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Abstract

The specific concentrations of tiamulin and valnemulin in non-target feed for food-producing animals,
below which there would not be an effect on the emergence of, and/or selection for, resistance in
bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in
feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in
collaboration with EMA. Details of the methodology used for this assessment, associated data gaps
and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed
Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the
assessment was applied. However, due to the lack of data on the parameters required to calculate the
FARSC, it was not possible to conclude the assessment until further experimental data become
available. To address growth promotion, data from scientific publications obtained from an extensive
literature review were used. Levels in feed that showed to have an effect on growth promotion/
increased yield were reported for tiamulin, while for valnemulin no suitable data for the assessment
were available. It was recommended to carry out studies to generate the data that are required to fill
the gaps which prevented the calculation of the FARSC for these two antimicrobials.
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1. Introduction

The European Commission requested the European Food Safety Authority (EFSA) to assess, in
collaboration with the European Medicines Agency (EMA), (i) the specific concentrations of
antimicrobials resulting from cross-contamination in non-target feed for food-producing animals, below
which there would not be an effect on the emergence of, and/or selection for, resistance in microbial
agents relevant for human and animal health (term of reference 1, ToR1), and (ii) the levels of the
antimicrobials which have a growth promotion/increase yield effect (ToR2). The assessment was
requested to be conducted for 24 antimicrobial active substances specified in the mandate.1

For the different substances (grouped by class if applicable)1, separate scientific opinions included
within the ‘Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target
feed’ series (Scientific Opinions Part 2 - Part 13, EFSA BIOHAZ Panel, 2021b-l – see also the Virtual
Issue; for practical reasons, they will be referred as ‘Scientific Opinion Part X’ throughout the current
document) were drafted. They present the results of the assessments performed to answer the
following questions: Assessment Question 1 (AQ1), which are the specific antimicrobial concentrations
in non-target feed below which there would not be emergence of, and/or selection for, resistance in
the large intestines/rumen, and AQ2: which are the specific antimicrobial concentrations in feed of
food-producing animals that have an effect in terms of growth promotion/increased yield. The
assessments were performed following the methodology described in Section 2 of the Scientific
Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (EFSA BIOHAZ Panel, 2021a, see
also the Virtual Issue). The present document reports the results of the assessment for the
pleuromutilins: tiamulin and valnemulin.

1.1. Background and Terms of Reference as provided by the requestor

The background and ToRs provided by the European Commission for the present document are
reported in Section 1.1 of the Scientific Opinion “Part 1: Methodology, general data gaps and
uncertainties” (see also the Virtual Issue).

1.2. Interpretation of the Terms of Reference

The interpretation of the ToRs, to be followed for the assessment is in Section 1.2 of the Scientific
Opinion “Part 1: Methodology, general data gaps and uncertainties” (see also the Virtual Issue)

1.3. Additional information

1.3.1. Short description of the class/substance

Pleuromutilin is a natural antimicrobial substance produced by the fungus Clitophilus scyphoides.
Pleuromutilins are diterpene antimicrobial agents that comprise a tricyclic structure with a five-, six-
and eight-membered ring and eight stable chiral centres, as well as a glycolic ester moiety forming the
side chain also regarded as an extension at position C14 (Schwarz et al., 2016; Paukner and Riedl,
2017). Tiamulin has a chemical structure similar to that of valnemulin (EMEA/CVMP, 1998; EMA/CVMP,
2017). These are semi-synthetic derivatives of pleuromutilin used exclusively in veterinary medicine.
Tiamulin was approved for use in veterinary medicine in 1979, followed by valnemulin in 1999.
Retapamulin was the only pleuromutilin approved for topical use for humans since 2007 (Novak,
2011). However, in 2019, the U.S. Food and Drug Administration approved lefamulin, a newly
developed pleuromutilin, to treat adults with community-acquired bacterial pneumonia due to its
activity against Staphylococcus aureus, Streptococcus pneumoniae and atypical bacteria (Andrei et al.,
2019; WHO, 2021; Zhanel et al., 2021).

Pleuromutilins are antibacterial agents that inhibit protein synthesis and act by binding to the
bacterial 50S ribosome at the peptidyl transferase centre and interfere with peptide bond formation
(van Duijkeren et al., 2014; Schwarz et al., 2016). They are active against Gram-positive bacteria such
as streptococci and staphylococci, anaerobic bacteria and mycoplasma (Gigu�ere et al., 2013).

1 Aminoglycosides: apramycin, paromomycin, neomycin, spectinomycin; Amprolium; Beta-lactams: amoxicillin, penicillin V;
Amphenicols: florfenicol, thiamphenicol; Lincosamides: lincomycin; Macrolides: tilmicosin, tylosin, tylvalosin; Pleuromutilins:
tiamulin, valnemulin; Sulfonamides; Polymyxins: colistin; Quinolones: flumequine, oxolinic acid; Tetracyclines: tetracycline,
chlortetracycline, oxytetracycline, doxycycline; Diaminopyrimidines: trimethoprim.
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The spectrum of activity is similar, however valnemulin has greater activity (lower MIC) than
tiamulin (EMEA/CVMP, 1998; EMA/CVMP, 2017; Pringle et al., 2012; Paukner and Riedl, 2017). Also due
to the different pharmacokinetics (see Section 1.3.3) they will be assessed separately.

1.3.2. Main use2

Tiamulin and valnemulin have been used for decades in veterinary medicine for the control of
respiratory and intestinal infections in different animal species, especially in pigs and to a lesser extent
in poultry and rabbits. Tiamulin is available as an oral solution, a powder for medication in drinking
water, medicated feed premixes and as an injectable formulation for pigs and valnemulin is available as
oral powder and premixes for feed (van Duijkeren et al., 2014).

Tiamulin is authorised and available in most European Union (EU) member states. Tiamulin is
indicated in pigs notably for the treatment and metaphylaxis of swine dysentery (Brachyspira
hyodysenteriae), treatment of colitis due to Brachyspira pilosicoli, treatment of ileitis (Lawsonia
intracellularis) and treatment of enzootic pneumonia (Mycoplasma hyopneumoniae). In chickens,
veterinary medicinal products containing tiamulin are currently approved for the treatment and
prevention of chronic respiratory disease caused by Mycoplasma gallisepticum and Mycoplasma
synoviae; for turkeys for the treatment and prevention of infectious sinusitis and air-sacculitis caused
by M. gallisepticum, M. meleagridis and M. synoviae; and for rabbits for the reduction of mortality due
to epizootic rabbit enteropathy when associated with infections by Clostridium perfringens susceptible
to tiamulin (van Duijkeren et al., 2014; EMA/CVMP, 2014).

