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Long sperm fertilize more eggs in a bird

Clair Bennison, Nicola Hemmings, Jon Slate and Tim Birkhead

Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK

Sperm competition, in which the ejaculates of multiple males compete to ferti-

lize a female’s ova, results in strong selection on sperm traits. Although sperm

size and swimming velocity are known to independently affect fertilization

success in certain species, exploring the relationship between sperm length,

swimming velocity and fertilization success still remains a challenge. Here,

we use the zebra finch (Taeniopygia guttata), where sperm size influences

sperm swimming velocity, to determine the effect of sperm total length on fer-

tilization success. Sperm competition experiments, in which pairs of males

whose sperm differed only in length and swimming speed, revealed that

males producing long sperm were more successful in terms of (i) the number

of sperm reaching the ova and (ii) fertilizing those ova. Our results reveal that

although sperm length is the main factor determining the outcome of sperm

competition, complex interactions between male and female reproductive

traits may also be important. The mechanisms underlying these interactions

are poorly understood, but we suggest that differences in sperm storage and

utilization by females may contribute to the outcome of sperm competition.
1. Introduction
Sperm competition is almost ubiquitous across the animal kingdom [1] and

imposes strong selection on males to produce high-quality sperm. Males of

species experiencing intense sperm competition typically produce ejaculates

with: (i) more sperm [2], (ii) a higher proportion of viable sperm [3], (iii) more uni-

form sperm morphology [4–7], (iv) longer sperm [8–12], but see [13], and

(v) faster swimming sperm [14,15], relative to males of species with little or no

sperm competition.

Our understanding of how different sperm traits influence competitive

fertilization success, however, remains incomplete. The number of sperm insemi-

nated is often important in determining the outcome of sperm competition

([16–18] but see [19]), but the enormous variation in sperm morphology across

species [20,21] suggests that size and shape are also important. However,

attempts to understand how sperm length influences fertilization success have

yielded inconsistent results (e.g. [19,22,23])—inconsistencies that may be part-

ly explained through variable sperm competition mechanisms and ejaculate

investment across different taxa [24].

Longer sperm are assumed to have an advantage over short sperm in a com-

petitive scenario, because long sperm generally have: (i) longer flagella [10],

providing greater forward propulsion [25], and (ii) relatively larger midpieces

([10], see also [26]), which produce more energy (via adenosine triphosphate

(ATP) [27,28]. Although the relationship between sperm ATP content and swim-

ming speed is uncertain [28–30], there is good evidence that longer sperm swim

faster than shorter sperm, both within and between species (e.g. [15,31], but

see [32,33]).

Faster swimming sperm are often assumed to fertilize more ova because fast

sperm may reach the site of fertilization before slow sperm. This relationship

between swimming speed and fertilization success is evident in some species of

birds [34,35] and fish [19]. In species where longer or larger sperm achieve

higher velocities, logic suggests that sperm size should then predict a given

male’s fertilization success in a sperm competition situation. In fact, there is lim-

ited experimental support for this prediction [36]. It is possible that, in some
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species, high levels of intra-ejaculate variation in male’s sperm

could mask a positive relationship between sperm length

and fertilization success [31]. A lack of variation between

sperm of an individual male (i.e. in species with intense

sperm competition) could mean that detecting relationships

is challenging (although not impossible, e.g. [37,38]).

In this study, we use the zebra finch, Taeniopygia guttata,

to clarify the relationship between sperm length and fertiliza-

tion success. The zebra finch is an ideal species to do this

because considerable natural variation in sperm length

exists between males (mean values for different males vary

from approximately 40 to 80 mm [39], as a consequence of

relatively low sperm competition intensity [39,40]. In pre-

vious studies of the zebra finch, we have also shown that:

(i) sperm length is extremely consistent both within and

between the ejaculates of individual males [41], (ii) length

and swimming speed are heritable and positively genetically

correlated [39,42], and (iii) longer sperm swim at greater

velocities than shorter sperm [42]. Crucially, however, it is

still not known whether, in a competitive scenario, males pro-

ducing long sperm enjoy greater fertilization success than

males producing relatively short sperm.

