | 2/4                               | 12                          | 4/4                               | NA          | <u>∽∧∩-\</u>                            |  |
|                   | 5                      | 0/4                               | 8                           | 0/4                               | 3           |                                         |  |
| 32 DAP 022        | 10                     | 1/4                               | 15                          | 0/4                               | 7           | лн                                      |  |
|                   | 5                      | 0/4                               | 8                           | 0/4                               | 2           |                                         |  |

<sup>a</sup>Relapse day, the day on which the mice were monitored, beginning from the day after final drug administration.

<sup>b</sup>NA, not applicable, as no relapse was seen during the complete 60-day monitoring phase.

they were given as a single bolus dose of 5 mg/kg i.p. None of the diamidine compounds tested were found to provide a cure when they were given to *T. congolense*-infected mice as a single bolus dose of 2.5 mg/kg i.p. However, 2 of the 15 diamidine compounds were found to be 100% curative when they were given to *T. vivax*-infected mice as a single bolus dose of 2.5 mg/kg. The minimal curative doses providing 100% cure of *T. congolense*- and *T. vivax*-infected mice were therefore single bolus doses of 5 and 2.5 mg/kg given i.p., respectively.

### DISCUSSION

The aim of this study was to determine the activities of diamidine compounds (and their analogues) against the animal-pathogenic parasites Trypanosoma congolense and T. vivax. By leveraging such chemical classes of molecules, previously found to be efficacious against a variety of similar kinetoplastid organisms, and the in-depth knowledge already gained from such investigations, the pursuit of more effective, alternative chemotherapeutic agents for the treatment of nagana can efficiently be explored. Both T. congolense and T. vivax originate from subgenera different from those of other trypanosome species, such as T. brucei brucei, T. brucei rhodesiense, and T. evansi. The current inability to continuously culture bloodstream forms of T. vivax under full axenic conditions still presents a severe hindrance to the accurate evaluation of new potential chemotherapeutic molecules with activities against these organisms. By establishing an ex vivo hypoxanthine assay for determination of the drug sensitivity of T. vivax with optimized assay duration, trypanosome concentration, and temperature parameters, the first reported set of novel compounds with activities against the bloodstream forms of T. vivax according to IC<sub>50</sub>s indicating susceptibility has been achieved. Work is already under way to improve this ex vivo approach by establishing a stable and reproducible alamarBlue assay for the drug sensitivity of T. vivax, which will enhance the time efficiency and cost-effectiveness of the current ex vivo hypoxanthine test for drug susceptibility.

Diamidines are known to take 48 to 72 h to fully exert their biological and chemotherapeutic potency, so the decrease in the  $IC_{50}$ s for *T. congolense* IL-3000 obtained across the 40-, 48-, and 72-h alamarBlue assays was expected. This trend was similarly observed for the standard drugs diminazene (a diamidine) and isometamidium (an amidine). In comparison, the  $IC_{50}$ s for *T. congolense* STIB 736/IL-1180 determined in the *ex vivo* assays were lower than the  $IC_{50}$ s determined in the *in vitro* assays for. Both assays used incubation times of 40 h. The [<sup>3</sup>H]hypoxanthine assay could be run only for

40 h, since at 48 and 72 h the parasites were no longer viable. Neither *T. congolense* STIB 736/IL-1180 nor *T. vivax* STIB 719/ILRAD 560 is adapted to axenic culture and thus can be maintained in culture medium only for up to 42 h. Nevertheless, the IC<sub>50</sub>s for both STIB 736/IL-1180 and STIB 719/ILRAD 560 obtained at 40 h in the *ex vivo* assays correlated well with those obtained for *T. congolense* IL-3000 in the alamarBlue assay.

Since the target animals for an alternative chemotherapeutic agent for the treatment of nagana are ruminants, in particular, cattle, the desired drug candidate should be able to be administered effectively via the intramuscular (i.m.) route. In mouse models of infection, i.m. administration is rather cumbersome; therefore, an i.p. route of compound administration was used. Two of the standard drugs, diminazene and isometamidium, were assessed separately in established mouse models of *T. congolense* and *T. vivax* infection to determine their effectiveness. Once a reference profile for the standard drugs was established, the diamidine molecules were comparatively assessed for their curative potential on the basis of a 4-day consecutive treatment schedule. The ideal target product profile (TPP) of a new drug for the treatment of nagana should have an optimized treatment regimen, preferably with a single application, since a 4-day treatment schedule would be impractical for rural field settings. Consequently, the top 15 most efficacious diamidines identified in the 4-day treatment schedule in the *in vivo* mouse models were further examined by application of only a single bolus dose.

