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Abstract

Manipulation of the activity of the p53 tumor suppressor pathway has demonstrated potential benefit in preclinical mouse
tumor models and has entered human clinical trials. We describe here an improved, extensive small-molecule chemical
compound library screen for p53 pathway activation in a human cancer cell line devised to identify hits with potent
antitumor activity. We uncover six novel small-molecule lead compounds, which activate p53 and repress the growth of
human cancer cells. Two tested compounds suppress in vivo tumor growth in an orthotopic mouse model of human B-cell
lymphoma. All compounds interact with DNA, and two activate p53 pathway in a DNA damage signaling-dependent
manner. A further screen of a drug library of approved drugs for medicinal uses and analysis of gene-expression signatures
of the novel compounds revealed similarities to known DNA intercalating and topoisomerase interfering agents and
unexpected connectivities to known drugs without previously demonstrated anticancer activities. These included several
neuroleptics, glycosides, antihistamines and adrenoreceptor antagonists. This unbiased screen pinpoints interference with
the DNA topology as the predominant mean of pharmacological activation of the p53 pathway and identifies potential
novel antitumor agents.
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Introduction

p53 is a key activator of cellular cascades governing cell life and

death [1,2]. It is activated in response to both physiological and

non-physiological stresses such as oxidative, viral, oncogenic and

genotoxic stress, and hypoxia [1–3]. During tumor evolution, the

p53 gene, TP53, is frequently mutated, yet, over 50% of human

tumors harbor the wild type gene [3,4]. The p53 pathway has

been an attractive target for therapeutic manipulation. It has been

proposed that the activation of p53 pathway enhances tumor cell

killing [1–3,5]. Genetic evidence, both in human and mice,

definitively show the essential tumor suppressive activity of TP53

[4,6,7]. More recent, switchable p53 expression models in mouse

demonstrate that activation of p53 expression leads to regression of

several tumor types by invoking apoptosis, senescence and the

cellular innate immunity [8–10].

The current p53-related experimental therapeutic arsenal can

be classified to those with known mechanisms of action (e.g. Hdm2

inhibitors) and to drugs that have demonstrated activation of

either wild type (wt) or mutant p53 cells but no or poorly

understood mechanisms of action. These have arisen through

targeted drug design (Hdm2-inhibitors like nutlin-3 and MI-219)

or through screens for wt and mutant p53 activating small-

molecule compounds [11–19]. Pilot studies using Hdm2 inhibitory

compounds show remarkable in vivo anti-tumor effects without

side effects [13,17,19,20]. We have established that nutlin-3 is the

first and highly effective agent inducing B-cell lymphoma (Kaposi’s

sarcoma herpes virus (KSHV) infected pleural effusion lymphoma)

cell killing both in vitro and in vivo mouse models [20]. Thus,

based on these studies, inactivation of the p53 pathway by the

KSHV virus lies in the pathogenesis of this incurable malignancy.

Furthermore, these studies provide an indication that depending

on the context (i.e. genetic composition and inherent dysfunctional

pathways) of the tumor, activation of the p53 pathway can launch

a cytotoxic response.

Mechanisms of action of the p53 pathway affecting drugs, with

the exception of the Hdm2 inhibitors, are largely unresolved [19].

p53, structurally, is not easily amenable for targeting by small-

molecule compounds. Many of the drugs identified to activate

either wild-type or mutant p53 function arose from screening

protocols using p53 sequence-specific binding and consequent

reporter activation [19]. These unbiased screens have likely
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yielded compounds acting upstream of p53 to provoke p53

activation. This is illustrated by the fact that many of the identified

drugs have also p53 independent functions to suppress tumor cell

growth. Encouragingly, several of the compounds activate p53

without launching a cellular DNA damage response (i.e. do not

impose genotoxic effects on the normal tissues), indicating that

they employ activation of events other than DNA damage [19].

Given that p53 is a key activator of cell cycle arrest/apoptosis

pathways, we considered that further development of small-molecule

compounds inducing p53 is highly warranted and has potential for

therapeutic exploitation. We demonstrate here successful implemen-

tation of a cell-based high-content imaging screen to identify novel

p53 pathway activating small-molecule lead compounds. This screen

was devised to identify hits even in the presence of activation of the

powerful p53-mediated apoptotic pathway. We present, both by

genomic profiling and screening of a defined drug library, that the

principal mean to activate p53 pathway is related to interference with

DNA topology, likely by DNA intercalation. These approaches

identify a substantial number of both new experimental lead

molecules and drugs with well-known pharmacological profiles as

potentially useful anticancer compounds.

Materials and Methods

p53 activity screen
A cell-based assay for p53-dependent expression of a fluorescent

reporter was established. A375 melanoma cells (ATCC CRL-1619)

were stably transfected with a DsRed Express (Clontech) vector

containing p53 consensus element [21] (p53DsRed reporter).

p53DsRed reporter activation was verified by UVC, ionizing

radiation (137Cs source) and nutlin-3 (Alexis Biochemicals) treatments.