We conducted sperm competition experiments to test

the hypothesis that, in a competitive environment, long

sperm males fertilize more ova than short sperm males. In

a mate-switching experimental design (similar to [43]), pairs

of males, one male producing long sperm and the other pro-

ducing short sperm, were mated sequentially, for 3 days per

male, to a single female. In the zebra finch and other birds,

inseminated sperm are stored in the female’s reproductive

tract in specialized sperm storage tubules (SSTs) [44–46]

from which they are lost over time at a constant rate

[47–49]. In birds, following sequential copulations with two

different males, the proportion of sperm from the second

mating male is expected to increase across successive eggs

in a clutch. This is a result of passive sperm loss from the

SSTs, such that fewer sperm from the first male remain in

the SSTs at any given time point [50], explaining why,

in birds, when all else is equal, sequential copulations usually

result in the last male to copulate siring most offspring

[43,51]. In our sperm competition experiments, we controlled

for last male sperm precedence by employing a paired exper-

imental design, in which we repeated the sperm competition

protocol with the identical male pairs and females, but alter-

nated the order in which the long and short sperm males

copulated with the female.

By counting the sperm embedded in the outer perivitelline

layer (OPVL) of the avian ovum, it is possible to estimate how

many sperm reach the ovum and to determine the likelihood of

fertilization following a single insemination [52]. We devel-

oped this technique further, using phenotypic ‘labelling’ of

sperm, to allow us to confidently assign each individual

sperm observed on the OPVL to one of the competing males.

This allowed us to assess the proportion of each male’s

sperm that reached the ovum. We also determined the pater-

nity of each embryo, revealing the eventual winner of

sperm competition. In addition, we investigated whether an

individual male’s fertilization success in a sperm competition

scenario is predicted by the number of his sperm reaching

the ovum relative to that of the other male. Our results provide

unique insight into the processes occurring immediately prior

to fertilization, and how they affect the outcome of sperm

competition.
2. Material and methods
(a) Animals
The zebra finches in this study were part of a domesticated popu-

lation maintained at the University of Sheffield since 1985. Zebra

finch sperm morphology (e.g. sperm total length) is highly herita-

ble [39,42]. We conducted an artificial breeding experiment

(described in the electronic supplementary material) which

increased the number of males in the population that produced

long (more than 70 mm) or short (less than 60 mm) sperm, but

did not increase sperm length beyond that which occurs naturally

[39]. Sperm samples were collected from all adult male birds [53]

and five morphologically normal sperm per male were photo-

graphed using light microscopy at 400� magnification (Infinity 3

camera, Luminera Corporation, and Leitz Laborlux microscope)

and measured to the nearest 0.01 mm using ImageJ [54]. Based

on these initial sperm measurements, pairs of males (matched by

nearest hatching date) were selected for the sperm competition

experiment, such that one male produced long sperm (n ¼ 18)

and one produced short sperm (n ¼ 18). In no case did the

sperm of the male pairs overlap in length (mean difference

between males+ s.e.m.: 18.27+0.70 mm). Each male pair was allo-

cated to an unrelated (i.e. not a sibling, parent or offspring) female

who originated from either the long (n ¼ 8) or short (n ¼ 10)

selection line. The mean relatedness scores (presented as mean+
s.d.) between the male and female pairs, and between pairs of com-

peting males were low (0.0371+0.056 and 0.0026+0.007,

respectively; see the electronic supplementary material for further

details). Females were housed singly in a cage (dimensions 0.6 �
0.5 � 0.4 m) with a nest-box half filled with hay. Each female

cage had an adjoining cage for use later in the experiment.
(b) Sperm competition experiments
Sperm competition experiments were conducted using a mate-

