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Abstract

The human microbiome has been identified as having a key role in health
and numerous diseases. Trillions of microbial cells and viral particles
comprise the microbiome, each representing modifiable working elements
of an intricate bioactive ecosystem. The significance of the human
microbiome as it relates to human biology has progressed through
culture-dependent (for example, media-based methods) and, more
recently, molecular (for example, genetic sequencing and metabolomic
analysis) techniques. The latter have become increasingly popular and
evolved from being used for taxonomic identification of microbiota to
elucidation of functional capacity (sequencing) and metabolic activity
(metabolomics). This review summarises key elements of the human
microbiome and its metabolic capabilities within the context of health and
disease.
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Introduction

The human microbiome as it relates to metabolic function
and health

It has been established that communities of microorganisms,
microbiota, reside on or within nearly every physical substrate
on our planet (and associated artificial satellites)'"". Com-
posed of organisms encompassing multiple divisions of the
tree of life, such as protozoa'-', fungi'’, viruses’ ™ and
prokaryota™’, these microbial communities are intricate eco-
logical structures driven by the production and exchange of
metabolic products®~*. Indeed, these communities can cause
metabolic cascades that have measurable influences on their
macroscopic hosts. Through recognition of these influences,
the importance of the microbiome as an integral component of
human biology has come to be appreciated, not only by micro-
biologists but by clinicians and the general public. This review
describes essential background to the human microbiome, provid-
ing an overview of microbiomes delineated by human anatomy
within the framework of microbe—host metabolic interaction
before focusing on these interactions as they relate to the gut.

Womb to tomb

Present from birth to death, an individual’s microbiome main-
tains a constant presence as a chimeric organ®™*. Seeding of this
microbial system occurs at the beginning of life via transmis-
sion of a mother’s microbiome to her infant during the birthing
process™ . Influenced by direct environmental transmission, a
delivered infant will inherit either the mother’s vaginal and fae-
cal microbiota as it passes through the birthing canal or the skin
microbiota during caesarean delivery”~'. Either route of delivery
imposes prolonged multifaceted effects on the infant**. Vagi-
nal birth confers a microbiome of the mother’s urogenital sys-
tem which has undergone specific alterations throughout the
pregnancy which are conducive to the development of robust
and functional immune and gastrointestinal (GI) systems of
the infant”. Alternatively, numerous deleterious health effects
for infants delivered by caesarean section have been identi-
fied. Immediate influences upon the infant include increased risk
of exposure to antibiotic-resistant bacteria from the mother’s
skin®. Long-term insults to health arising from caesarean deliv-
ery include greater risk of developing obesity, sensitivity to
food and inhalant allergens, and asthma*~*‘. In light of increas-
ing awareness of potential negative health effects associated
with caesarean delivery, an experimental procedure of vaginal
seeding has been developed to simulate the microbial expo-
sures present in vaginal birth via administration of vaginal
swabs to newly delivered infants”. However, implementing
vaginal seeding is a contentious issue, and many clinical
practitioners are wary of the intervention prior to extensive
investigation of its effects’'.

Throughout infancy, an individual’s core microbiome is con-
tinuously influenced by the mother and environment. Whether
nourished by the mother’s natural breast milk or formula, the
infant microbiome continues to be moulded through supplied
nutrition. In this regard, a positive health bias towards
biological ‘tradition’ persists, as both the process of breast
feeding and breast milk itself, and potentially the microbes
therein, convey health benefits superior to those of formula**>.
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Progressing through infancy, the microbiome goes through
highly variable changes, beginning to stabilise at about 2 years
of age. Flux of the microbiome during this period is attributed to
numerous factors, including dietary variations (for example, milk
versus solid food), immunological development, introduction
to novel microbes, and antibiotic exposure****3-55,

Through the transition from infancy to childhood and onto
adulthood, the microbiome of an individual stabilises while
still  being influenced by drug exposure”~*>°, physical
activity®", the environment’ and diet’"""”> (discussed more
elaborately in proceeding sections)’*’*. The microbiome changes
again with old age”’’, and microbes ultimately contribute

to decomposition after death’**’.

The human body: a microbiome perspective

Microbial communities take form within any accessible area
of a host’s body. The defined niches with stable communi-
ties in humans and other mammals are currently generalised to
the respiratory system’”*'~* nasal”** and oral'’***% cavi-
ties, skin®*20415590 " vagina and urinary tract”**#***%_and GI
system?!29-27:2936-384097 " For each of these unique communities,
varied challenges are involved in their sampling and analysis
and in interpreting their impact on health or disease.