Cells were plated at 10,000 cells/well onto 96-well plates and

treated at 3 mM (ChemDiv, Tripos) or 10 mM (Spectrum

Collection) compound concentration for 24 h. Mock treatment

(DMSO alone) and positive control (nutlin-3) was included in each

96-well plate. Following the incubation, the cells were fixed with

paraformaldehyde (PFA) and nuclei were stained with Hoechst

33342 (Molecular Probes).

The cells were imaged using Cellomics ArrayScan 4.5 high-

content imaging platform (ThermoScientific) including Zeiss 200 M

microscope with a 10x objective (Zeiss) and ORCA-AG CCD

camera (Hamamatsu). Target Activation Bioapplication (Thermo-

Scientific) algorithm was used for image acquisition and analysis of

the total number of nuclei and percentage of p53DsRed reporter

positive cells (responders). A minimum of 1700 cells/well was

analyzed. Compounds inducing a minimum of two-fold increase of

responders compared to mock were regarded as primary hits. All

primary hits were additionally visually inspected for p53 reporter

activation and DNA content. In the secondary screen the hits were

tested over 0.1–10 mM concentration range. Compounds providing

consistent p53DsRed reporter activation were selected for further

testing. Z-factor [22] for the screen was 0.632.

Viability assay
Cells were plated in 96-well plates at a density of 10,000 cells/

well. Compounds were added in triplicate and the cells were

incubated for three days. Cell viability was assayed using WST-1

cell proliferation reagent (Roche Diagnostics). The experiment was

repeated two to three times and results are presented as % viability

as compared to the control.

Human CFU-GM assay
Aliquots of normal bone marrow were obtained from four

normal allogenic bone marrow donors granting written informed

consent and as approved by the Johns Hopkins Medical Institute

Institutional Review Board (J0002). Mononuclear cells were

isolated from freshly harvested bone marrow aspirates, seeded at

a density of 16106 cells/ml and incubated with the compounds for

24 hours. The compounds were removed and 56104 cells were

plated and incubated for 14 days [23]. Colonies consisting of

greater than 40 cells were counted.

Immunoblotting analysis
Cellular lysates were prepared and proteins were separated by

SDS-PAGE. The following antibodies were used: DO-1 for p53,

2A10 for Hdm2, cH2AX (Upstate), p53Ser15 (Cell Signaling),

KAP-1 (BD Transduction Laboratories), KAP-1 Ser824 (Bethyl

Laboratories) and anti-p21 (Becton Dickinson). Horseradish

peroxidase or biotin-streptavidin-horseradish peroxidase (Dako

Cytomation) conjugated secondary antibodies were used. Equal

protein loading was verified using Gapdh (p9.B.88, Europa

Bioproducts Ltd).

Immunofluorescence and quantitative image analysis
Cells were grown on glass coverslips and fixed with PFA.

cH2AX was detected with anti-H2AX (Ser139) antibody (Upstate)

and Alexa488 conjugated secondary antibody (Molecular Probes),

nuclei were stained with Hoechst 33342. Images were captured

using Axioplan2 fluorescence microscopes (Zeiss) equipped with

AxioCam HRc CCD-camera and AxioVision 4.5 software using

EC Plan-Neofluar 40x/0.75 objective (Zeiss). p53 immunostaining

for cells grown in 96-well plates was performed using DO-1

antibody and Alexa488-conjugate and nuclei were stained with

Hoechst 33342. Images were acquired using ArrayScan 4.5

automated imaging platform and analyzed using Target Activa-

tion Bioapplication algorithm (Thermo Scientific). The mean

average intensity of $100 cells was quantified.

Transcriptional profiling
Cells were treated with the compounds or vehicle DMSO for six

hours in four separate experiments and total RNA was isolated.

Total RNA (1 mg) was reverse transcribed (Invitrogen SuperScript

II reverse transcriptase); double strand cDNA was generated and

column-purified (Affymetrix). Biotinylated cRNA was generated

through in vitro transcription, fragmented and hybridized to

GeneChip human U133A 2.0 arrays for 16 h at 45uC with

constant rotation. Hybridized GeneChip was scanned using

G3000 GeneArray Scanner (Affymetrix). Image analysis was

performed using GeneChip Operating System 1.1.1 (GCOS)

software (Affymetrix). Normalized data were imported into Partek

Genomics Suite (Partek) software and followed with One-Way

ANOVA analysis. Hierarchical clustering analysis was based on

Euclidean distance metric and performed using R and Biocon-

ductor software.

Functional enrichment analysis
Transcripts identified in the microarray were annotated for GO

[24] assignments using DAVID database [25]. For enriched GO

terms, P values from Fisher’s exact t-test were cut off at 0.01 on

biological process level 4, and GO terms with more than 10 genes

with an enrichment score higher than 2.5 were selected. For the

KEGG pathways a P value ,0.05 and an enrichment score

greater than 2 in a group of more than 10 genes were used.