Valnemulin is authorised centrally as a premix for medicated feeding stuff in pigs for the treatment
and prevention of swine dysentery, the treatment of clinical signs of porcine proliferative enteropathy
(ileitis), the prevention of clinical signs of porcine colonic spirochaetosis (colitis) and for the treatment
and prevention of swine enzootic pneumonia. In rabbits, valnemulin is indicated for the reduction of
mortality during an outbreak of epizootic rabbit enteropathy (EMA/CVMP, 2006).

1.3.3. Main pharmacokinetic data

Tiamulin

The absolute bioavailability of tiamulin after oral administration cannot be determined due to very
high toxicity after intravenous administration.

Tiamulin undergoes extensive metabolism in the liver and is excreted in the bile, the remainder is
excreted via the kidney. In laying hens, broilers and turkeys, over 15 metabolites were detected in
tissue extracts after oral administrations but most of the residue was accounted for by 4 metabolites
(EMA/CVMP, 2017).

In pigs following oral administration of radiolabelled tiamulin, approximately 35% of the dose were
eliminated in urine and 65% in faeces and over 15 metabolites were detected in the liver, but no
individual metabolite accounted for more than 5% of the total residues. The 6-desmethyltiamulin
accounted less than 1% of the total residue in bile and urine samples and had 67% of the antibacterial
activity of tiamulin. Other metabolites had an activity relative to tiamulin lower than 3.3% (EMA/CVMP,
2017).

Valnemulin

The bioavailability of valnemulin is reported to be 74.4% in fasted broiler chickens (Wang et al.,
2011). A short communication reported a bioavailability of 52.6% in broilers with no information on
the fed or fasted status (Sun et al., 2017). In pigs, a study suggested a bioavailability of 59% but the
confidence on this value is low due to the fact that the animals receiving treatment by oral and
intravenous routes were not comparable (Yuan et al., 2015).

Valnemulin is excreted rapidly mainly via the bile and faeces. After oral administration to pigs, 11
metabolites were found in bile representing around 60% of the residues. Only 2 of these metabolites
(representing 4.4% of the identified metabolites) retained an antimicrobial activity of approximately
70% that of valnemulin (EMEA/CVMP, 1998).

2 Antimicrobials are currently used in food-producing animal production for treatment, prevention and/or metaphylaxis of a
large number of infections, and also for growth promotion in non-EU countries. In the EU, in future, use of antimicrobials for
prophylaxis or for metaphylaxis is to be restricted as addressed by Regulation (EU) 2019/6 and use in medicated feed for
prophylaxis is to be prohibited under Regulation (EU) 2019/4.
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1.3.4. Main resistance mechanisms

Resistance to pleuromutilins, including tiamulin and valnemulin, derives from chromosomal
mutations in the 23S rRNA and rplC genes. These chromosomal mutations emerge slowly and in a
stepwise fashion and are not yet identified to be transferred horizontally. For instances, tiamulin
resistance in B. hyodysenteriae has been demonstrated to develop in a stepwise manner both in vitro
and in vivo. These observations suggest that several mutations are needed to achieve high levels of
resistance (Karlsson et al., 2001; Paukner and Riedl, 2017). In most cases, the MICs of valnemulin
follow those of tiamulin but with a few dilution steps lower (EMEA/CVMP, 1998; EMA/CVMP, 2017;
Pringle et al., 2012; Paukner and Riedl, 2017).

Data on resistance mechanisms to pleuromutilins in mycoplasma are scarce but it has been shown
that a single mutation of the 23S rRNA gene increases tiamulin and valnemulin MICs. A combination of
two or three mutations is needed to confer high levels of resistance (Gautier-Bouchardon, 2018;
Bokma et al., 2020). Usually, the mutants are cross-resistant to lincomycin, chloramphenicol and
florfenicol and some mutants also to erythromycin, tilmicosin and tylosin (Li et al., 2010).

Transferable resistance genes conferring resistance to pleuromutilins have been identified and
located on plasmids or transposons like the vga genes and the cfr gene. However, the mechanism of
antimicrobial resistance varies in different bacterial species (Feßler et al., 2018).

The vga(A) gene codes for an ABC-F protein that mediates resistance by protecting the ribosome
against lincosamides, pleuromutilins and streptogramin A antibiotics. vga genes has been reported in
meticillin-resistant S. aureus (MRSA) notably in a specific livestock-associated MRSA clone ST398 that
has emerged worldwide, especially in swine but has also been identified in MRSA ST398 isolates from
broilers (van Duijkeren et al., 2014).

The gene cfr was the first gene that conferred combined resistance to phenicols, lincosamides,
oxazolidinones, pleuromutilins and streptogramin A antimicrobial agents (Long et al., 2006; Vester,
2018). The cfr gene has been detected in several bacterial species including staphylococci, enterococci
and Escherichia coli from food animals (Schwarz et al., 2000; Witte and Cuny, 2011; Liu et al., 2013;
Zhang et al., 2014). This gene is of global concern as it is often located on plasmids and can be
spread between bacterial species and genera (Shen et al., 2013).

Also, the enterococcal ABC transporter gene lsa(E), that confers resistance to pleuromutilins,
lincosamides and streptograminA, has also been detected in meticillin-susceptible Staphylococcus
aureus (MSSA) and MRSA, suggesting exchange of this gene between Enterococcus spp. and S. aureus
(Li et al., 2014).

2. Data and methodologies

The data sources and methodology used for this opinion are described in a dedicated document,
the Scientific Opinion the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’
(see also the Virtual Issue).

3. Assessment

3.1. Introduction

As indicated in the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’
(see also the Virtual Issue), exposure to low concentrations of antimicrobials (including sub-minimum
inhibitory concentrations, sub-MIC) may have different effects on bacterial antimicrobial resistance
evolution, properties of bacteria and in animal growth promotion. Some examples including emergence
of, and selection for, antimicrobial resistance, mutagenesis, virulence and/or horizontal gene transfer
(HGT), etc. for the antimicrobials under assessment are shown below.

3.1.1. Resistance development/spread due to sub-MIC concentrations of
pleuromutilins including tiamulin and valnemulin: examples

3.1.1.1. Effects of sub-MIC concentrations on selection for resistance and mutagenesis

• Few studies were identified on effects of sub-MIC levels of pleuromutilins on selection of
resistance. Generally, pleuromutilins have shown a low potential for resistance development
in vitro as identified for tiamulin and valnemulin in Brachyspira spp., Mycoplasma spp.,
S. aureus and E. coli. It has been demonstrated that spontaneous mutation frequencies are
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low (< 109) and resistance developed slowly in a stepwise manner with multiple mutations
required to cause high-level resistance. Mutations in 23S rRNA, rplC, and rplD genes encoding
the large ribosomal proteins L3 and L4, have been identified as the primary resistance
mechanism in vitro (Paukner and Riedl, 2017).