switching protocol [43]. One male from each pair was paired to

the female for 3 days (and allowed to copulate freely). The males

were selected systematically to ensure that approximately half of

the females (in both the long and short lines) were paired to a

long sperm male first, with the remaining females paired to

a short sperm male first. The second male (either a long or short

sperm male) was then paired to the female for an additional

3 days (to copulate freely). After 3 days, the second male was

placed in the adjoining cage, where a wire mesh divider prevented

any further physical contact. Females were allowed to lay a clutch

of eggs, all of which were collected daily (n ¼ 192) and marked

with a unique female code and the egg number. Eggs were artifi-

cially incubated at 388C for 48 h, and stored at 48C until

processing. When the duration of sperm storage for female zebra

finches was exceeded—14 days [55]—each mating trial was

repeated as above (using the identical males and females), except

males were paired to the female in the reverse order. Thirty

clutches of eggs were collected and analysed from 18 females;

12 of which produced a clutch of eggs in both mating rounds.
(c) Quantifying competitive success
Male competitive success was assessed in two ways: (i) the pro-

portion of sperm from each male that reached each ovum

(determined by counting sperm on the OPVL) [47] and (ii) the

paternity of each embryo. Eggs were dissected in the following

way, as in [56]. The egg was opened into a petri dish of phos-

phate-buffered saline (PBS), and the embryo gently detached

from the surface of the yolk using a hair loop (a piece of

human hair taped to a pipette tip to form an oval loop approx.

5 mm long), collected using a pipette and sterile pipette tip,

and stored in 100% ethanol for molecular paternity analysis at

a later date. The yolk was cut in half and the OPVL was removed,
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Figure 1. Long sperm males sired a greater proportion of embryos compared
with the short sperm males (see base of plot for numbers of embryos sired
by the long sperm male in each group). Ntotal ¼ 166. Bars represent stan-
dard errors and the dashed line at y ¼ 0.5 represents the expected
proportions if sperm length did not influence fertilization success. See
main text for further description of the data.
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washed in PBS, laid flat on a microscope slide, stained with 10 ml

Hoescht 33342 fluorescent dye (0.5 mg ml21) (Molecular Probes,

USA) and incubated in the dark for 2 min. We examined the half

of the OPVL that contained the germinal disc (GD) because the

majority of sperm are observed around the GD [57]. Using fluor-

escence combined with darkfield microscopy (Leica DMBL) at

400� magnification, sperm on the OPVL were photographed

(Infinity 3 camera, Luminera Corporation), and sperm length

(n ¼ 4420) was measured to the nearest 0.01 mm [54] (see the elec-

tronic supplementary material for images of sperm embedded in

the OPVL). This measurement was used to assign each sperm to

either the long or short sperm male based on sperm length data

collected previously; thus, each male’s sperm in the OPVL was

‘labelled’ by its phenotype (long or short). The mean length of

sperm collected directly from the male (from the seminal glo-

mera—SG—see below), and from sperm embedded in the OPVL

(from the same male), was significantly correlated (r2 ¼ 0.96, t ¼
15.18, d.f. ¼ 18, p , 0.0001). In cases where the sperm’s head

was missing, we used flagellum length to identify sperm as long

or short (flagellum and total length are also significantly

correlated; r2 ¼ 0.99, t ¼ 106.01, d.f. ¼ 33, p , 0.0001).

(d) Sperm quality analyses
At the end of the experiment, all males (fully rested from copu-

lation for at least four weeks) were humanely killed by cervical

dislocation and sperm collected from the distal region of the

left SG by dissection. The following sperm quality analyses

(described in the electronic supplementary material) were carried

out to determine whether sperm quality parameters were similar

within the male pairs: (i) swimming velocity (the swimming

speed of sperm), (ii) viability (the proportion of viable sperm),

(iii) morphology (the proportion of sperm with normal, unda-

maged morphology), (iv) concentration, and (v) longevity (the

length of time sperm remained motile) (for results, see the elec-

tronic supplementary material, table S1). Testes mass data were

also collected (electronic supplementary material, table S2).