Special attention has to be given to the problem of cross-resistance to the standard drugs diminazene aceturate (a diamidine) and isometamidium (an amidine). New diamidines have to be able to overcome this cross-resistance. This could be shown by using the knockout line *T. brucei* AT1 (which is missing the transporter responsible for the uptake of many diamidines), which showed a level of sensitivity to several diamidines comparable to that of a reference *T. b. rhodesiense* strain and a drug-sensitive *T. evansi* strain (13). The use of drug-resistant *T. congolense* and *T. vivax* isolates should be envisaged for any further studies with diamidine molecules.

In summary, the process described here highlights that the following compounds are potential candidates for evaluation in preclinical studies as treatments for infections caused by (i) both *T. congolense* and *T. vivax* trypanosome species (DB 75, DB 820, DB 829, DB 1406, 19 DAP 025, 28 DAP 010, and 13 SAB 089), (ii) *T. congolense* only (DB 867, DB 1854, DB 1870, DB 1893, 17 SAB 085 and 32 DAP 022), and (iii) *T. vivax* only (12 SAB 081 and 18 SAB 023). Having identified several lead diamidines in this study, the next step will be to investigate these compounds in a ruminant (e.g., goat) model of infection to assess their viability as candidates for the clinical treatment of *T. congolense* and *T. vivax* infections. Cross-resistance should also be investigated by employing drug-resistant isolates of *T. congolense* and *T. vivax*.

#### MATERIALS AND METHODS

**Trypanosome stocks.** The IL-3000 *T. congolense* strain was originally derived from the Trans Mara I strain, which was isolated from a bovine (within the Trans Mara region of Kenya) in 1966 (16). The IL-3000 derivative grows well as bloodstream forms in axenic culture and was thus used as the *T. congolense* reference strain in all *in vitro* drug sensitivity assays in this study. The STIB 736/IL-1180 *T. congolense* strain is a clone originally derived from the STIB 212 *T. congolense* strain, which was isolated from a lion in the Serengeti National Park of Tanzania in 1971 (17). The STIB 736/IL-1180 strain was used for all *ex vivo* and *in vivo* experiments performed with *T. congolense* in this study. Both *T. congolense* strain originated from the STIB 4786/IL-1180 strain originated from the Y486 *T. vivax* strain, isolated from a naturally infected bovine in 1976 in Zaria, Nigeria (18). The Y486 *T. vivax* strain, isolated from a naturally infected bovine in 1976 in Zaria, Nigeria (18). The Y486 *T. vivax* strain cultivated as bloodstream forms over a feeder layer (19), which is not appropriate for drug-screening purposes. Axenic cultivation is still not possible today. To our knowledge, strains derived from the *T. vivax* strain are the only *T. vivax* strains. The STIB 719/ILRAD 560 *T. vivax* strains was strain are the only *T. vivax* strains. The STIB 719/ILRAD 560 *T. vivax* strains derived from the *T. vivax* strain are the only *T. vivax* strains. The STIB 719/ILRAD 560 *T. vivax* strain was therefore used in all *ex vivo* and *in vivo* experiments carried out in this study.

**Mice.** Female NMRI mice weighing between 19 and 22 g were used for all *in vivo* experiments. Mice were specific pathogen free (SPF) and were housed in standard Macrolon type II cages at 22°C with a relative humidity of 60 to 70%. The mice received pelleted food and water *ad libitum*. All *in vivo* experiments were carried out in compliance with the regulations set out by the Swiss Federal Veterinary Office.

Standard trypanocidal drugs. Diminazene aceturate (catalog number D-7770; Sigma, St. Louis, MO, USA), isometamidium chloride (Trypamidium-Samorin; Merial, France), and homidium chloride (No-

vidium; Merial, France) were used as the standard trypanocidal drugs in the *in vitro*, *ex vivo*, and *in vivo* experiments performed in this study.