Real-time qPCR
Pooled total RNA (1 mg) was used to generate quantitative real-

time PCR (qPCR) standard curve for all genes. Briefly, the pooled
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RNA was reverse transcribed and used to perform qPCR in

triplicate with SYBR GREEN I master mix (Atila Biosystem) on

ABI PRISM 7900HT (Applied Biosystems) using primer pairs

provided in Methods S1. For quantifying gene expression, qPCR

was performed using RNA either from compound or mock treated

cells in duplicate in two biological repeats. Transcript quantifica-

tion was measured by comparison with standard curves as

described above. All results were normalized against GAPDH,

and coefficient of variation was calculated.

Flow cytometry
Cell cycle distribution and cell death were assayed with flow

cytometry (LSR, Becton Dickinson). Cells were harvested and

fixed in 70% ethanol at 220uC followed by RNaseA treatment

and staining with propidium iodide. A total of 10,000 counts were

collected and data were analyzed using ModFit LT 3.1 software.

Cells present in sub-G1 population were regarded as non-viable.

In vivo tumor experiment
The animal protocol was approved by the Experimental Animal

Committee of Provincial Government of Southern Finland

(STH401A), and the animal studies were carried out according

to the approved guidelines. An orthotopic model of pleural

effusion lymphoma was used to assess the anti-tumor activities of

BMH-15 and -22. Female 5–7 weeks old NOD-SCID mice

(Charles River) were injected intraperitoneally (i.p.) with 16107

pleural effusion lymphoma cells carrying a luciferase reporter

(BC3luc cells) [26]. For imaging, D-luciferin (100 mg/kg)

(Synchem OHG) was injected i.p. followed by imaging 15 min

post-injection using Xenogen In Vivo Imaging System (Caliper

Life Sciences). Tumor-bearing mice, as verified by biolumines-

cence, were treated by i.p. injection of the compounds starting on

day four post-implantation. The mice received 20 mg/kg

compounds BMH-15 and -22 three times a week, while control

mice received only DMSO. The mice were imaged prior each

treatment. Bioluminescence was quantified and plotted as total

flux within given region of interest (ROI) using Igor Pro Carbon

analysis software (Caliper Life Sciences). Statistical analysis was

carried out using Linear Model ANOVA using R software. P

values less than 0.05 were regarded as statistically significant.

Statistical analysis
Shown are means 6 SD of at least two independent

experiments. Statistical analysis was performed by Fisher’s exact

t test. Data on animal studies was performed using Linear Model

ANOVA using R software. Differences were considered statisti-

cally significant at P,0.05.

Results

High-content imaging screen identifies novel p53
activating lead compounds

An improved protocol for high-throughput cell-based screening

was devised. This consisted of generation of a cell line expressing

red-emitting fluorescent protein under the control of a p53

consensus promoter (p53DsRed) [21]. In contrast to the previously

published screens using a similar reporter element, we adapted the

screen to a strictly cell-based analysis using a fully automated high-

content imaging and quantitative image analysis platform. This

facilitated scoring of signal intensities in individual cells allowing

detection of the reporter activation under conditions where p53

activation leads to a significant reduction in cell viability

(Figure 1A).

We first validated the p53 high-content imaging assay and

screened a library consisting of 2000 therapeutic and experimental

drugs. We identified and further validated eleven drugs that

Figure 1. Cell-based high-content imaging screen. A) Screen outline. B) Spectrum Collection experimental drug library was analyzed using the
p53 reporter screen. Primary hits were validated at 10-fold concentration range. Color code; red, TOP1/2 inhibitors; blue, DNA intercalating agents;
black, other. C) Chemical structures of hit compounds in the large-scale small-molecule compound screen.
doi:10.1371/journal.pone.0012996.g001
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activated and stabilized p53, of which four are for the first time

described here (Figure 1B and Table S1). Of the eleven, five drugs

intercalate with DNA, and four are topoisomerase 1 (TOP1) or

topoisomerase 2 (TOP2) inhibitors. The results indicated that the

p53 high-content imaging screen can be applied for testing of both

novel and known drugs for their anti-tumor activities.

We then proceeded to screen synthetic small-molecule

chemical compound libraries (40,000 compounds) at a relatively

low compound concentration (3 mM) in order to increase the

likelihood to select for potent p53 activating molecules. Nine

small-molecule compounds that consistently activated the p53

reporter at low micromolar concentrations were discovered. The

chemical structures of six compounds amenable for larger scale

syntheses are presented in Figure 1C and were used in

subsequent studies. Searches for previously reported p53

activating small-molecule compounds indicated that the lead

compounds identified here, BMH-7, BMH-9, BMH-15, BMH-

21, BMH-22, and BMH-23 were novel. Furthermore, among the

identified leads, there were two sets of compounds (BMH-7 and

BMH-15, BMH-22 and BMH-23) that were structurally highly

related to each other (Figure 1C). The compound chemical

characteristics indicated excellent predictions for the compound

solubility, permeability and oral bioavailability (Lipinsky’s rule of

five) [27] (Table S2).