The skin

Comprising a relatively large surface area (~1.8 m? for an adult
human) and an array of subsystems defined by folds, crev-
ices, pH, secretion profiles, and environmental exposures, the
skin supports highly varied microbial communities function-
ing in diverse ecological constraints (Figure 1A)*%*.  Eco-
logical partitioning of the skin microbiome is further defined by
elementary biological traits of the host. Microbial composition
at specific anatomical locations coordinates with gender”'*"!'.
Indeed, topical sampling of hand palms demonstrates greater
diversity of bacterial taxa in women than men, and specific taxa
are differentially abundant between the two sexes'’*'"!. Similar
results have been presented for other body sites, such as the
thigh and torso”™'". Expectedly, cohabitation of sexually active
partners results in a shared skin microbiome that accurately
matches couples 86% of the time'". Ancestral host genetics have
also been demonstrated to influence the composition of the skin
microbiome. Male participants of diverse ethnic backgrounds,
all dwelling in a single geographic location, were shown to have
microbial differences specific to ethnicity'””. Furthermore, a
study of both monozygotic and dizygotic twins described an
association between Corynebacterium jeikeium and single-
nucleotide polymorphisms of a host gene involved in epidermal
barrier function'”. This finding suggests that the establish-
ment of specific skin microbes is dependent on heritable factors
of the host. Despite such associations with the skin microbiome,
ancestral genetics have been shown to exert a negligible influ-
ence on the gut microbiome, where instead other factors, such as
environment, play a more profound role in the form and function
of the microbial community'*.

Continuous environmental interaction unsurprisingly results in
the skin being our most exposed microbial ecosystem. Envi-
ronmental factors shown to be influential include hygiene
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A SKIN ‘ REF.
T Pacnes(t) 115
A | Malassezia (+) 117
§ S. epidermidis (+/-) 119
S. aureus (-) S. pyogenes (-) 200
M | triglycerides (sebum) 115
% | glycerol fermentation 40
A | propionic acid 118
B butyric acid 106

B ORrAL CaviTy
T | S-mutans (-)  Slackia(-) 127
A | P gingivalis (-) 124
X | Actinomyces (-) 130

Propionibacterium (-)

M | glycoproteins  N-nitrosamines 126
E | bacteriocins  acetaldehyde | 122
A | hypothiocyanite 124
B | nitric oxide 131

C RESPIRATORY TRACT
T | Afumigatus (-) 137
A | Prevotellaspp. (+) 97
X | Haemophilus spp. (-) 144
Malassezia spp. (-) 146
M | corticosteroids (Rx) 145
£ | inflamm. cytokines (e.g. I2E) 19471
A
B

D UROGENITAL SYSTEM | REF.
T | Lactobacillus spp. (+) 109
A Gardnerella spp. (-) 151
X | Porphyromonas spp. (-) 164
Prevotella spp. (-) 170
M | glycogen 158
¥ lactic acid 161
A | butyrate 167
B | acetate 168

E | GASTROINTESTINAL TRACT
T | Akkermansia muciniphila (+) 176
A | Lactobacillus spp. (+) 87
X | Bifidobacterium spp. (+) 144
B. wadsworthia (-) 181
M | glycogen succinate 176
¥ | propionate  bile acids 203
A | butyrate nitric oxide 168
B | acetate 227

Figure 1. Demonstration of key microbiota and metabolites of the human microbiome, delineated according to human physiology.
(A) The skin, (B) oral cavity, (C) respiratory tract, (D) urogenital system and (E) gastrointestinal tract are each highlighted with examples of
microbiota (Taxa) and relevant metabolic activity (Metab). Beneficial associations to host health are denoted as (+) and negative associations
as (-).
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routines, topical medication and cosmetic use, and residential
environment (for example, rural versus urban)®'?%1011% Degpite
its vulnerability to external perturbations, an individual’s skin
microbiome maintains a consistent core structure'®. Though
capable of opportunistic pathogenicity under certain condi-
tions, constituents of this stable community perform homeostatic
functions and act as a barrier against transient and potentially
pathogenic species, subsequently maintaining a role in a vari-
ety of cutaneous conditions”™'*'%, Among these residential
members are strains of Propionibacterium acnes, the fungal
genus Malassezia, and Staphylococcus —epidermidis'''"-'1
Lipophilic P. acnes and species of Malassezia proliferate in seba-
ceous gland-rich body sites, such as the face and back™'*%'"”.
The rich pool of triglycerides found in sebum are hydro-
lysed by microbes to produce fatty acids that assist in bacte-
rial adherence and maintaining an acidic pH'"''. Low pH
environmental conditions select for lipophilic commensals
while inhibiting colonisation by potentially pathogenic strains of
Staphylococcus — aureus and  Staphylococcus —pyogenes'*'".
P. acnes additionally contributes to suppression of methicillin-
resistant S. aureus through glycerol fermentation to short-
chain fatty acids (SCFAs) and in particular propionic acid,
which also inhibits growth of Escherichia coli and Candida
albicansliﬂ,lll,llﬁ.