• In vitro development of tiamulin resistance was investigated in two B. pilosicoli and two B.
hyodysenteriae strains. The four strains became resistant to tiamulin after several passages on
agar containing tiamulin in increasing concentrations. The resistance emerged slowly. Three of
the strains that went through more than 60 passages increased their MIC for tiamulin from
0.031 to 0.25 to more than 128 lg/mL. The tiamulin MIC for one B. hyodysenteriae strain that
went through 29 passages increased from 0.0125 to 4 lg/mL. One B. pilosicoli strain developed
cross-resistance to valnemulin; with a MIC increase from 0.25 to more than 64 lg/mL. The
valnemulin MIC for one B. hyodysenteriae strain increased from 0.031 to 32 lg/mL. Valnemulin
MIC was not determined for the B. hyodysenteriae strain that only went through 29 passages.
For the second B. pilosicoli strain, the valnemulin MIC increased from 0.031 to 4 lg/mL (Karlsson
et al., 2001).

• Sulyok et al. (2017) performed in vitro studies on selection of antimicrobial-resistant mutants
on the three different strains of M. bovis with low MIC. The methodology for the selection of
resistance was carried out by serial passages in broth medium containing sub-inhibitory
concentrations (increasing in twofold dilutions from 0.039 to 10 lg/mL). The culture containing
the highest antimicrobial concentration with detectable growth was used to inoculate another
antimicrobial dilution panel for the following passage series. Significant increase in MICs of the
tested strains were identified for tiamulin (from 0.078 and 0.156 to 0.625 and 10 lg/mL) and
for valnemulin (from < 0.039 and 0.039 to 10 lg/mL). Passages were performed until MIC
values reached > 64 lg/mL for pleuromutilins. Resistant mutants where then passaged on
free-medium in order to determine if the resistant phenotype was stable without selection
pressure. Tiamulin- and valnemulin-resistant mutant strains were successfully obtained after
passages 2–3 and passages 3–14, respectively. All tiamulin-resistant mutant strains showed
cross-resistance to florfenicol (MIC 32 lg/mL) and elevated lincomycin MICs (4–16 lg/mL).
One tiamulin-resistant strain became resistant to all the tested 50S inhibitors except tylosin.
The development of valnemulin resistance strongly differed among the strains: one strain
became resistant after only 3 passages, whereas the two other strains tested needed 10 and
14 passages. It appears that after five passages on antimicrobial-free medium, the valnemulin
MIC value (0.078 lg/mL) for the mutant strain decreased. Tiamulin-resistant mutant strains
evolved rapidly also (in two to five steps) and the number of mutations was correlated with
the number of passages needed for the evolution of resistance.

3.1.1.2. Effects of sub-MIC concentrations on horizontal gene transfer and virulence

• No relevant studies were identified.

3.2. ToR1. Estimation of the antimicrobial levels in non-target feed that
would not result in the selection of resistance: Feed Antimicrobial
Resistance Selection Concentration (FARSC)

As explained in the Methodology Section (2.2.1.3) of the Scientific Opinion ‘Part 1: Methodology,
general data gaps and uncertainties’ (see also the Virtual Issue), the estimation of this value for these
two pleuromutilins for different animal species, if suitable data were available, would follow a two-step
approach as described below:

The first step would be the calculation of the predicted minimal selective concentration (PMSC) for
valnemulin and tiamulin as indicated in Table 1. However, no MSC data required to do the calculations
is available for those substances.

AMR GP Feed Residues

www.efsa.europa.eu/efsajournal 7 EFSA Journal 2021;19(10):6860

https://doi.org/10.2903/j.efsa.2021.6852
https://doi.org/10.2903/j.efsa.2021.6852
https://efsa.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1831-4732.cross-contamination


Due to the lack of PMSC, no FARSC could be calculated. If PMSC was available, the FARSC (FARSCintestine

and FARSCrumen) corresponding to the maximal concentrations in feed would be calculated for each species
from the equations below (for details, see Section 2.2.1.3.2 of the Scientific Opinion Part 1 (see also the
Virtual Issue)), by including specific values for the pleuromutilins under assessment.

FARSCintestine ðmg=kg feedÞ ¼ PMSC� daily faeces
ð1� IÞ � ð1� F þ F � GE � daily feed intakeÞ

FARSC ðmg=kg feedÞ ¼ PMSC� volume of rumen
ð1� IÞ � daily feed intake

With daily faeces being the daily fresh faecal output in kg, I the inactive fraction, F the fraction
available, GE is the fraction of the antimicrobial that is secreted back into the intestinal tract for
elimination, after initially being absorbed into the bloodstream, and daily feed intake being the daily
dry-matter feed intake expressed in kg.

Tiamulin

No data are available for bioavailability of tiamulin.
It was demonstrated that in pigs following oral administration of radiolabelled tiamulin, 65% of the

radioactivity was found in faeces. This radioactivity was mainly associated to metabolites described as
inactive but without any available quantitative data.

No data are available for other species.
Due to the absence of MSC and other PK data, the estimation of the FARSC for tiamulin was not possible.

Valnemulin

The bioavailability of valnemulin is 74.4% in broilers. The data for other species are lacking or is
uncertain. No data are available on the fate of valnemulin after absorption and especially on the
metabolism or on excretion in intestines after absorption (Table 2).

In pigs, valnemulin was described to be extensively metabolised after oral administration. By
considering that 4.4% of the metabolites have an antimicrobial activity of approximately 70% that of
valnemulin, the percentage of the dose available for intestinal microorganisms would be around 3%
(4.4 multiplied by 0.7). Thus, the value for (1 � F + F 9 GE) was set at 0.03 for pigs (Table 3).

No data are available for other species.

Table 1: Calculation of the valnemulin and tiamulin predicted minimal selective concentration
(PMSC)

Antimicrobial (all
values in mg/L)

MICtest MSCtest
MICtest/

MSCtest ratio
MIClowest

Predicted MSC (PMSC) for
most susceptible species

(MIClowest/MICtest/MSCtest)

Valnemulin NA NA NA NA NA

Tiamulin NA NA NA 0.25 NA

MIC: minimum inhibitory concentration; MSC: minimal selective concentration; MSCtest: MSC experimentally determined;
MIClowest: lowest MIC data for tiamulin calculated based on data from the EUCAST database as described in Bengtsson-Palme
and Larsson (2016), see Methodology Section 2.2.1.3.1.1 in the Scientific Opinion Part 1. No data for valnemulin in the EUCAST
database (EUCAST database https://mic.eucast.org/search/ last accessed 15 May 2021); NA: not available.