Data on copulation rate and SG mass were opportunistically

collected from long and short sperm males that were not used

in the experiment (refer to the electronic supplementary material,

tables S3 and S4).

(e) Paternity assignment
DNA was extracted from embryos using the ammonium acetate

protocol [58]. DNA was amplified by PCR using a DNA Engine

Tetrad 2 thermocycler (MJ Research, Bio-Rad, Hemel Hampstead,

Herts, UK). The PCR products were genotyped using an ABI

3730 48-well capillary sequencer (Applied Biosystems, CA, USA).

The reaction products were visualized and scored for eight micro-

satellite loci using GENEMAPPER v. 3.7 (Applied Biosystems, CA,

USA). Paternity was assigned to embryos (n ¼ 166) using

CERVUS v. 3.0.3 [59], at greater than 80% confidence. For detailed

methods, see the electronic supplementary material.

( f ) Data analysis
All data were analysed in R v. 2.15.1 [60]. Exact binomial tests

were used to test for differences in the numbers of long and

short sperm that reached the OPVL, and the number of embryos

sired by the long and short sperm males. Generalized linear

mixed models (GLMMs) in the R package LME4 [61] were

used to investigate whether male sperm length determined ferti-

lization success. Data were modelled using the function ‘glmer’

with a binomial error distribution and logit link function. To

determine the relationship between the proportions of long

sperm reaching the ovum and the likelihood of the long male

siring the embryo, we first modelled embryo paternity as either

‘1’ or ‘0’ (i.e. sired by the long male or not), with the proportion
of long sperm embedded on the OPVL included as a fixed effect.

Trio ID (i.e. a single female and pair of males) was used as a

random effect.

In order to control for the effects of last male sperm precedence

(we repeated the experiment with males copulating in the reverse

order), we then carried out a second GLMM that used the second

mating male as the focal male in the analysis. The paternity of each

embryo was included as either ‘1’ or ‘0’ (i.e. sired by second male or

not). Male mating order (short first/short second), female line

(long/short) and the number of days between the male swap

and the laying of the focal egg were included as fixed effects.

Trio ID was fitted as a random effect. We also modelled all inter-

actions between the three fixed effects. Model simplification was

carried out using log-likelihood tests and Akaike information

criterion (AIC) values to obtain the minimal adequate models.
3. Results
(a) Sperm length influences fertilization success
Significantly more long sperm (57+2%) reached the ova than

short sperm (43+2%) (mean percentage+ s.e.m. of sperm

counts; exact binomial test; p , 0.0001). Long sperm males

sired a greater proportion of embryos (64+8%) than short

sperm males (36+8% (mean percentage+ s.e.m. of all pater-

nity results; exact binomial test; p , 0.0001; figure 1; see also

the electronic supplementary material, table S5). Sperm total

length and swimming velocity differed between the competing

males (electronic supplementary material, table S1), such that

longer sperm swam faster, as in [42]. Our results also show

that the proportion of sperm on the OPVL from a given male

determines his likelihood of successful fertilization (GLMM;

estimate ¼ 7.86+1.42 (mean+ s.e.m.); z ¼ 5.52; p , 0.0001;

figure 2).

(b) A lack of last male sperm precedence
Mating order of the males did not determine which male fer-

tilized the egg (long male first: 69+10% (mean percentage+
s.e.m.); long male second: 60+11% (mean percentage+
s.e.m.); proportion test; x2 ¼ 1.15, p ¼ 0.28)). This means

that the patterns of paternity observed in this study cannot
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Figure 2. The proportion of embryos sired by the long sperm male increases
as more long sperm are observed on the OPVL. Data comprise 192 eggs,
of which paternity was assigned to 166 embryos. The line is the fitted
logistic model.
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Figure 3. The proportions of embryos sired by the long sperm male according
to male mating order and the selection line of the female (long or short). The
long sperm male fertilized more ova in three out of the four combinations of
male mating order and female line (see base of plot for numbers of embryos
sired by the long sperm male in each group). Ntotal ¼ 166. Bars represent stan-
dard errors and the dashed line at y ¼ 0.5 represents the expected proportions
if sperm length did not influence fertilization success. See main text for further
description of the data.
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be explained simply by the passive loss of sperm from the

SSTs, where last male precedence would be expected [50].