The mouth

The oral cavity microbiome represents a reasonably well-defined
ecosystem (Figure 1B). Structure morphology and different tis-
sue types within the human mouth offer a variety of micro-
bial habitats, further delineated by conditions of oxygenation,
pH, and nutrient availability''*'">. Control of the oral micro-
biome is mediated in concert by factors produced by the host
and the microbiota''*!-11¢,

Immunological training by microbiota seeded early in life ena-
bles the host to distinguish between the commensal core and
transient pathogenic microbes, wherein selected commensals
create biological barriers through biofilm formation, alter pH
and oxygen levels, and produce antimicrobial molecules''®'"*!".
Bacteriocins (that is, small peptide antimicrobials that include
the lantibiotics and microcins) are one such means of microbial-
derived molecular regulation of community composition within
the mouth (and other microbial systems)''. The underly-
ing mechanisms coordinating this antagonistic inter-microbe
regulation of community structure require further elucida-
tion; however, its complexity is highlighted by findings of at
least 1,169 putative lantibiotic gene clusters within the oral
metagenomes defined by the Human Microbiome Project'”’.

Within this environment, saliva moistens the mouth, aiding in
the mastication, swallowing and digestion of food. Saliva also
provides an essential nutrient source for microbes, contain-
ing complex molecules such as glycoproteins (for example,
mucins)' 110121122 Similarly, saliva-derived proline-rich glycopro-
teins contribute to pellicle formation on mouth surfaces, immo-
bilising microbes through their adherence to the structures''*''‘.
Bioactive compounds found within saliva also include potent
factors that inhibit growth or otherwise modify the microbial
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complex’s activity within the mouth. For example, bacte-
rial growth is curbed by lysozyme-mediated cell lysis and
interference of glucose metabolism with lactoperoxidase-
catalysed conversion of hydrogen peroxide and thiocyanate to
hypothiocyanite''*''°.

Sustaining a balanced oral microbiome is thought to con-
fer numerous local and systemic health benefits. Nitric oxide
(NO) is an important cellular signalling molecule, crucially
involved with various physiological functions: metabolism,
nerve function, and cardiovascular function. Key oral microbi-
ome constituents have demonstrated the ability to reduce dietary
nitrates to nitrite''*'*>'*. Converted nitrite is deposited into
saliva, which is ingested after oral cavity circulation, leading to
NO conversion and the subsequent transmission to tissues across
the body'**'**. Countering the potential health benefits of bacte-
rial nitrite supplementation, the compound may stimulate cancer
development through formation of carcinogenic N-nitrosamines'*.
Posing a similar risk of carcinogenesis, acetaldehyde is produced
from ethanol by oral bacteria'*.

Dysfunction of the oral microbiome contributes directly to den-
tal diseases; the most widely recognised such condition is tooth
decay or dental caries. Caries formation begins with bacterial fer-
mentation of carbohydrates to organic acids, resulting in localised
pH reduction and subsequent tooth demineralisation''*!®!"%!22,
Once the site has been acidified, the affected environment
becomes increasingly selective for bacteria that are tolerant of
low pH conditions, thus stimulating proliferation of destructive
communities and worsening of the condition''*!'*"”>. Although
Streptococcus mutans is implicated in tooth decay, it is evident
that no single organism is the causative agent, and instead
polymicrobial activity drives the condition with diverse actors
from genera such as Actinomyces, Slackia, Propionibacterium
and Lactobacillus'".