**Diamidine test compounds.** All the diamidine test compounds investigated had previously been synthesized in the laboratories of David W. Boykin (Georgia State University, Atlanta, GA, USA) and Richard R. Tidwell (University of North Carolina, Chapel Hill, NC, USA) with the aim of obtaining structural diversity, chemical stability, and a low cost of goods. For the *in vivo* experiments evaluating the activities of the diamidine test compounds against *T. congolense* and *T. vivax*, the diamidine test compounds were selected according to their previously demonstrated *in vivo* efficacies against *T. brucei*-related species and their absence of acute toxicity in previous experiments (8, 12). All selected compounds showed greater than 75% *in vivo* efficacy against *T. b. rhodesiense* or *T. evansi* and no acute *in vivo* toxicity at cumulative doses of up to 100 mg/kg of body weight given intraperitoneally (i.p.); an exception to this was the parent compound DB 75, where acute toxicity in mice was seen at a cumulative dose of 20 mg/kg of body weight given i.p.

**Culture media.** Bloodstream-form trypanosomes of *T. congolense* (IL-3000) were cultured in Iscove's modified Dulbecco's medium (IMDM; catalog number I3390; Sigma, St. Louis, MO, USA) supplemented with 3 g/liter NaHCO<sub>3</sub> and 200 mM L-glutamine. The medium was then further supplemented by adding 1% of a 1.2 mM stock of 2-mercaptoethanol, 1% of a stock consisting of 5 mM bathocuproindisulfate, 150 mM L-cysteine HCl, 100 mM pyruvate, 50 mM hypoxanthine, 16 mM thymidine, and 20% heat-inactivated bovine serum. The complete medium was used for *T. congolense* (IL-3000) cultivation, as well as for all *in vitro* antitrypanosomal assay procedures. Bloodstream-form trypanosomes of non-culture-adapted *T. congolense* (STIB 736/IL-1180) and *T. vivax* (STIB 719/ILRAD 560) were supported in IMDM (catalog number I3390; Sigma, St. Louis, MO, USA) supplemented with 3 g/liter NaHCO<sub>3</sub>. The medium was then further supplemented by adding 1% of a stock consisting of 5 mM bathocuproindisulfate, 150 mM L-cysteine HCl, 100 mM pyruvate, 16 mM thymidine, 200 mM L-glutamine, and 20% heat-inactivated bovine serum. The complete medium was used for all *ex vivo* [<sup>3</sup>H]hypoxanthine incorporation assays with *T. congolense* and *T. vivax*.

**Radioactive hypoxanthine.** Radioactively labeled hypoxanthine ([8-<sup>3</sup>H]hypoxanthine; catalog number TRK74; Amersham Biosciences UK Limited, Buckinghamshire, United Kingdom) was used for the *ex vivo* [<sup>3</sup>H]hypoxanthine (40-h) incorporation assays with *T. congolense* and *T. vivax*.

**Stock solutions and dilutions.** A 10-mg/ml stock solution was prepared for each compound (dissolved in 100% dimethyl sulfoxide [DMSO]) and was stored frozen at  $-20^{\circ}$ C. From these stock solutions, further stock solutions and compound dilutions were made for use in the various *in vitro T. congolense* cell viability assays and the *T. congolense* and *T. vivax ex vivo* incorporation assays using the appropriate culture medium as a solvent. Compound dilutions were prepared fresh on the day of the respective assays. For the *in vivo* mouse experiments, a 10-mg/ml stock solution was similarly prepared for each diamidine test compound, which was dissolved in sterile distilled water, containing 10% DMSO. Further dilutions of the standard trypanocidal drugs were prepared in sterile distilled water. All stock solutions and dilutions for the *in vivo* mouse experiments, were made from these stock solutions. Stock solutions and dilutions for the *in vivo* mouse experiments were made fresh on the day of administration and for each individual *in vivo* experiment.