We then assessed the ability of the compounds to activate the

p53 pathway. Dose-titration experiments of the leads indicated

that all were highly potent inducers of the p53DsRed activation

(30–65% positive cells) as compared to nutlin-3 (15% positive cells)

and were active at nanomolar (BMH-21) to low micromolar range

(BMH-7, BMH-9, BMH-15, BMH-22, BMH-23) (Figure 2A).

Notably, high compound concentrations ($10 mM) caused

extensive cell death eventually quenching the reporter signal. All

compounds markedly stabilized p53 and increased the levels of its

transcriptional targets, Hdm2 and p21Cip1 (Figure 2B), whereas

p53 mRNA levels were in fact suppressed by four out of six

compounds (Figure S1).

Figure 2. Lead compounds activate p53 pathway. A) p53DsRed reporter activation. A375 cells stably expressing p53DsRed reporter were
incubated with the lead compounds and nutlin-3 for 24 hours, followed by high-content image analysis. The percentage of cells expressing
p53DsRed reporter is shown. The experiment was performed in triplicate and represents $1700 cells per datapoint. Error bars represent SD. B) p53
stabilization and target protein regulation. A375 cells were treated with BMH-7, -9, -15, -22, nutlin-3 (5 mM), and BMH-21 (0.5 mM) for 24 hours
followed by analyses for p53, Hdm2 and p21 protein levels. Gapdh was used as a loading control. C) p53-dependent gene regulation. Isogenic
HCT116 p53+/+ and p532/2 cells were treated with the compounds followed by qPCR for p53 target genes. Fold induction of the relative levels of
the transcripts in the p53+/+ and p532/2 cells are shown. Data represent duplicate biological experiments and duplicate qPCR reactions. Error bars
represent SD.
doi:10.1371/journal.pone.0012996.g002
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To further assess the regulation of known p53 target genes by

the lead compounds we undertook qPCR analysis of eleven known

p53 targets. In order to validate p53 dependency, a comparison

between the responses in isogenic HCT116 p53+/+ and p532/2

cell lines [28] was conducted. The induction of the target genes by

BMH-9, -21, -22, and -23 was clearly dependent on p53, whereas

BMH-7 and BMH-15 had more restricted capacity to p53

dependent gene regulation (Figure 2C). These analyses show

extensive activation of p53 downstream signaling by four lead

compounds, and more limited by two.

Novel lead compounds are antitumorigenic
Given the prominent activation of the p53 responses, we analyzed

the effects of the compounds on the viability of several tumor and

normal cell lines. The lead compounds potently suppressed the

viability of various tumor cells, albeit to different degrees (Figure 3A).

These included cell lines wild-type, mutant and null for p53, and

showed that the antiproliferative activity of only BMH-9 was

somewhat dependent on p53 (Figure S2). Comparison of the lead

compound effects in three normal human cell lines and tumor cells

indicated higher resistances of the normal cells to the compound

antiproliferative activity (Table S3). We also assessed the potential

toxicity of three representative compounds against human hema-

topoietic progenitors. As shown in Figure 3B, BMH-9 and BMH-22

exhibited essentially no cytotoxicity and BMH-15 produced only a

10% inhibition of granulocyte-macrophage colony-forming units

(CFU-GM). In contrast, topotecan, a TOP1 poison and known

hematopoietic suppressor, had prominent toxicity. The results

indicate that the lead compounds are potential novel anticancer

agents without excessive toxicity in several human primary cells.

Figure 3. Lead compounds are anti-tumorigenic. A) Tumor cell lines (A375, WM239, RPMI7951 melanoma, U2OS and SaOS2 osteosarcoma, BC3
lymphoma, and HCT116 colon adenocarcinoma cells) were incubated with BMH-7, -9, -15, -22, -23, nutlin-3 (10 mM), and BMH-21 (1 mM) in triplicate
for three days. Cell viability was determined using WST-1 cell proliferation assay. Cell viability in control is set as 100%. Error bars represent SD. B)
Dose-response curves of normal human CFU-GM. Shown is the clonogenic recovery of normal CFU-GM derived from four healthy individuals, treated
with topotecan (TPT), BMH-9, BMH-15 and BMH-22. Error bars represent SD. C) BC3 cells were treated with BMH-15 and BMH-22 (10 mM) for 24 and
72 hours followed by flow cytometry. Cell cycle distribution and fraction of sub-G1 cells are indicated. D) NOD-SCID mice were injected i.p. with
BC3luc cells, and tumors were allowed to establish for three days. Tumor take was confirmed by imaging and the mice were treated with i.p. injection
of BMH-15 and BMH-22 (20 mg/kg) three times a week. Control animals received DMSO. The mice were imaged prior to each treatment and
bioluminescence was quantified and plotted as total flux within a constant ROI. BMH-15 and BMH-22 caused significant reductions in tumor signals
(ANOVA analyses, BMH-15, days 12, 14, 17, P values 0.0281, 0.0138, 0.0131, n = 5, respectively; BMH-22, days 12, 14, 17, P values 0.0259, 0.0160, 0.0045,
n = 4, respectively; mock, n = 5). Error bars, SD. E) Bioluminescence images of the mice at day 8 and day 17. Heatbar indicates the bioluminescence
intensities.
doi:10.1371/journal.pone.0012996.g003
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To validate the potential use of the compounds in vivo, we first