Periodontal disease is also caused by microorganisms. Pro-
longed biofilm formation at the interface of gingival tissue and
the tooth surface leads to the accumulation of pathogenic bacte-
ria that exacerbate inflammation through cytotoxic compounds
such as lipopolysaccharides''®'?>. Resultant bleeding from
inflammation provides a source of iron from heme, a molecule
used by pathogenic microbes (for example, Porphyromonas
gingivalis)''*'”>.  Without disruption, periodontitis-associated
microbes thrive and, with continued immunological antagonisa-
tion of the gingival tissue, contribute to induction of a dysregu-
lated inflammatory response, permanently damaging connective
tissue and bone''®!1**,

The nose and respiratory system

At one time, the human lung had been considered a sterile bio-
logical system unless challenged with disease. Now, however,
it is clear that a respiratory microbiome exists (Figure 1C).

When healthy, the lung environment reflects many char-
acteristics of the mouth and nose interiors, namely moder-
ate thermal stability, high oxygen availability, mucosa-lined
internal surfaces, and a continuous influx of environmental
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microbes. Despite these similarities, modern investigation of
respiratory-related microbes in the lungs projects a microbiome
of low phylogenetic diversity'**~'*°. The simplicity of the lung
microbiome contrasts with that of the oral cavity, although the
latter acts as a major channel for microbiota translocation, and
microaspiration of aerosolised material from the upper respira-
tory tract and direct migration along the oropharynx mucosa

occur!26:127,

Whereas some human microbial communities exhibit high lev-
els of diversity when healthy, presenting associations between
disease and reduced diversity, the respiratory microbiome is
thought to be more susceptible to malignancy when the complex-
ity of its composition increases™ 1201212 This is observed as
far up in the respiratory system as the nasal cavity, and elevated
diversity of the inner nostril is associated with a number of
allergies'””. Conversely, post-surgical outcome of sinus sur-
gery is better with more diverse sinonasal microbial com-
munities, suggesting an unpredictable complex relationship
between upper respiratory tract microbial diversity and health'®.
Ultimately, caution needs to be used when considering diversity
as a marker of health.

A clear association between the lung microbiota and compro-
mised pulmonary health has been demonstrated with asthma,
an inflammatory disease”-**#»1*1*1.192 " Ag is the case for many
microbiome-health interactions, evidence supports early-
life microbial exposures as being critically influential with
respect to respiratory health. Strong epidemiological associa-
tions assert an increased risk of inflammatory respiratory dis-
ease with caesarean birth and reduced risk from diverse antigen
presentation (such as rural and farm exposures)**"'**='*>. More
specifically, bacterial species of Lachnospira, Veillonella, Fae-
calibacterium and Rothia were found at low relative abun-
dance in the guts of children deemed to be at higher risk of
developing asthma'”. Other studies have highlighted differ-
ences in community complexity of airways that relate to asthma
phenotype?#8:12%131L.132 " For example, patients with type 2-high
(T2-high) asthma, a form of the disease marked by specific
type 2 immunological responses, were shown to have signifi-
cantly lower diversity of fungal species in airway samples when
compared with other patients with asthma'*’. The same study
reported an enrichment of species from the Trichoderma fungal
genus in T2-high patients. Among the extensive work carried
out in characterising the role of microbes in asthma, associa-
tions have been made between a deviation from the typical pre-
dominance of Bacteroidetes members (for example, species of
Prevotella) to those of Proteobacteria (for example, Haemophilus
species)*"“¥7. Given the observation that Proteobacteria are
a predominant component of the skin microbiome, it may
be that a detrimental transposition of skin-associated micro-
biota into the lungs plays some role in the aetiology of the
disease'"'%, Although this possibility is intriguing, more robust
characterisation of which specific Proteobacteria species are
present in the separate sites would be needed to further the
theory. Similarly, some analysis of the fungal component of
the pulmonary microbiome implicates the presence of Malas-
sezia species in asthma'’®. This fungal species is better known
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as a factor in atopic and seborrhoeic dermatitis, providing a
further potential link between the deleterious translocation of
skin microbiota and asthma'’. It should be noted that these
potential links need to be definitely established.

Although our understanding of the respiratory microbiome’s
general role in health is continuing to evolve, there is evi-
dence of compositional alterations in the asthmatic lung micro-
biome in response to corticosteroid treatment'¥. Patients
with asthma, regardless of whether the asthma is resistant or
sensitive to corticosteroid treatment, show reduced Bacter-
oidetes abundance and increased levels of Proteobacteria and
Actinobacteria species'’’. Additionally, host-derived periph-
eral blood monocytes from the lungs of corticosteroid-resistant
patients had inhibited corticosteroid response when co-cultured
with an isolate of Haemophilus parainfluenzae, a potential
pathogen associated with asthma'?'.