*In vitro* antitrypanosomal assay. The IC<sub>50</sub>s of the test compounds for *T. congolense* (IL-3000) were determined using the alamarBlue assay (20), but with modified incubation times of 40, 48, and 72 h. Trypanosome densities were calculated using a cell counter and analyzer system (CASY; Schärfe System, Reutlingen, Germany), and the trypanosomes were diluted accordingly. Trypanosome seeding densities of  $2 \times 10^5$ /ml,  $1 \times 10^5$ /ml, and  $1 \times 10^5$ /ml in culture medium were used for the 40-, 48-, and 72-h alamarBlue assays, respectively. All assay plates were incubated at  $34^\circ$ C with 5% CO<sub>2</sub> for the time period being tested (24, 44, and 68 h), before the plates were removed from the incubator and 10  $\mu$ l of resazurin dye (12.5 mg in 100 ml phosphate-buffered saline; catalog number 33934; Aldrich/Fluka, Buchs, Switzerland) was added to each well. The plates were then further incubated for 16, 4, and 4 h respectively, under the same conditions described above. Thereafter, the assay plates were read using a fluorescence reader (SpectraMax, Gemini XS; Bucher Biotec, Basel, Switzerland) at excitation and emission wavelengths of 536 and 588 nm, respectively. The data generated were analyzed using SOFTmax Pro software (version 5.2) to determine the IC<sub>50</sub>s. All *in vitro* experiments were performed in duplicate in three independent assay runs for each compound.

**Ex vivo** [<sup>3</sup>H]hypoxanthine incorporation assay. The exact procedure for the *x vivo* [<sup>3</sup>H]hypoxanthine incorporation assay has been described previously (15) but was slightly modified for use in this study. Briefly, 50  $\mu$ l of culture medium containing no hypoxanthine was added to each well of a 96-well microtiter plate, except for the first two and last two wells of the last column (to which 100  $\mu$ l was added instead to act as a negative control) and all the wells in the first column. The drugs were applied at 75- $\mu$ l volumes (containing two times the highest drug concentration) into the empty wells of the first column, corresponding to the required starting concentration of each drug being tested. Thereafter, 25- $\mu$ l volumes were removed from the first column using a multichannel pipette and mixed with the contents in the wells in the next column. Again, 25  $\mu$ l was removed from the second column and placed into the next column, and the contents were mixed several times. This step was repeated until the 11th column was reached. The final 25  $\mu$ l from this 11th column was then discarded. This process created a 3-fold serial drug dilution across the microtiter plate.

Cardiac puncture of a highly parasitemic NMRI (female) mouse that had previously been infected with the corresponding *T. congolense* or *T. vivax* strain was performed. The blood collected was then mixed with phosphate-buffered saline with glucose (PSG; 6:4) in a 1:2 ratio, and the mixture was centrifuged for 12 min at  $70 \times g$  to separate the blood cells from the trypanosomes. After centrifugation,

the supernatant containing the trypanosomes was carefully transferred to a fresh tube, and the trypanosome concentration was determined using a Neubauer chamber. The trypanosome density was adjusted to provide starting concentrations of  $2 \times 10^6$ /ml and  $2 \times 10^5$ /ml for *T. congolense* and *T. vivax*, respectively. A 50- $\mu$ l volume of this trypanosome suspension was then added to all 96 wells, with the exception of the 4 negative-control wells in the last column. The plates were then incubated in a humidified atmosphere containing 5% CO2 at 34°C for T. congolense or 37°C for T. vivax. After 24 h of incubation, the plates were removed, and a solution of 1  $\mu$ Ci of radioactive hypoxanthine in 20  $\mu$ l of culture medium was placed into each well. The plates were returned to the incubator for a further 16-h incubation period under the same conditions described above. After a complete incubation time of 40 h, the plates were removed and the contents of the wells were harvested on glass fiber filters using a 96-well harvester (model 1290-004 Betaplate; Berthold Technologies GmbH, Regensdorf, Switzerland). Thereafter, the radioactivity counts were measured using a liquid scintillation counter (model 1205 Betaplate; Berthold Technologies GmbH, Regensdorf, Switzerland). The data obtained were further analyzed by transferring them into a standard operating protocol template in a graphics program (Microsoft Excel) for determination of the IC<sub>50</sub>s. All *ex vivo* experiments were performed in duplicate in three independent assay runs for each compound.