Table 2: Pharmacokinetic (PK) values used for the calculation of Feed Antimicrobial Resistance
Selection Concentration (FARSC) of valnemulin for broilers

Valnemulin (broilers) Scenario #1

Inactive fraction (I) NA

Bioavailability (F) poultry 0.75

Gastrointestinal elimination (GE) NA

Inactive fraction (I) is the fraction of antimicrobial that would not have any activity on bacteria. Bioavailability (F) is the fraction
of antimicrobial that is absorbed from the digestive tract to the blood. GE is the fraction of the antimicrobial that is secreted back
into the intestinal tract for elimination, after initially being absorbed into the bloodstream. The fraction remaining in the digestive
tract and that could be available for the bacteria is equal to (1 � F + F 9 GE). NA: not available.

AMR GP Feed Residues

www.efsa.europa.eu/efsajournal 8 EFSA Journal 2021;19(10):6860

https://doi.org/10.2903/j.efsa.2021.6852
https://efsa.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1831-4732.cross-contamination
https://doi.org/10.2903/j.efsa.2021.6852
https://mic.eucast.org/search/


Due to the absence of MSC and other PK data, the estimation of the FARSC for valnemulin was not
possible.

3.2.1. Associated data gaps and uncertainties

With regard to the uncertainties and data gaps described in the Scientific Opinion Part 1
(Sections 3.1 and 3.3; see also the Virtual Issue), we identified the following for the pleuromutilins
under assessment:

i) MSC data: no data for MSCs are available.
ii) MIC data: MIC data only exist for few bacterial species for tiamulin and are not available for

valnemulin in EUCAST database (accessed on 15 May 2021).
iii) Bioavailability: for tiamulin, no data are available. For valnemulin, there is no value for fed

animals.
iv) Fraction eliminated in gut: several studies suggest an elimination of tiamulin and valnemulin

as inactive metabolites. However, there are no quantitative data to consider this process
except for valnemulin in pigs.

v) Inactive fraction: no data on the possible binding of tiamulin or valnemulin in digestive tract
are available.

vi) Ruminants: no data are available for tiamulin or valnemulin administered to ruminants.

3.2.2. Concluding remarks

Due to the lack of data on the parameters required to calculate the FARSC, it is not possible to
conclude the ToR1 assessment until further experimental data are available.

3.3. ToR2. Specific antimicrobials concentrations in feed which have an
effect in terms of growth promotion/increased yield

3.3.1. Tiamulin

3.3.1.1. Literature search results

The literature search, conducted according to the methodology described in Section 2.2.2.1 of the
Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (see also the Virtual
Issue), resulted in 273 papers mentioning tiamulin and any of the food-producing animal species
considered3 and any of the performance parameters identified as relevant for the assessment of the

Table 3: Pharmacokinetic (PK) values used for the calculation of Feed Antimicrobial Resistance
Selection Concentration (FARSC) of valnemulin for pigs

Valnemulin (pigs) Scenario #1

Inactive fraction (I) NA

Fraction of the dose available for intestinal microorganisms
corresponding to (1 � F + F 9 GE) in pigs

0.03

Inactive fraction (I) is the fraction of antimicrobial that would not have any activity on bacteria. Bioavailability (F) is the fraction
of antimicrobial that is absorbed from the digestive tract to the blood. GE is the fraction of the antimicrobial that is secreted back
into the intestinal tract for elimination, after initially being absorbed into the bloodstream. The fraction remaining in the digestive
tract and that could be available for the bacteria is equal to (1 � F + F 9 GE). NA: not available.

3 Ruminants: growing and dairy (cattle, sheep, goats, buffaloes); pigs: weaned, growing and reproductive; equines; rabbits;
poultry: chickens and turkeys for fattening, laying hens, turkeys for breeding, minor avian species (ducks, guinea fowl, geese,
quails, pheasants, ostrich); fish: salmon, trout, other farmed fish (seabass, seabream, carp); crustaceans; other animal
species.
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possible growth-promoting effects of tiamulin.4 After removing the reports not matching the eligibility
criteria, 69 publications were identified.

3.3.1.2. Evaluation of the studies

The 69 publications identified in the literature search were appraised for suitability for the
assessment of the effects of tiamulin on growth or yield of food-producing animals; this appraisal was
performed by checking each study against a series of pre-defined exclusion criteria (see
Section 2.2.2.2.1 of the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’;
see also the Virtual Issue).5 A total of 61 publications were not considered suitable for the assessment
because of several shortcomings identified in the design of the study or in the reporting of the results.
The list of excluded publications and their shortcomings are presented in Appendix A.1 (Table A.1).

The publications considered suitable for the assessment are described and assessed in
Section 3.3.1.3.

3.3.1.3. Assessment of the effects of tiamulin on growth performance and yield

Eight publications were considered suitable for the assessment of the effects of tiamulin on growth
and yield performance in food producing animals. The effects of the administration of the antimicrobial
on the endpoints described in Section 2.2.2.2.2 of the Scientific Opinion ‘Part 1: Methodology, general
data gaps and uncertainties’ (see also the Virtual Issue) were evaluated. The selected publications and
the effects on the relevant endpoints are described below. The summary of the studies includes the
description of the source of tiamulin used – either as the base or as any specific form/commercial
preparation – and the concentration(s) applied as reported in each study; where a specific compound
has been used, the calculation of the concentration applied to the base substance is provided.

3.3.1.3.1. Studies in pigs

In the study of Cai et al. (2018), a total of 100 finishing pigs (Duroc 9 (Landrace 9 Large White)),
with initial mean body weight of 51.1 kg were distributed in 25 pens in groups of 4 animals and
allocated to 5 dietary treatments (20 pigs/treatment). Two basal diets (from 1 to 35 days and from 36
to 70 days) were either not supplemented or supplemented with different treatments. Two were the
relevant treatments: a control and a treatment consisting of tiamulin (unspecified form) supplemented
at the concentration of 500 mg/kg feed. The study lasted 70 days. Body weight (BW) and feed intake
(FI) were recorded on days 0, 35 and 70 to calculate average daily weight gain, average daily feed
intake (ADFI) and gain to feed ratio (G:F). From day 64 to day 70, chromium oxide (0.2%) was added
to the diet to determine the apparent total tract digestibility (dry matter (DM), nitrogen (N) and gross
energy). On day 70, fresh faecal samples were collected from at least two pigs per pen to assess
digestibility coefficients and E. coli and Lactobacillus spp. colony counts. On days 35 and 70, samples
of blood were collected from 10 pigs per treatment. At the end of the trial, the pigs treated with
tiamulin showed, compared to the control group, higher average daily weight gain (881 vs. 805 g) and
improved G:F (0.366 vs. 0.326). An increase in relative count of lymphocytes (62.4% vs. 52.9%), a
decrease in faecal counts of E. coli (6.4 vs. 6.7 log10 CFU/g) and an increase of Lactobacillus spp. (7.0
vs. 6.4 log10 CFU/g) were seen in tiamulin-treated pigs compared to the control. Dietary tiamulin
supplementation at 500 mg/kg feed had a growth-promoting effect in pigs for fattening.