utilized an ex vivo tissue culture model of human prostate tissues

[29, Methods S1]. The lead compounds BMH-7, BMH-9, BMH-

15, BMH-21 and BMH-22 clearly induced p53 expression in the

epithelial compartment of human prostate tissues indicating tissue

permeability (Figure S3). To assess for potential anti-tumor activity

in vivo in a mouse model, we used BC3 pleural effusion lymphoma

cells that we have previously shown to be highly sensitive to p53

pathway activation [20]. Two compounds (BMH-15, BMH-22)

available in larger scale required for the animal studies were tested.

Initial flow cytometric analysis of the compound effects in BC3

cells indicated rapid and extensive cell death (BMH-15), or

pronounced G2/M phase arrest and cell death (BMH-22)

(Figure 3C). We then employed an orthotopic model of B cell

lymphoma of BC3luc cells expressing luciferase-reporter [26].

Following BC3luc cell tumor establishment, the mice were treated

by i.p. injection (20 mg/kg) three times weekly at which times the

tumor bioluminescence was recorded (Figure 3D and 3E). At the

given doses, BMH-15 and BMH-22 produced significant

(P#0.013) anti-tumor activity. None of the compounds showed

any toxic effects in mice as determined by weight curves, well-

being, or histology of organs following administration at a similar

dose regime for over a three-week period (Figure S4, Methods S1).

We conclude that the compounds display significant anti-tumor

activity without overt toxicity.

The lead molecules act on DNA but diverge in their
potential to cause DNA damage

Based on the planar heteroaromatic ring structures we

addressed the DNA intercalation properties of the compounds.

DNA intercalation was assessed by changes in the compound

absorbance spectrum by UV-VIS in the presence of DNA. All

compounds displayed hypochromic and/or bathochromic shifts

befitting DNA binding [30] (Table S4, Methods S1).

DNA intercalators lead to lengthening of the double helix and

unwinding. We therefore used a DNA unwinding assay, which

also distinguishes between a DNA intercalator and a putative

TOP1 inhibitor [30,31]. Concordant with the UV-VIS assays, all

compounds were found to cause extensive DNA unwinding, but

not TOP1 inhibition (Figure S5, Methods S1 and data not shown).

Based on these assays, all lead molecules intercalate with DNA.

As p53 is highly sensitive to DNA damage [2,32] and as DNA

intercalators may cause DNA damage, we assessed whether the

compounds cause activation of the DNA damage signaling

pathways. The analysis of compound-treated cells for ATM target

proteins cH2AX, Ser15 phosphorylated p53 and Ser824 phos-

phorylated KAP-1 revealed that DNA damage response was

activated by BMH-7 and BMH-15 (Figure 4A). To further estimate

the dependency of p53 induction on activated ATM-cascade, we

treated the cells with the compounds in the presence or absence of a

specific ATM inhibitor KU55933 [33]. p53 stabilization, cH2AX

foci formation and KAP-1 phosphorylation by BMH-7 and BMH-

15 were ATM-dependent (Figure 4B and 4C and 4D). BMH-15

induced a prominent cH2AX response also in human prostate

tissue (Figure S3B). We conclude that while BMH-7 and BMH-15

elicit an ATM-dependent DNA damage response, more impor-

tantly, BMH-9, BMH-21, and BMH-22 do not. BMH-23, analyzed

separately, did also not activate ATM-pathway (data not shown).

Transcriptional profiling reveals highly similar cellular
responses

p53, when activated, exerts an extensive transcriptional

program affecting hundreds of target genes [34,35]. To validate

the extent to which the lead compounds activate p53 pathway and

to gain further information of potential other pathways affected,

we used transcriptional profiling. Analysis of the gene expression

patterns showed a total of 5926 transcripts undergoing significant

up – or down regulation (GSE #12666, Dataset S1). Hierarchical

clustering indicated similar transcriptional profiles despite the

chemical diversity of the compounds. BMH-9 was closely clustered

with BMH-22 and BMH-23 and BMH-21 with BMH-7 and

BMH-15 (Figure 5A). Further analysis, as shown by Venn

diagrams, indicated extensive mutual sharing of transcriptional

targets within the clusters (Figure 5B). All compounds shared a

total of 118 targets with a high degree of similarity of the elicited

responses (Figure 5C and Dataset S2). To provide indications for

the cellular programs activated by the compounds we performed

GO assignments of the transcripts using DAVID analysis platform

[24,25]. The analysis indicated a significant enrichment of DNA

damage checkpoint, response and repair genes, and cell cycle

genes (see Table S5 for complete analysis). We further queried

KEGG for specific pathways affected. The analysis showed

marked enrichment of pathways affecting cell cycle, p53 signaling

and ubiquitin mediated proteolysis (Figure 5D and Table S6). To

verify the results of the transcriptional profiling, we performed

qPCR of a number of transcripts shared by the compounds (8 up-

and 10 down regulated transcripts). QPCR analysis closely

correlated with the transcriptional profiling (Figure 5E).