*In vivo* mouse efficacy experiments. NMRI (female) mice were arranged into groups of four before being independently infected with either 10<sup>5</sup> or 10<sup>4</sup> parasites in 0.25 ml of PSG in a ratio of 6:4 for *T. congolense* (STIB 736/IL-1180) or *T. vivax* (STIB 719/ILRAD 560), respectively. Infection in all experiments was performed from stabilated blood, stored frozen in liquid nitrogen, using the i.p. route. For all experiments of the efficacies of the compounds against *T. congolense*, a parasitemia of 10<sup>6</sup> per ml blood was allowed to develop over 168 h (7 days), before treatment was administered i.p. on days 7 to 10 postinfection. Comparatively, for all experiments of the efficacies of the compounds against *T. vivax*, a parasitemia of 10<sup>6</sup> per ml blood was allowed to develop over 72 h (3 days), before treatment was administered i.p. on days 3 to 6 postinfection. Thereafter, the level of parasitemia in the mice was monitored using a tail blood examination technique until day 60 posttreatment. This lengthy follow-up period posttreatment was carried out to account for any possible relapses during the experiments. Parasitemia was checked twice a week for the first month and then once per week for the remaining month. Thereafter, any surviving and aparasitemic mice were considered cured. Untreated (control) mice infected with *T. congolense* and *T. vivax* survived, on average, for 11 or 6 days postinfection, respectively.

#### ACKNOWLEDGMENTS

This work was supported by the Global Alliance for Livestock Veterinary Medicines (GALVmed) under grant STP-R55A0532/Drugs for Nagana Project.

We express our gratitude to Grant B. Napier, Michael J. Witty, and Timothy G. Rowan for their professional expertise throughout this work. We also extend our thanks and appreciation to Theo Baltz for providing the IL-3000 *Trypanosoma congolense* strain used in this study, to Vicki J. Wingate for her helpful knowledge and efficiency with the chemical compounds used in this study, and to Michael Marzolla and Pascale Steiger for their skilled assistance with animal maintenance.

#### REFERENCES

- Shaw APM, Cecchi G, Wint GRW, Mattioli RC, Robinson TP. 2014. Mapping the economic benefits to livestock keepers from intervening against bovine trypanosomosis in eastern Africa. Prev Vet Med 113: 197–210. https://doi.org/10.1016/j.prevetmed.2013.10.024.
- Mamoudou A, Delespaux V, Chepnda V, Hachimou Z, Andrikaye JP, Zoli A, Geerts S. 2008. Assessment of the occurrence of trypanocidal drug resistance in trypanosomes of naturally infected cattle in the Adamaoua region of Cameroon using the standard mouse test and molecular tools. Acta Trop 106:115–118. https://doi.org/10.1016/j.actatropica.2008.02.003.
- Delespaux V, Dinka H, Masumu J, Van den Bossche P, Geerts S. 2008. Five-fold increase in *Trypanosoma congolense* isolates resistant to diminazene aceturate over a seven-year period in eastern Zambia. Drug Resist Updat 11:205–209. https://doi.org/10.1016/j.drup.2008.10.002.
- Chitanga S, Marcotty T, Namangala B, Van den Bossche P, Van Den Abbeele J, Delespaux V. 2011. High prevalence of drug resistance in animal trypanosomes without a history of drug exposure. PLoS Negl Trop Dis 5:e1454. https://doi.org/10.1371/journal.pntd.0001454.
- Sow A, Sidibé I, Bengaly Z, Marcotty T, Séré M, Diallo A, Vitouley HS, Nebié RL, Ouédraogo M, Akoda GK, Van den Bossche P, Van Den Abbeele J, De Deken R, Delespaux V. 2012. Field detection of resistance to isometamidium chloride and diminazene aceturate in *Trypanosoma vivax* from the region of the Boucle du Mouhoun in Burkina Faso. Vet Parasitol 187:105–111. https://doi.org/10.1016/j.vetpar .2011.12.019.
- 6. Moti Y, Fikru R, Van Den Abbeele J, Büscher P, Van den Bossche P,

Duchateau L, Delespaux V. 2012. Ghibe River Basin in Ethiopia: present situation of trypanocidal drug resistance in *Trypanosoma congolense* using tests in mice and PCR-RFLP. Vet Parasitol 189:197–203. https://doi .org/10.1016/j.vetpar.2012.04.022.