In the study of Cho and Kim (2015a), a total of 120 weaned piglets (Duroc 9 (Yorkshire 9

Landrace)) weaned at 21 days (7.95 kg BW) were distributed in 24 pens in groups of 5 animals and

4 (i) Intake-related parameters: feed intake, feed/gain ratio, feed efficiency, feed intake/milk yield, feed intake/egg mass; (ii)
Weight-related parameters: body weight, body weight gain; (iii) Carcass-related parameters: carcass weight, carcass yield,
carcass chemical composition, relative weight of the (different sections of) intestine; (iv) Milk or egg production/quality: milk
yield, fat/protein yield, egg production/laying rate, egg weight, egg mass; (v) Digestibility/utilisation of nutrients: utilisation of
some nutrients (e.g. DM, Ca, P), digestibility; (vi) Health-related parameters: reduction of morbidity and/or mortality; (vii)
Herd/flock related parameters; (viii) Other endpoints: e.g. intestinal morphological characteristics (villi height/width), changes
in microbiota.

5 The following exclusion criteria were applied: ‘Combination of substances administered to the animals’, ‘Antimicrobial used
different from the one under assessment’, ‘Administration via route different from oral’, ‘Use of the antimicrobial with a
therapeutic scope’, ‘Animals subjected to challenges with pathogens’, ‘Animals in the study sick or not in good health,
Zootechnical parameters not reported’, ‘Insufficient reporting/statistics’, ‘Other (indicate)’.
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allocated to 4 dietary treatments (30 pigs/treatment). Two basal diets (1–14 days, 15–42 days) were
either not supplemented or supplemented with different treatments. Two were the relevant
treatments: a control and a treatment consisting of tiamulin (unspecified form) supplemented at the
concentration of 500 mg/kg feed. The study lasted 42 days. BW and FI were recorded at 1, 15 and
42 days of trial and average daily weight gain and (F:G) calculated. Samples of blood were collected
from 10 pigs per treatment on days 14 and 42. On days 8–14 and 36–42, chromium oxide (0.2%) was
added to the diet to determine the apparent total tract digestibility (DM, N and gross energy). On days
12–14 and 40–42, fresh faecal samples were collected from two pigs per pen to determine digestibility
coefficients and E. coli and Lactobacillus spp. counts. At the end of the trial, the piglets treated with
tiamulin showed, compared to the control group, higher average daily weight gain (516 vs. 488 g),
ADFI (882 vs. 839 g) and higher nitrogen faecal apparent digestibility (85.4% vs. 81.8%). Dietary
tiamulin supplementation at 500 mg/kg feed had a growth-promoting effect in weaned piglets.

In the study of Cho and Kim (2015b) a total of 125 weaned piglets (Duroc 9 (Landrace 9

Yorkshire)), weaned at 21 days (6.76 kg BW) were distributed in 25 pens in groups of 5 animals and
allocated to 5 dietary treatments (25 pigs/treatment). Three basal diets (0–7 days, 8–21 days, 22–
42 days) were either not supplemented or supplemented with different treatments. Two were relevant
treatments: a control and a treatment consisting of tiamulin (unspecified form) supplemented at the
concentration of 39 mg/kg feed. The study lasted 42 days. Animal weight and FI were recorded at 1,
7, 14 and 42 days of the experiment and average daily gain and F:G calculated. Samples of blood
were collected from 10 pigs/treatment at the beginning and end of the experiment. On days 14–21
and 35–42 of the experiment, chromium oxide (0.2%) was added to the diet to determine the
apparent total tract digestibility (DM, N and gross energy). On days 7, 21 and 42 of trial, fresh faecal
samples were collected from two pigs in each pen to determine digestibility coefficients (days 21 and
42), faecal moisture and faecal pH (days 7, 21 and 42). At the end of the trial, the piglets treated with
tiamulin showed, compared to the control group, higher average daily weight gain (478 vs. 449 g) and
improved G:F (0.709 vs. 0.672). Apparent digestibility coefficients showed, at 42 days, compared to
the control group, a positive effect on DM (81.1% vs. 80.7%) and N (81.2% vs. 80.2%) digestibility.
Dietary tiamulin supplementation at 39 mg/kg feed had a growth-promoting effect in weaned piglets.

In the study of Cromwell and Stahly (1985), a total of 244 pigs were used in two experiments. In
the first trial, 100 pigs (Hampshire 9 Yorkshire; initial BW 15 kg) were distributed in 20 pens in groups
of 5 animals and allocated to 5 dietary treatments (20 pigs/treatment). In the second trial, 144 pigs
(Duroc 9 Yorkshire; initial BW 11 kg) were distributed in 24 pens in groups of 6 animals and allocated
to 6 dietary treatments (24 pigs/treatment). Basal diets (grower and finisher in trial 1; starter, grower
and finisher in trial 2) were either not supplemented or supplemented with different treatments. In
trial 1 (duration 65 days up to 58 kg BW), there were four relevant treatments: a control (0 mg
tiamulin/kg feed) and three treatments consisting of tiamulin (unspecified chemical form; Dynamutilin
provided by E.R Squibb & Sons, Inc., Princeton, NJ, USA) supplemented at 11, 22 or 44 mg/kg feed.
In trial 2 (duration 73 days up to 56 kg BW) there were five relevant treatments: a control (0 mg
tiamulin/kg feed) and four treatments consisting of tiamulin supplemented at 2.75, 5.50, 11 or 22 mg/
kg feed. In both trials, after tiamulin withdrawal (day 65 in trial 1 and day 73 in trial 2) animals
received a non-medicated basal diet until the end of experiment (95 kg live weight, corresponding to
day 112 in the first trial and to day 126 in the second one). Animal weight and FI were recorded to
calculate average daily weight gain and F:G. At the end of the administration in trial 1 (58 kg,
65 days), the addition of tiamulin resulted in a quadratic improvement of average daily weight gain
(590, 679, 679, 714 g at 0, 11, 22, 44 mg/kg feed, respectively) and in a linear effect for F:G (2.97,
2.97, 2.87, 2.84 at 0, 11, 22, 44 mg/kg feed, respectively). A cubic effect was noted for average daily
weight gain also after tiamulin withdrawal. At the end of the trial 2 (56 kg, 73 days), the addition of
tiamulin to the diet resulted in quadratic improvements in average daily weight gain (583, 604, 605,
641, 619 g at 0, 2.75, 5.50, 11, 22 mg/kg feed, respectively) and F:G (2.77, 2.76, 2.65, 2.65, 2.63 at
0, 2.75, 5.50, 11, 22 mg/kg feed, respectively). Owing to the lack of pair-wise statistical comparisons
between groups, it is not possible to derive the minimum concentration in which tiamulin may have an
effect in growth performance. However, the data showed dose-related effects of tiamulin suggesting
that a concentration of 11 mg tiamulin/kg feed would have an effect on improving daily weight gain
(trial 1), and a concentration of 5.5 mg tiamulin/kg feed would have an effect on improving F:G (trial
2) of pigs for fattening.