Genomic signatures of the lead compounds reveal
similarities to known drugs

To evaluate whether the lead compounds share similarities

between drugs with known mechanisms of action, we compared

the gene expression profiles elicited by the compounds to those at

the Connectivity Map database [36]. The Connectivity Map

comprises gene expression profiles of over 2000 experimental and

known drugs. Comparison of the query transcriptional profile

provides a ranked order of agents triggering similar responses.

Clustering analysis of profiles ranking with the lead compounds

indicated a high degree of similarity both in terms of positively and

negatively ranking hits (Figure 6A). High-ranking scores were

obtained for eight topoisomerase inhibitors, eight quinoline

derivatives, many of which are used as anti-helminitic drugs,

and hycanthone, which was the top-scoring hit with four

compounds (Figure 6B and 6C). These findings are fully consistent

with the identified high-content screen hits in the Spectrum

Collection (Figure 1B). Among the highest scoring hits in the

connectivity analysis, 30.5% have previously been implicated in

p53 pathway activation (Table S7). Interestingly, the analysis

identified frequent hits of drugs in clinical uses other than cancer.

These included six phenothiazines, four glycosides, antihistamines

and a1-adrenoreceptor antagonists (Figure 6B). However, none of

these drugs tested separately affected p53 or caused activation of

DNA damage signaling (not shown), suggesting that they may

share other parallel activities, which may include anti-tumor

properties.

Discussion

We present here the discovery of novel small-molecule lead

compounds and detailed studies of their anti-tumor activities and

mechanisms of action. The lead compounds caused death of

colon, melanoma, osteosarcoma, and lymphoma tumor cells at

sub-low micromolar concentrations while maintaining viability of

normal primary cells and human bone marrow. The compounds

showed tissue permeability in a human ex vivo prostate tissue model

as evidenced by p53 induction, supporting their use in vivo, and two

Novel p53 Pathway Activators
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compounds effectively reduced B cell lymphomagenesis in an

orthotopic mouse model. Five of the compounds displayed striking

effects by decreasing cell viability independently of p53. This

underscores that the compounds in fact trigger upstream p53

activating events and activation of potent cytotoxic pathways.

p53 is highly sensitive to DNA damage stress [2,32]. However,

only two of the compounds (BMH-7 and BMH-15) activated

ATM-dependent DNA damage signaling, i.e. acted as potentially

genotoxic agents. The absence of the DNA damage response by

four lead compounds indicates that their actions are unrelated to

those directly causing DNA damage. The absence of DNA

damage response may in fact be a preferable mechanism of action

by potentially lowering normal cell toxicity, including genotoxicity.

Notably, BMH-21, which had the most potent antitumorigenic

activity, did not activate DNA damage signaling. Importantly, the

improved screen protocol used here not only allowed selection of

cell permeable compounds, but also facilitated the identification of

lead molecules with antitumor activities in the nanomolar range.

All compounds were found to intercalate with DNA. DNA is an

extremely attractive target for cancer therapeutics. It poses

exquisite sequence-specificity and unique structures at different

metabolic states, and is also a widely targeted molecule by many

Figure 4. Lead compounds have both DNA damage response-dependent and independent activities. A) A375 cells were treated with
compounds BMH-7, -9, -15, -22 (5 mM), and BMH-21 (0.5 mM) for 8 hours and cell lysates were analyzed by immunoblotting for p53, p53Ser15, and
cH2AX. The mean fold induction of p53Ser15, as compared to total p53, is shown below the blots (n = 2). All samples were normalized to Gapdh. B)
Cells were treated with ATM inhibitor KU55933 (10 mM) for 90 min, followed by addition of BMH-7, -9, -15, -22 (5 mM), BMH-21 (0.5 mM), or ionizing
radiation (IR) (10 Gy), and incubation for 6 hours. p53 stabilization was analyzed by immunoblotting. C) cH2AX foci formation of cells treated as in
Figure 4B was analyzed by immunofluorescence. Nuclei were stained with Hoechst 33342. Scale bar, 10 mm. D) Cells were pretreated with KU55933 as
in Figure 4B, followed by addition of the compounds for 30 min. KAP-1 and KAP-1 Ser824 was analyzed by immunoblotting.
doi:10.1371/journal.pone.0012996.g004
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anticancer drugs [37,38]. These interact with DNA typically

through three modalities, namely DNA intercalation, groove

binding and covalent interactions causing cytotoxicity and

therapeutic advantage [30,38–42]. DNA intercalators, beyond

those that induce DNA damage, lead to local structural changes in

DNA, including unwinding and lengthening of the DNA helix

[30,37,38]. These events may lead to alterations in DNA

metabolism, and halter transcription and replication, and induce

p53 [43]. Interestingly however, the lead compounds cause distinct

transcriptional programming, which includes both transcriptional

induction and repression, and are consistent with activation of

pathways regulating cell cycle progression, p53 pathway, ubiqui-

tin-dependent proteolysis and DNA damage surveillance (Figure 5).