The vagina and urinary tract

The urogenital microbiome influences female health in a vari-
ety of ways. It is also responsible for seeding the microbiome
of infants passing through the birth canal in the case of vagi-
nal delivery. The establishment of this microbiome can have
lifelong influences on the health of the infant**!%-14!,

Substantial effort has been put towards characterisation of
vaginal microbial components and associated metabolic
function (Figure 1D). The healthy vaginal microbiome is
characterised as maintaining low microbial diversity, and
Lactobacillus species typically dominate’*'**. Disruptions to the
healthy vaginal microbiome’s stable low complexity are linked to
severity of cervical intra-epithelial neoplasia and bacterial vagi-
nosis (BV), and the latter is also associated with an increased
susceptibility to acquiring sexually transmitted infection, pelvic
inflammatory disease, and preterm birth”*'*-4¢,

Lactobacillus dominance of the vaginal microbiome appears
to be specific to humans and contrasts greatly with levels
found in other animals (>70% and ~1%, respectively)'®. Sev-
eral theories have been proposed for the Lactobacillus-centric
human vaginal microbiome, including a suggestion of a con-
served common function of vaginal microorganisms that in
humans happens to be fulfilled by Lactobacillus species, and
that these species are also adapted to the starch rich diets that
are typical of humans'”. Indeed, the diet hypothesis further sug-
gests that the high glycogen concentrations found within the
human vaginal tract reflect dietary carbohydrate catabolism
which is facilitated by abundant salivary amylase levels.

Irrespective of its evolutionary basis, the growth of lactoba-
cilli in the vaginal environment is supported by glycoprotein-
and mucin-rich genital fluid and high levels of glycogen and
o-amylase, and the latter increases the energy availability of
glycogen through its by-products'*~"°'. With Lactobacillus
proliferation, the oestrogen-mediated low pH of the vagina
is further acidified by microbial-derived lactic acid, which is
metabolised from glycogen through anaerobic glycolysis'*>~'".
Low pH (~3.5) and high lactic acid concentrations contribute in
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conjunction with cervicovaginal fluid, a highly effective anti-
microbial and antiviral medium, to maintain a healthy vaginal
environment'*’. With BV, when the vaginal pH rises (>4.5)
and microbial composition shifts away from being Lactobacillus-
dominant to allow other taxa (such as Gardnerella) to prolifer-
ate, lactic acid levels drop and a more prominent SCFA profile
develops'”. Although SCFAs are generally associated with
health benefits, particularly in the gut, an undesirable pro-
inflammatory response appears to be induced by acetate and
butyrate within the vaginal tract™!07.!13.155.158159,

The vaginal microbiome appears to considerably influence
the efficacy of microbicide HIV prevention therapy”. Tenofo-
vir microbicide gel was 59.2% effective in HIV infection pre-
vention for Lactobacillus-dominant vaginal communities, but
in individuals with a microbiome containing greater propor-
tions of Gardnerella, the prevention rate was only 18%”. Con-
trolled doses of tenofovir administered to patients with either
Gardnerella- or Lactobacillus-oriented microbiomes showed
significantly lower concentrations of the drug in Gardnerella-
dominated vaginal communities; indeed, detected drug con-
centration negatively correlated with Gardnerella abundance®™.
In vitro analysis demonstrated that Gardnerella and other
BV-associated microbes efficiently metabolised the drug
through a cleavage of an oxy-methylphosphonic acid side chain
of the compound”.

The male urogenital tract microbiome has received less atten-
tion. However, emerging investigation of the subject suggests
health-relevant microbial activity within this system. Circum-
cision significantly modifies microbial composition of the
coronal sulci of the penis, decreasing the total microbial load,
including anaerobic taxa putatively associated with BV'®%!¢!,
Reduced HIV infection rates have independently been asso-
ciated with circumcision, but the underlying factors of this

162

protective effect are unknown'*.