In the study of Lei et al. (2018), a total of 140 weaned piglets ((Yorkshire 9 Landrace) 9 Duroc))
with an average weight of 6.37 kg were distributed in 28 pens in groups of 5 animals (3 females and 2
males) and allocated to four dietary treatments (35 pigs/treatment). The basal diets were either not
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supplemented or supplemented with different treatments. Two were the relevant treatments: a control
and a treatment consisting of tiamulin (unspecified form) supplemented at the concentration of
39 mg/kg feed. The study lasted 42 days. The general health status was checked throughout the
study. Animal weight, FI and G:F were measured weekly. Total tract apparent digestibility (using
chromium oxide 0.2%) was assessed for DM, N and gross energy in 2 pigs/pen on days 7, 21 and 42;
in the same pigs, faecal score, moisture and pH were also assessed. Faecal lactic acid bacteria and
coliform bacteria counts were assessed in 2 pigs/pen on day 42. Blood samples were collected from 2
pigs/pen on days 1, 21 and 42; concentrations of red blood cells (RBC), white blood cells (WBC),
lymphocytes and IgG in serum were measured. At the end of the trial, and from day 22 onwards the
pigs treated with tiamulin showed, compared to the control group, an improvement of daily weight
gain (481 vs. 433 g), improved G:F (0.703 vs. 0.629) and on day 42 coliform bacteria counts in faeces
were reduced (6.05 vs. 6.32 log CFU/g). Dietary tiamulin supplementation at 39 mg/kg feed had a
growth-promoting effect in weaned piglets.

In the study of Nitikanchana et al. (2012) a total of 1,313 pigs for fattening (PIC 1050 9 337) with
an average BW of 22.2 kg, sex unspecified, were distributed in 40 pens in groups of 31–33 animals/
pen and allocated to four dietary treatments (approx. 320 pigs/treatment). The basal diet was either
not supplemented or supplemented with different treatments. Two were the relevant treatments: a
control and a treatment consisting of tiamulin (unspecified chemical form; Denagard, Novartis Animal
Health, Greensboro, NC, USA) supplemented at a concentration of 35 mg/kg feed. The study lasted
35 days and comprised two parts: from day 1 to day 15 the animals were fed with tiamulin-
supplemented diet; after then and until day 35 the animals were fed an unsupplemented-tiamulin diet.
The general health status was checked throughout the study. Average daily weight gain, animal
weight, ADFI and G:F were calculated separately for the supplemented period, unsupplemented period
and the total experimental period of 35 days. At the end of supplemented phase there was greater
average daily weight gain (0.676 vs. 0.648 kg) and improved F:G (1.56 vs. 1.82) in the tiamulin-
supplemented group, compared to control. At the end of unsupplemented phase of the treatment
group average weight gain was lower (0.871 vs. 0.921 kg) and F:G higher (2.19 vs. 2.05) in the
supplemented group in comparison with the control. Evaluation of overall study period did not show
any differences in growth performance. Dietary tiamulin supplementation at 35 mg/kg feed had a
growth-promoting effect in pigs for fattening.

In the study of Serpunja et al. (2018), a total of 120 weaned piglets ((Yorkshire 9 Landrace) 9 Duroc)
with an average weight of 8.4 kg, 21 days of age (sex unspecified) were distributed in 20 pens in groups of
6 animals and allocated to 4 dietary treatments (30 pigs/treatment). The basal diets were either not
supplemented or supplemented with different treatments. Two were the relevant treatments: a control and
a treatment consisting of tiamulin (unspecified chemical form; provided by Novartis AG, Basel, Switzerland)
supplemented at the concentration of 39 mg/kg feed. The study lasted 42 days. The general health status
was checked throughout the study. BW and weight gain, FI, and G:F were measured at days 21 and 42.
Total tract apparent digestibility (using chromium oxide 0.2%) was assessed for DM, N and gross energy in
2 pigs/pen on days 21 and 42. Faecal moisture and pH were assessed in 5 pigs/group (1/pen) on day 7, 21
and 42. Faecal counts of Lactobacillus spp., Salmonella spp. and E. coli were assessed in 2 pigs/pen on day
42. Blood samples were collected from 2 pigs/pen on day 7, 21 and 42, and concentrations of RBC, WBC
and lymphocytes were measured. At the end of the trial the pigs treated with tiamulin showed, compared
to the control group, an improvement of daily weight gain (385 g vs. 342 g), improved G:F (0.74 vs. 0.63),
higher digestibility of nitrogen (81.8% vs. 78.5%) and increased Lactobacillus counts (8.21 vs. 7.43 log10
CFU/g). Dietary tiamulin supplementation at 39 mg/kg feed had a growth-promoting effect in weaned
piglets.

3.3.1.3.2. Study in poultry

In the study of Cai et al. (2015), a total of 765 one-day-old chickens for fattening (Ross 308), with
an average BW of 49 g, were distributed in 45 pens in groups of 17 animals and allocated to five
dietary treatments (153 chicks/treatment). The basal diets (starter and grower) were either not
supplemented or supplemented with different treatments. Two were the relevant treatments: control
and a treatment consisting of tiamulin (unspecified form) supplemented at the concentration of
1,000 mg/kg feed. The study lasted 28 days. From day 22–28, chromium oxide (0.2%) as an
indigestible marker was added to the diets to determine apparent total tract digestibility (DM, N and
gross energy). BW and FI were recorded on days 0, 14, 28 and F:G calculated. At the end of the
experiment, nine birds per treatment were slaughtered and the weights of the liver, spleen, bursa of
Fabricius, abdominal fat, breast muscle and gizzard were recorded. Meat quality (colour, pH and drip
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loss of breast muscle) was measured. At day 28, excreta samples were collected from each cage and
pooled to count E. coli and Lactobacillus spp. colonies. At the end of the trial, tiamulin-treated birds
showed, compared to the control group, a higher digestibility coefficient for DM (78.49% vs. 75.52%).
Dietary tiamulin supplementation at 1,000 mg/kg feed improved DM digestibility in chickens for
fattening.