These findings indicate that the compounds do not cause a general

transcriptional repression, but rather, selective regulation. Fur-

thermore, this transcriptional programming seems to be largely

shared by the lead compounds, especially those by BMH-9, BMH-

22 and BMH-23. The implication of these findings is that the

compounds may also selectively alter DNA metabolism in a

manner that may be dependent on the DNA sequence,

conformation or interactions of the compounds with chromatin

proteins.

The high frequency of quinoline-derivatives among the lead

compound profiles and the chemical screens, and their known

property of DNA intercalation [39], raises the possibility that this

property may predispose to p53 induction or antitumor activity.

Many of the agents identified by the chemical screens or lead

profiling analyses have recognized toxicities and some, carcino-

genic effects. Therefore, activation of p53 may reflect severe

cellular stress that may culminate in the elimination of tumor cells

or, in susceptible normal cells, toxicity. However, the novel lead

compounds had low to non-existent human bone marrow toxicity

and no in vivo toxicity in mouse. Considering their favorable

pharmacokinetic predictors and demonstrated antitumor activity

we propose that they represent promising novel anticancer lead

compounds.

Figure 5. Transcriptional profiling and gene expression analysis of the lead compounds. A) MCF-7 cells were treated with BMH-7, -9
(10 mM), BMH-15, -22, -23 (5 mM), and BMH-21 (0.5 mM) for 6 hours, and control cultures were mock-treated with DMSO. Total RNA was isolated from
four independent experiments. Differentially expressed transcripts (P,0.01, total of 5926 transcripts) were identified by One-Way ANOVA analysis and
hierarchical clustering was performed using R software. Dendrograms and heat map values are shown. B) Venn diagrams of transcripts shared by
BMH-9/22/23 and BMH-7/15/21. C) Hierarchical clustering of 118 target genes shared by all compounds. D) KEGG pathways. Pathways extensively
shared are shown (P,0.05, enrichment score .2.0, over 10 targets/category). E) qPCR verification of transcripts identified by profiling. qPCR was
performed on randomly selected eight up-regulated and ten down-regulated genes. Fold change as compared to GAPDH is shown. Note that
CYP1A1 bars for BMH-21, -22, -23 are truncated (actual values 55.2, 10.1, and 6.2, respectively). Data represent duplicate biological experiments and
duplicate qPCR reactions. Error bars represent SD.
doi:10.1371/journal.pone.0012996.g005
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The lead compounds identified in the chemical screen were

structurally diverse, although were represented by two closely

related pairs. Though all contained polycyclic heteroaromatic rings,

these varied from two –to four-ringed structures. Based on the

structural characteristics, it would have been difficult to ascribe that

they possess similar biological activities. However, cellular assays

and transcriptional profiling showed that the lead compounds

displayed strikingly similar properties. Connectivity map analysis

showed that the lead molecules shared transcriptional signatures

with DNA intercalators and topoisomerase poisons. However,

detailed analyses for potential topoisomerase inhibitory activities of

the compounds were negative (not shown). Furthermore, the

genomic signatures triggered by the compounds suggested unex-

pected biological parallels with neuroleptics and other widely used

drugs. Due to the wide, and often long-term use of these drugs, their

activity in non-target tissues could present as undesirable side effects

or as an unexpected health benefit. Interestingly, a large population-

based cohort study of the use of phenothiazines has indicated a

decrease in risk of rectal, colon and prostate cancer [44]. Prazosin,

and other quinazoline-based adrenoreceptor antagonists doxazosin

and terazosin, are used as hypertensive drugs and for prostate

hyperplasia, and recently, suggested to possess antitumor properties

[45], and to decrease risk of prostate cancer in men [46]. Cardiac

glycosides digoxin, ouabain, quercetin and proscillaridin, all

providing high connectivity scores, have been associated with

topoisomerase inhibition, cellular DNA damage response, cytotox-

icity of breast cancer cells and increased breast cancer survival

[47,48]. Strikingly, we note that all of the recently discovered

hypoxia-inducible factor-1 inhibitors (daunorubicin, acriflavin,

digoxin, ouabain and proscillaridin A) are among the hits identified

here [49]. These findings underscore that the lead molecules share

remarkable parallels with several pharmaceutics amenable towards

repurposing as cancer therapeutics.

In conclusion, this study represents an extensive analysis of

drug-based mechanisms activating the p53 pathway, emphasizes

the dominant role of DNA intercalation in p53 pathway activation

and identifies novel regulators of DNA topology with promising

anticancer properties.

Supporting Information

Methods S1 Supplementary methods.