(c) Male � female interaction
Male fertilization success was also influenced by interacting

effects of male mating order and female selection line

(GLMM; estimate ¼ 3.60+1.12; z ¼ 3.20, p ¼ 0.001, figure 3;

see the electronic supplementary material, table S6, for

model output). The number of days between the male swap

and the laying of the focal egg did not affect male fertilization

success as a main effect, nor did it interact significantly with

any other factors. Long sperm males sired more embryos

than short sperm males in three out of the four mating

combinations: (i) long male first, short male last, long

female, (ii) long male first, short male last, short female,

and (iii) short male first, long male last, short female. How-

ever, in a single mating combination (short male first, long

male last, long female), the proportion of embryos sired by

the long and short sperm males were not significantly differ-

ent from 0.5 (exact binomial test; p ¼ 0.89; see the electronic

supplementary material, table S5, for summary data). Taken

together, these results demonstrate that in the zebra finch,

long sperm males are more successful in a sperm competition

scenario than short sperm males.
4. Discussion
We have experimentally demonstrated for the first time, we

believe, in a vertebrate species that under competitive con-

ditions, long sperm tend to reach ova in greater numbers,

and consequently fertilize a greater number of ova than

short sperm. Our controlled experimental design, which

incorporated a powerful pairwise comparison of male fertili-

zation success using alternate mating of males, revealed an

apparent lack of last male sperm precedence. This is incon-

sistent with the passive sperm loss model of last male

sperm precedence, which is the widely accepted mechanism

of sperm competition in the zebra finch [50] and other

birds (e.g. [62]). The passive sperm loss model predicts that

all else being equal (including sperm length and swimming
velocity), following sequential inseminations by two different

males, a greater proportion of eggs should be fertilized by the

second male to copulate. However, in this study, we found that

regardless of whether they were first or second to copulate,

long sperm males sired significantly more embryos than short

sperm males in the majority of pair combinations. Surprisingly,

the only scenario in which this was not the case was when the

long sperm males copulated second (and were therefore pre-

dicted—because of last male sperm precedence—to have had

an advantage regardless of sperm length) with females who ori-

ginated from the long sperm selection line. In this particular

instance, the proportion of embryos sired by males from both

lines did not differ significantly from 0.5, so it is difficult to

draw any conclusions about this particular result in isolation.

The simplest explanation for the observed overall long

sperm advantage would be that, because long sperm swim

faster (electronic supplementary material, table S1, and [42]),

they reach the SSTs sooner than short sperm. However, this

is unlikely to account for the patterns of paternity we observed

for the following reason. Assuming that space in the SSTs is

limited, and long sperm reach the SSTs sooner, the ‘fertilizing

set’ of sperm in the SSTs would therefore consist of a higher

proportion of long sperm than short sperm. As a result,

more long sperm would reach the ovum, increasing the odds

of a long sperm fertilizing the ovum. This result is what we

would expect if the two inseminations (of long and short

sperm) occurred simultaneously—effectively as a single,

mixed insemination (as in [51]). In our experiment, however,

inseminations were sequential, with the first male copulating

with the female for 3 days, after which he was replaced with

the second male who also copulated for 3 days. Despite this

interval between inseminations, mating order did not affect

the outcome of sperm competition, because the long sperm

males generally sired the majority of embryos. This indicates

that there may be differences in the rates of uptake or release

of long and short sperm into or from the SSTs, which may

influence the relative proportions of long and short sperm

available at the time of fertilization.
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In a study of domestic fowl (Gallus gallus domesticus) [63],