The gut

Of the microbial communities delineated by human physiol-
ogy, those associated with the GI system have been investigated
with the greatest intensity (Figure 1E)'>?17:2,

Microbes travel, generally in a uni-directional manner, through
the GI tract within ingested material, and the associated com-
munities follow a gradient of community complexity that
peaks in the colon'®'%. Once established, the gut microbi-
ome is subject to influence from a limited number of known
factors. Perhaps the factor that most profoundly affects this com-
munity is host diet, supplying both microbes and nutrients to
influence the microbiome’s function and composition®/*!>166:167,
Plant-based complex carbohydrates, which intestinal micro-
biota process with enzymes that are absent from the human
host, are one such important dietary factor'™'*"'**. Through
metabolism of these polysaccharides, microbial fermentation
yields SCFAs, compounds with a broad range of purportedly
profound effects on the host'*'"'%%,

host-derived metabo-
167,169-1 72. Examples

In addition to dietary constituents,
lites can be used by the gut microbiome
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highlighting this host-microbe interaction include bile acids
(BAs), which, once acted upon by bacteria, can trigger complex
host-microbe signalling cascades, and intestinal mucins, com-
pounds used by mucin specialists (for example, Akkermansia
muciniphila), providing protective properties to the host'¢”!*-173,
It is worth noting that, in addition to drugs explicitly affect-
ing microorganisms (that is, antibiotics), the interaction between
other medications and microorganisms can be key, affecting
microbe composition and function as well as the pharmacoki-
netics of the drugs'’"'"*'”7. Indeed, an in vitro screen of more
than 1000 pharmaceutical compounds to assess their activ-
ity against core representative strains of gut bacteria demon-
strated that growth of at least one strain was inhibited by 24%
of compounds intended to target human cells'”’. Similarly,
the type 2 diabetes drug metformin was shown to alter both
the composition and function of the human intestinal micro-
biota, resulting in an enrichment of genes associated with
SCFA metabolism and faecal concentrations of propionate and
butyrate'’*. However, the specifics of microbial metabolic
interactions with metformin have yet to be elucidated.

It should also be noted that drugs of intoxication (for exam-
ple, alcohol and cannabis) are indicated to interact with the
microbiome, although studies in this field are somewhat
rare and often limited to non-human animal models™'7*'%
An exception to the pattern, whereby the gut microbiome
of chronic cannabis users was investigated'®!, revealed that,
in comparison with controls, chronic cannabis users had a
13-fold reduction in the ratio of Prevotella to Bacteroides.
Lower Prevotella abundance was further associated with poor
cognition test performance and reduced mitochondrial ATP
production'®'.

Host behaviour, and more specifically physical exercise and fit-
ness, are also recognised as potential modulators of microbial
composition and function®~"". Tllustrating the potential influ-
ence of extremes of exercise, professional athletes have been
shown to harbour a gut microbiome that exhibits a high compo-
sitional diversity of microbial taxa and contains a gene profile
with robust potential for environmental energy capture® . More
specifically, the gut microbiome of a cohort of professional rugby
players, in comparison with age-matched controls with simi-
lar body mass index to represent the range of body composi-
tion in the athletes, contained greater proportions of metabolic
pathways associated with potential health benefits. These path-
ways ranged from those associated with organic cofactor and
antibiotic biosynthesis to degradation and biosynthesis of car-
bohydrates. Such biosynthetic pathways could result in an
increased capacity for energy utilisation by the microbiome®.
Metabolomic  profiling of the athlete gut microbiome
revealed elevated levels of SCFAs, which (as noted above)
are metabolites with wide health-associated  attributes
(detailed further below) and are associated with a lean body
composition'®’. The faecal metabolome of these athletes also
exhibited elevated levels of trimethylamine-N-oxide (TMAO),
a compound that has been associated with cardiovascular dis-
ease and atherosclerosis, although these negative associa-
tions have been disputed because of the occurrence of high
levels of TMAO in populations with a low occurrence of

Page 7 of 16



cardiovascular disease'*’, and thus the significance of these find-
ings with respect to athletes has yet to be determined. From another
study (in this instance, of the microbiome of high-performance
cyclists), it was shown that the genus Prevotella was significantly
associated with reported time of exercising®. The study further
revealed higher transcriptional activity of Methanobrevibacter
smithii genes, particularly those related to methanogenesis, in
professional cyclists when compared with amateurs. Investi-
gation of amateur half-marathon runners demonstrated that,
through the course of high-intensity running, significant changes
occurred in certain taxa (for example, Coriobacteriaceae) and
metabolites within the gut environment’’. Intriguingly, the intro-
duction of exercise as a novel stimulus appears to elicit more
subtle changes in the gut microbiome. After undergoing a
short period (8 weeks) of moderate-intensity exercise, healthy
but inactive adults were shown to exhibit only minor changes in
the composition of their gut microbiome®”. A separate analy-
sis of a combination of lean and obese individuals undergo-
ing a period of structured exercise conversely asserted that
concentrations of faecal SCFAs increased in lean participants
following exercise while an obesity-dependent shift in micro-
bial diversity was present after exercise and dissipated after a
washout period'®. In sum, it is apparent that there remains much
to be done to completely understand the mechanisms underlying
the interaction of exercise and the gut microbiome.