Figure 6. Connectivity map analysis identifies drugs with similar cellular responses. A) Hierarchical clustering of connectivity scores. Gene
expression signatures (1000 genes from each compound profile) were queried against Connectivity Map Database 2.0. Dendrogram of the ranking
order expression signatures is presented. B) Top-ranking connectivity signatures. C) Classification of top-ranking connectivities.
doi:10.1371/journal.pone.0012996.g006
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Found at: doi:10.1371/journal.pone.0012996.s001 (0.16 MB

PDF)

Dataset S1 Significant transcriptional changes caused by the

compounds (5926 transcripts, P,0.01).

Found at: doi:10.1371/journal.pone.0012996.s002 (3.03 MB

XLS)

Dataset S2 Genes regulated by all compounds (118 genes,

P,0.01).

Found at: doi:10.1371/journal.pone.0012996.s003 (0.08 MB

XLS)

Figure S1 qPCR analysis of TP53 mRNA expression. MCF-7

cells were incubated with BMH-7, -9 (10 mM), BMH-15, -22, -23

(5 mM), and BMH-21 (0.5 mM) for 6 h, and control cultures were

mock-treated with DMSO (n = 4). Total RNA was isolated and

qPCR performed for TP53. The values were normalized

according to GAPDH. Error bars represent SD.

Found at: doi:10.1371/journal.pone.0012996.s004 (0.15 MB

PDF)

Figure S2 p53 dependency of cell viability. Lead compound

effect on p53 isogenic HCT116 cells. HCT116 p53+/+ and

p532/2 cells were cultured in the presence of BMH-7, -9, -15,

-22, -23 (5 mM), BMH-21 (0.5 mM), and nutlin-3 (5 mM) for 72 h

followed by counting of the cells. The relative viability response as

adjusted to controls in the p53+/+ as compared to p532/2 cells

is shown. Error bars represent SE.

Found at: doi:10.1371/journal.pone.0012996.s005 (0.16 MB

PDF)

Figure S3 Human ex vivo prostate tissue. Fresh prostate tissues

were obtained from radical prostatectomies, and the sections were

incubated with BMH-7 (20 mM), BMH-9 (20 mM), BMH-15

(20 mM), BMH-21 (2 mM), and BMH-22 (20 mM) for 24 h, fixed

and stained for p53 and DNA, and in (B) also for gamma-H2AX.

Images were captured using confocal microscopy (A) or wide-field

microscopy (B). Prostate glands are indicated by white dashed

lines. Scale bar, 50 mm.

Found at: doi:10.1371/journal.pone.0012996.s006 (0.53 MB

PDF)

Figure S4 In vivo toxicity. Mice were injected intraperitoneally

with BMH-7, -9, -15, -22 (20 mg/kg), and BMH-21 (2 mg/kg)

three times a week for three weeks in 30 ml DMSO. Control

animals received only the DMSO vehicle. The mice were

sacrificed and organs (thymus, spleen, intestine, liver and kidney)

were collected for histological examination. No acute or chronic

toxicities were observed based on the histological hematoxylin-

eosin analyses. Similarly, there were no changes in the weight

curves of mice undergoing the above treatment regimen (N = 2 for

each treatment group) (data not shown).

Found at: doi:10.1371/journal.pone.0012996.s007 (1.16 MB

PDF)

Figure S5 DNA unwinding. TOP1 (2 U) was added to plasmid

DNA to allow full relaxation of the plasmid (Rel). Subsequently, an

excess of TOP1 (20 U) and increasing amounts of compounds

(BMH-7, -9, -15, -22, -23, 0.01-5 mM; BMH-21, 0.001-0.5 mM)

were added and incubated for further 1 h at 37uC. The reaction

was quenched and the samples were analyzed by agarose gel

electrophoresis. Note appearance of DNA topomers (Rn) and

supercoiled DNA (Sc) due to intercalation. D, DMSO control, EB

ethidium bromide.

Found at: doi:10.1371/journal.pone.0012996.s008 (0.22 MB

PDF)

Table S1 p53 activating drugs in the Spectrum Collection.

Found at: doi:10.1371/journal.pone.0012996.s009 (0.06 MB

PDF)

Table S2 Lipinsky rule of five.

Found at: doi:10.1371/journal.pone.0012996.s010 (0.06 MB

PDF)

Table S3 In vitro normal and melanoma cell line viability

responses.

Found at: doi:10.1371/journal.pone.0012996.s011 (0.07 MB

PDF)

Table S4 DNA intercalation of the compounds by UV-VIS.

Found at: doi:10.1371/journal.pone.0012996.s012 (0.06 MB

PDF)

Table S5 GO categories of transcriptional targets.

Found at: doi:10.1371/journal.pone.0012996.s013 (0.06 MB

PDF)

Table S6 KEGG pathways of transcriptional targets.

Found at: doi:10.1371/journal.pone.0012996.s014 (0.07 MB

PDF)

Table S7 Summary of top-ranking connectivities.

Found at: doi:10.1371/journal.pone.0012996.s015 (0.06 MB

PDF)
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