3.3.1.4. Discussion

From the studies examined, the test item has been described as ‘tiamulin’ (unspecified form; eight
studies). Therefore, an uncertainty on the exact product used/concentration applied has been
identified.

A detailed analysis of the uncertainties for tiamulin is included in Appendix B (Table B.1) of this
document, and the Section 3.3. of the Scientific Opinion Part 1 (see also the Virtual Issue).

3.3.1.4.1. Pigs

The seven publications considered as suitable for the assessment covered two pigs’ categories: four
studies were performed in weaned piglets and three studies in pigs for fattening. One study in pigs
tested different concentrations of tiamulin which allows assessment of concentration related effects.

In weaned piglets, dietary tiamulin supplementation at 39 mg/kg feed (Cho and Kim, 2015b; Lei
et al., 2018; Serpunja et al., 2018) or 500 mg/kg feed (Cho and Kim, 2015a) showed growth-
promoting effects in piglets.

In three studies in pigs for fattening, dietary tiamulin supplementation at 5.5 and 11 mg/kg feed
(Cromwell and Stahly, 1985, two experiments), 35 mg/kg feed (Nitikanchana et al., 2012) and
500 mg/kg feed (Cai et al., 2018) improved growth performance of pigs.

3.3.1.4.2. Poultry

One study in chickens for fattening (Cai et al., 2015) was identified; this study used tiamulin at
1,000 mg/kg feed with a growth-promoting effect.

3.3.1.5. Concluding remarks

It is judged 50–66% certain that tiamulin has growth-promoting/increase yield effects in weaned
piglets at concentrations ranging from 39 to 500 mg/kg complete feed (four studies) and in pigs for
fattening at concentrations ranging from 5.5 to 500 mg/kg complete feed (three studies). It is judged
33–66% certain (‘about as likely as not’) that tiamulin has growth-promoting/increase yield effects in
chickens for fattening at a concentration of 1,000 mg/kg complete feed (one study).

No data are available in the scientific literature showing effects of tiamulin on growth promotion/
increase yield when added (i) to weaned piglets feed at concentrations below 39 mg/kg, (ii) to pigs for
fattening feed below 5.5 mg/kg feed, (iii) to chickens for fattening feed below 1,000 mg/kg or (iv) to
feed of any other food-producing animal species or categories.

3.3.2. Valnemulin

3.3.2.1. Literature search results

The literature search, conducted according to the methodology described in Section 2.2.2.1 of the
Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (see also the Virtual
Issue), resulted in 25 papers mentioning valnemulin and any of the food-producing animal species
considered3 and any of the performance parameters identified as relevant for the assessment of the
possible growth promoting effects of valnemulin.4 After removing the reports not matching the
eligibility criteria, five publications were identified.

3.3.2.2. Evaluation of the studies

The five publications identified in the literature search were appraised for suitability for the
assessment of the effects of valnemulin on growth or yield of food-producing animals; this appraisal
was performed by checking each study against a series of pre-defined exclusion criteria (see
Section 2.2.2.2.1 of the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’;
see also the Virtual Issue).5 None of the publications was considered suitable for the assessment
because of several shortcomings identified in their design or in the reporting of the results. The list of
excluded publications and their shortcomings are presented in Appendix A.2 (Table A.2).
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3.3.2.3. Concluding remark

Owing to the lack of suitable data, levels of valnemulin in feed which may have a growth
promotion/production yield effect in any food-producing animal species could not be identified.

4. Conclusions

ToR1: to assess the specific concentrations of antimicrobials resulting from cross-
contamination in non-target feed for food-producing animals, below which there would
not be an effect on the emergence of, and/or selection for, resistance in microbial agents
relevant for human and animal health.

AQ1. Which are the specific concentrations of tiamulin and valnemulin in non-target feed below
which there would not be emergence of, and/or selection for, resistance in the large intestines/rumen?

• Due to the lack of data on the parameters required to calculate the Feed Antimicrobial
Resistance Selection Concentration (FARSC) corresponding to the concentrations of those
antimicrobials in non-target feed below which there would not be expected to be an effect on
the emergence of, and/or selection for, resistance in microbial agents relevant for human and
animal health, it is not possible to conclude until further experimental data are available.

ToR2: to assess which levels of the antimicrobials have a growth promotion/increase
yield effect.

AQ2. Which are the specific concentrations of tiamulin and valnemulin in feed of food-producing
animals that have an effect in terms of growth promotion/increased yield?

With regards to tiamulin:

• It is judged 50–66% certain that tiamulin has growth-promoting/increased yield effects in
weaned piglets at concentrations ranging from 39 to 500 mg/kg complete feed (four studies)
and in pigs for fattening at concentrations ranging from 5.5 to 500 mg/kg complete feed
(three studies).

• It is judged 33–66% certain (‘about as likely as not’) that tiamulin has growth-promoting/
increased yield effects in chickens for fattening at a concentration of 1,000 mg/kg complete
feed (one study).

• No data are available in the scientific literature showing effect of tiamulin on growth promotion/
increase yield when added (i) to weaned piglets feed at concentrations below 39 mg/kg, (ii) to
pigs for fattening feed below 5.5 mg/kg feed, (iii) to chickens for fattening feed below
1,000 mg/kg or (iv) to feed of any other food-producing animal species or categories.

With regards to valnemulin:

• Owing to the lack of suitable data, levels of valnemulin in feed which may have a growth
promotion/production yield effect in any food-producing animal species could not be identified.

The results from these assessments for the different animal species are summarised in Annex F
(Tables F.1 and F.2) of EFSA BIOHAZ Panel, 2021a – Scientific Opinion ‘Part 1: Methodology, general
data gaps and uncertainties’ (see also the Virtual Issue).

5. Recommendations

To carry out studies to generate the data that are required to fill the data gaps which have
prevented calculation of the FARSC for tiamulin and valnemulin.
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FARSC Feed Antimicrobial Resistance Selection Concentration
FI feed intake
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Appendix A – List of excluded publications and their shortcomings

A.1. Tiamulin

The publications excluded from the assessment of the effects of tiamulin on growth promotion/increased yield following the criteria defined in
Section 2.2.2.2.1 of the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (see also the Virtual Issue) are summarised in
Table A.1.