Gut microbiome analysis is carried out predominantly on the
terminal end of the GI tract because of the relative ease with
which samples can be non-invasively acquired as stool. These
samples provide insight into the intestinal microbiome as
excreted samples retain microbial cells and metabolites from
the lumen and mucosa, although it is important to note that
stool does not provide an exact recapitulation of the intestine’s
various subsites'¢*104140,

Systemic implication of the gut microbiome in health
and disease

The GI system acts as the primary site for the uptake and meta-
bolic processing of nutrients. The gut accordingly contrib-
utes substantially to health regulation. As extensive evidence
now indicates, intestinal microbes have similar significance in
health maintenance and modulation of various disease states via
interaction with the host’s biology and intestinal environment.
Microbial contributions to this health dynamic are mediated
by numerous metabolic modalities. The most prominent such
metabolic circuit is between the microbiome and ingested nutri-
ents, whereby microbes use dietary nutrients to proliferate
and produce metabolites, such as SCFAs, that are involved in
cross-talk with the host (Figure 2)#772166.167. 187,188

Short-chain fatty acids

SCFAs act locally within the intestinal system but also impact
on hepatic, neurological and immunological function!®>%!85-192,
As previously noted, microbial SCFA generation results pri-
marily from polysaccharide utilisation, although it has also
been demonstrated that some gut microbes have the capacity to
produce butyrate from the metabolism of protein'®*'%*-'%.
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Upon excretion from microbial cells, SCFAs entering the intes-
tinal environment are used by colonocytes as an energy source
or pass into broader circulation via the portal vein'*'*. Act-
ing locally on colonocytes, butyrate is incorporated into lumi-
nal cells through diffusion or direct transport mediated by the
Na*-coupled transporter SLC5A8'*'°. Butyrate within colono-
cytes contributes to energy production through conversion to
acetyl-CoA or alternatively inhibits histone deacetylase (HDAC)
activity ™17, HDAC inhibition occurs within colorec-
tal cancer cells, wherein glucose is preferentially used as an
energy source, leading to butyrate accumulation and the subse-
quent action upon HDAC which results in a cascade of effects
on cell proliferation, differentiation and apoptosis'**'?*!".

Propionate enters systemic circulation through the portal vein,
where it is metabolised primarily in the liver while acetate is
more broadly circulated, for example, crossing the blood—brain
barrier, where it may influence satiety through action on the
hypothalamus'®. On the basis of murine studies, gut-derived
acetate and propionate have separately been suggested to
influence asthma®*!**!*”, While regulatory T—cell activity is
enhanced by acetate-mediated inhibition of histone deacetylase
9 (HDACY), resulting in suppression of environmental allergen
hypersensitivity, propionate affects lung dendritic cells, damp-
ening promotion of T helper type 2 cell-driven inflammation
while leaving the cells’ phagocytic ability intact®!15%175-200,

Bile acids

BAs have been shown to be at the centre of a metabolic inter-
play between the host and microbes’>!¢%!70:174.176201=203 " Following
post-meal metabolic cues, bile released from the canalicular
membrane of hepatocytes enters the intestinal system. Primary
BAs, cholic acid and chenodeoxycholic acid are converted
from cholesterol and conjugated with taurine or glycine and,
within the context of host physiology, are used as detergents
to allow intestinal absorption of dietary lipids and fat-soluble
vitamins™’'”**?**. Microbial bile salt hydrolases (BSHs) facili-
tate the hydrolysis of conjugated BAs (CBAs), converting the
compounds back to BAs, which permits small intestine reab-
sorption or additional metabolic processing”*”*. Unconjugated
and glycine-CBA absorption by passive diffusion and active
transport creates a circulating pool of BAs, establishing con-
tinuous bioavailability of the compounds’”2". As detergents,
BAs have the capacity to disrupt the lipid membrane of bacte-
rial cells, subsequently exerting considerable influence on the
microbiome. Microbes accordingly employ myriad strategies
to circumvent the antimicrobial action of BAs, such as outer
membrane lipid and protein modifications””**. In conjunction
with BA resistance, microbial alterations to BAs, affecting the
hydrophobicity of the compounds, also enable some microbes
to evade lipid membrane degradation while creating an inhos-
pitable environment for competing organisms®***. Microbial
BSH-driven hydrolysis of CBAs to unconjugated primary BAs
enables subsequent conversion to secondary BAs deoxycholic
acid (DCA) and lithocholic acid’***. DCA, in particular, accu-
mulates in the enterohepatic BA pool. Relatively high concen-
trations of DCA result from intestinal diffusion and hepatic
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Effectors of the gut microbiome Microbiota Dietary Microbial
. . . Cells Constituents Metabolites
Dietary macronutrients (e.g. protein)
Pharmaceuticals (e.g. Metformin)
Oral microbial products (e.g, NO) ‘
L
Prevotella spp. Polysaccharide Acetate