it was found that high mobility sperm (when mobility is

measured as the ability of sperm to penetrate a solution of

inert medium (Accudenz), which is positively correlated

with sperm swimming velocity [64]) fertilized more ova over-

all than low mobility sperm under sperm competition, and

that this relative success increased over successive eggs

within the clutch. One explanation for these results is that

high mobility sperm remain in storage for longer than low

mobility sperm, which is consistent with an earlier hypoth-

esis [65]. In this study, since long zebra finch sperm swim

faster than short sperm (electronic supplementary material,

table S1), this may also explain why long sperm males

achieved higher paternity regardless of mating order.

Alternatively, our results may be accounted for if short

sperm are simply less likely to reach and/or enter the SSTs.

To reach the uterovaginal junction, where the SSTs are

located, sperm must swim through the hostile vaginal

region of the oviduct, so it is likely that swimming speed

determines success during this phase [66]. Again, since we

know that short sperm swim more slowly than long sperm,

it is possible that fewer short sperm than long sperm (in

absolute terms) are able to survive the journey through the

vagina to the SSTs. This could result in a greater proportion

of long sperm in the ‘fertilizing set’, regardless of mating

order. This is a particularly interesting idea, given that our

results suggest that the long sperm males may store fewer

sperm (although not significantly fewer) prior to copulation

(electronic supplementary material, table S1). If we speculate

that the stored sperm concentration may be related to the

number of sperm used for insemination (note that we could

not test this relationship), this suggests that the long sperm

fertilization advantage reported in this study may be a

conservative estimate.

Overall, long sperm outcompeted short sperm in our study,

but sperm length was not the only factor influencing fertiliza-

tion success. Specifically, the selection line origin of the female

also appeared to influence the degree of last male precedence

in our sperm competition trials. Assuming an overriding long

sperm advantage, as our results indicate, data from matings

with females from the short selection line also suggest a small

underlying effect of last male precedence. As expected, long

sperm males are more successful in both cases, but less so

when the short sperm male was second to mate; figure 3).

Data from matings with long line females, however, suggest

the opposite pattern—an unexpected underlying effect of first
male precedence (figure 3). Without further experiments, it is

difficult to explain these opposing patterns across female lines,

but this result is suggestive of a female-mediated influence on

the outcome of sperm competition.

There is increasing evidence that females exert some control

over paternity [67], and that the final outcome of sperm compe-

tition may be determined by a combination of both male and

female effects [68–71]. In Drosophilia, for example, sperm are

stored in the female’s seminal receptacle (SR), and the size

and shape of her SR influences a male’s fertilization success
depending on his sperm length. In an elegant experiment,

Miller & Pitnick [70] used populations of male and female

Drosophila, artificially selected for divergence in sperm length

and SR length, respectively. Long sperm males had a pronoun-

ced fertilization advantage when copulating with females with

long SRs, possibly due to optimal positioning of long sperm

within the SR for fertilization. Given the growing evidence of

the pivotal roles of females in determining the outcome of

sperm competition, particularly in internally fertilizing species,

it is perhaps unsurprising that, in addition to the strong effect

of sperm length, we also found some evidence for female

effects on competitive fertilization success in the zebra finch.
5. Conclusion
We have experimentally demonstrated that in the zebra finch,

long sperm have an advantage in sperm competition compared

with short sperm. This long sperm advantage is evident both in

the number of sperm that reach the site of fertilization and those

that fertilize the ovum. As all other measures of sperm quality,

except swimming velocity, were comparable between our long

and short sperm males, the competitive success of the long

sperm males can clearly be attributed to sperm length. Impor-

tantly, however, our results demonstrate that male competitive

success is not necessarily the simple outcome of a race between

the sperm of rival males. Instead, sperm competitive success

appears to be mediated by the female, possibly through as yet

unknown mechanisms of differential sperm acceptance or

release from sperm storage sites.
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