Table A.1: Publications not relevant for the assessment of the effects of tiamulin on growth promotion/increase yield and excluding criteria
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Combination
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used different
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Use of the
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with
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the study
sick or not
in good
health

Zootechnical
parameters
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reporting/
statistics

Other
(indicate)
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B�onai et al. (2008) Rabbits X
Burch (1982) Pigs X X

Burch (1984) Pigs X
Burch et al. (1986) Pigs X X X X

Burch et al. (2006) Pigs X X X
Delic et al. (2018) Pigs X

Devi et al. (2015) Pigs X X
Duttlinger et al.
(2019)

Pigs X

El-Ghany and Abd
El-Gha (2009)

Poultry X X

Francisco et al.
(1996)

Pigs X X(3)

Haj and Ben (2008) Rabbits
Hampson et al.
(2002)

Poultry X X

Han et al. (2011) Pigs X X
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Author (year) SPECIES

Excluding criteria

Combination
of substances
administered
to the animals

Antimicrobial
used different
from the one

under
assessment

Administration
via route

different form
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals in
the study
sick or not
in good
health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

Han and Thacker
(2009)

Pigs X

Han and Thacker
(2010)

Pigs X

Hinz and Rottmann
(1990)

Poultry X X

Hong et al. (2012) Pigs X
Hsu et al. (1983) Pigs X

Islam et al. (2008) Poultry X X(4)

Jacquier et al.
(2014)

Poultry X

Jeong and Kim
(2015)

Pigs X

Johnson and Lay
(2017)

Pigs X X(4)

Jordan and Knight
(1984)

Poultry X X X

Jordan et al. (1991) Poultry X X

Jordan et al. (1998) Poultry X X
Keegan et al. (2005) Pigs X

Kiarie et al. (2018) Pigs X
Kovacs et al. (2009) Rabbits X

Lee et al. (2011) Pigs X
Lee et al. (2009) Pigs X X

Lehel et al. (1995) Poultry X X
Lessard et al. (2014) Pigs X X

Meingassner et al.
(1978)

Poultry X X X X X
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Author (year) SPECIES

Excluding criteria

Combination
of substances
administered
to the animals

Antimicrobial
used different
from the one

under
assessment

Administration
via route

different form
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals in
the study
sick or not
in good
health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

O’Connor et al.
(1979)

Pigs X X X X

Oliver et al. (2014) Pigs X X X
Papadomichelakis
et al. (2011)

Rabbit X

Park et al. (2018) Pigs X X(5)

Patterson et al.
(2019)

Pigs X X X

Puls et al. (2019a) Pigs X X
Puls et al. (2019b) Pigs X X X

Ricketts et al. (1991) Poultry X X X
Roberts et al. (2011) Pigs X X X

Rueff et al. (2019) Pigs X X X(4)

Schuhmacher et al.
(2006)

Poultry X

Stephens and
Hampson (2002)

Poultry X X X X X(4)

Stipkovits et al.
(1992)

Poultry X X X X

Stipkovits et al.
(1999)

Poultry X

Stipkovits et al.
(2001)

Pigs X X X X

Stipkovits et al.
(2003)

Pigs X X X X

Stipkovits et al.
(2004)

Poultry X X X

Vieira et al. (2010) Poultry X X
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Author (year) SPECIES

Excluding criteria

Combination
of substances
administered
to the animals

Antimicrobial
used different
from the one

under
assessment

Administration
via route

different form
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals in
the study
sick or not
in good
health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

Wallgren et al.
(1999a)

Pigs X X X

Wallgren et al.
(1999b)

Pigs X X

Walsh et al. (2007) Pigs X

Walter et al. (2000) Pigs X X X X
Walter et al. (2001) Pigs X X

Woodward et al.
(2015)

Poultry X X X

Zakeri and Kashefi
(2011)

Poultry X X X

(1): The paper is aimed at exploring the effect on the microbiota of litters of TIA treated rabbit does at 100 mg/kg.
(2): The paper is aimed at exploring the effects on microbiota of rabbit does at different feeding levels and receiving or not TIA at 100 mg/kg.
(3): Piglets receiving tiamulin were previously treated with enrofloxacin and controls did not.
(4): No negative control.
(5): The paper deals with the effect of different substances on transport stress- related consequences in piglets.
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A.2. Valnemulin

The publications excluded from the assessment of the effects of valnemulin on growth promotion/increase yield following the criteria defined in
Section 2.2.2.2.1 of the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (see also the Virtual Issue) are summarised in
Table A.2.

Table A.2: Publications not relevant for the assessment of the effects of valnemulin on growth promotion/increased yield and excluding criteria

Author
(year)

SPECIES

Excluding criteria

Combination of
substances

administered to
the animals

Antimicrobial
used different
from the one

under
assessment

Administration
via route

different form
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals in
the study
sick or not
in good
health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

Cunha et al.
(2017)

Rabbit X X X X(1)

Dip et al.
(2015)

Rabbit X

Jordan et al.
(1998)

Poultry X X

Stipkovits
et al. (2001)

Pigs X X X X

Tzika et al.
(2009)

Pigs X

(1): Absence of a control group without antimicrobial.
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Appendix B – Table of uncertainties

Table B.1: Potential sources of uncertainty identified in the levels of tiamulin in feed which have
growth promotion/increase yield effect and assessment of the impact that these
uncertainties could have on the conclusion

Source of the
uncertainty

Nature or cause of uncertainty

Impact of the
uncertainty on the
conclusion on the level
(s) which have growth
promotion/increase yield
effect

Form(s) of
antimicrobial used

The specific form of the antimicrobial used in the study (as
the ‘(free) base’ substance, its salts or specific products/
formulations containing the base substance) has not been
clearly described in several publications. In summarising the
results, the concentrations have been reported as for ‘base’
substance when the form of the antimicrobial is not specified
(conservative assumption)

Underestimation of the
concentration which may
have shown growth-
promoting effect

Evidence synthesis
and integration

As described in Section 2.2.1 of the Scientific Opinion Part 1
(see also the Virtual Issue), although meta-analysis was not
applicable to the studies retrieved, evidence synthesis was
done, since:

• Four studies showing consistent (positive) results in a
comparable range of concentrations were available in
weaned piglets. The uncertainty resulting in the process
of evidence synthesis was based on four studies all
showing positive effect;

• Three studies showing consistent (positive) results in a
comparable range of concentrations were available in
pigs for fattening. Consistency of results across
categories (i.e. piglets and pigs for fattening) would
reduce the uncertainty in the conclusions for both
categories.

For cattle chicken for fattening, the low number of studies
retrieved prevented evidence synthesis

The extent of the
underestimation or
overestimation on the levels
which shown growth-
promoting effect is
modulated by the
consistency of the results
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