- Mungube EO, Vitouley HS, Allegye-Cudjoe E, Diall O, Boucoum Z, Diarra B, Sanogo Y, Randolph T, Bauer B, Zessin KH, Clausen PH. 2012. Detection of multiple drug-resistant *Trypanosoma congolense* populations in village cattle of south-east Mali. Parasit Vectors 5:155. https://doi.org/10 .1186/1756-3305-5-155.
- Wenzler T, Boykin DW, Ismail MA, Hall JE, Tidwell RR, Brun R. 2009. New treatment option for second-stage African sleeping sickness: *in vitro* and *in vivo* efficacy of aza analogs of DB289. Antimicrob Agents Chemother 53:4185–4192. https://doi.org/10.1128/AAC.00225-09.
- Nehrbass-Stuedli A, Boykin D, Tidwell RR, Brun R. 2011. Novel diamidines with activity against *Babesia divergens in vitro* and *Babesia microti in vivo*. Antimicrob Agents Chemother 55:3439–3445. https://doi.org/10.1128/ AAC.01482-10.
- Thuita JK, Wang MZ, Kagira JM, Denton CL, Paine MF, Mdachi RE, Murilla GA, Ching S, Boykin DW, Tidwell RR, Hall JE, Brun R. 2012. Pharmacology of DB844, an orally active aza analogue of pafuramidine, in a monkey model of second stage human African trypanosomiasis. PLoS Negl Trop Dis 6:e1734. https://doi.org/10.1371/journal.pntd.0001734.
- Werbovetz K. 2006. Diamidines as antitrypanosomal, antileishmanial and antimalarial agents. Curr Opin Investig Drugs 7:147–157.
- 12. Gillingwater K, Kumar A, Anbazhagan M, Boykin DW, Tidwell RR, Brun R.

2009. *In vivo* investigations of selected diamidine compounds against *Trypanosoma evansi* using a mouse model. Antimicrob Agents Chemother 53:5074–5079. https://doi.org/10.1128/AAC.00422-09.

- Gillingwater K, Kumar A, Ismail MA, Arafa RK, Stephens CE, Boykin DW, Tidwell RR, Brun R. 2010. *In vitro* activity and preliminary toxicity of various diamidine compounds against *Trypanosoma evansi*. Vet Parasitol 169:264–272. https://doi.org/10.1016/j.vetpar.2010.01.019.
- Gillingwater K, Gutierrez C, Bridges A, Wu H, Deborggraeve S, Ekangu RA, Kumar A, Ismail M, Boykin D, Brun R. 2011. Efficacy study of novel diamidine compounds in a *Trypanosoma evansi* goat model. PLoS One 6:e20836. https://doi.org/10.1371/journal.pone.0020836.
- Brun R, Kunz C. 1989. *In vitro* drug sensitivity test for *Trypanosoma brucei* subgroup bloodstream trypomastigotes. Acta Trop 46:361–368. https:// doi.org/10.1016/0001-706X(89)90048-X.
- 16. Wellde B, Lötzsch R, Deindl G, Sadun E, Williams J, Warui G. 1974.

*Trypanosoma congolense*. I. Clinical observations of experimentally infected cattle. Exp Parasitol 36:6–19.

- Geigy R, Mwambu PM, Kauffmann M. 1971. Sleeping sickness survey in Musoma District, Tanzania. IV. Examination of wild mammals as a potential reservoir for T rhodesiense. Acta Trop 28:211–220.
- 18. Gibson W. 2012. The origins of the trypanosome genome strains Trypanosoma brucei brucei TREU 927, T. b. gambiense DAL 972, T. vivax Y486 and T. congolense IL3000. Parasit Vectors 5:71. https://doi.org/10 .1186/1756-3305-5-71.
- 19. Brun R, Moloo SK. 1982. *In vitro* cultivation of animal-infective forms of a West African *Trypanosoma vivax* stock. Acta Trop 39:135–141.
- Räz B, Iten M, Grether-Bühler Y, Kaminsky R, Brun R. 1997. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T. b. rhodesiense and T. b. gambiense) *in vitro*. Acta Trop 68:139–147. https:// doi.org/10.1016/S0001-706X(97)00079-X.