~

E prausnitzii

Butyrate

)

W

7

o

Host Metabolites

Lactate Mucin Blood
(Peripheral circulation)

Figure 2. Host—-microbe metabolic interaction. A simplified demonstration of the metabolic interactions between host and microbiome. The
cross-section of the small intestine illustrates the metabolic exchange between the intestine and two taxonomic representatives (Prevotella
spp. and Faecalibacterium prausnitzii). Polysaccharides act as an example of dietary substrate used by the microbiota for the production
of short-chain fatty acid (butyrate and acetate). Similarly, host-derived substrate in the form of lactate presented with excretion of mucin
from the intestine can be used by the microbiota. Within the example, acetate can be either absorbed by the intestine and subsequently the
bloodstream where systematic influences take place or converted to butyrate, exerting a localised effect on intestinal epithelial cells. NO,
nitric oxide.

reuptake that is facilitated by the compound’s hydrophobicity Indeed, the negative consequences of dietary insult have

and the human liver’s inability to rehydroxylate DCA*". been shown to be ameliorated through intervention with BA-

binding resins®’. Roux-en-Y gastric bypass surgery has
Notably, the fat- and protein-enriched ‘Western’ diet that contrib- ~ intriguingly been shown to also have an effect on BAs, and
utes to obesity development modifies not only gut microbiome  serum concentrations are raised in individuals who have under-
composition but also microbial BA pool contributions’'?202205206 gone the procedure when compared with obese and severely
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obese controls, suggesting that anatomical manipulation of the
procedure modifies the dynamics of the BA pool*’**”,

Among the numerous detrimental effects of obesity, evidence
supports a role for microbial-derived DCA as a potent tumour
promoter, contributing to the development of hepatocellular
carcinoma and the colorectal cancer precursor colorectal
adenomas’*">?1212 Although the associated mechanisms
involved have not been studied in the human gut, DCA-driven
hepatocellular carcinoma in mice is suggested to result from the
compound’s provocation of the senescence-associated secre-
tory phenotype (SASP) in hepatic stellate cells’’'. SASP is
characterised by broad alterations in gene expression and
secretory profile, which affect neighbouring cells through
numerous factors, namely the release of cytokines (for exam-
ple, interleukin-1o. and -1B), insulin-like growth factor-binding
proteins, NO and reactive oxygen species and potentially the
glycoprotein fibronectin®''?'*. The influence of DCA on color-
ectal tumorigenesis is proposed to mediate derangement of
epidermal growth factor receptor—mitogen-activated protein
kinase (EGFR-MAPK) regulation, specifically with DCA pre-
venting degradation of EGFR through calcium signalling of
MAPK”"’. There is still much to be elucidated with respect to
the interactions between gut microbes, BAs and health. Further-
more, SCFAs and BAs represent only a small component of the
numerous bioactive compounds within the gut environment
and thus considerable additional investigation in this area is
needed.
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Conclusions and Outlook

Examination of microbiome-host interaction has revealed the
integral role of microbiota in health and disease. Extensive char-
acterisation of the microbiome’s taxonomic structure and asso-
ciations between states of microbial composition and aspects
of health have established the groundwork for recognition
of the microbiome as a component of human biology. How-
ever, the challenge now lies in elucidating the mechanisms
underlying the associations between our microbes and health.
Metabolic phenotyping and identification of the microbial
metabolites interacting with the host will be pivotal to this chal-
lenge. With such knowledge, progress can be made in the
development of defined microbial cultures (for example, probi-
otics) and substrates conducive to selective growth or function
of microbes (for example, prebiotics) for health enhancement.
In short, there is need and opportunity for the innovative
deployment of metabolic phenotyping of the human micro-
biome to develop a new generation of interventions to
improve health.
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