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Computational identification of 
protein-protein interactions in 
model plant proteomes
Ziyun Ding   1 & Daisuke Kihara1,2,3

Protein-protein interactions (PPIs) play essential roles in many biological processes. A PPI network 
provides crucial information on how biological pathways are structured and coordinated from individual 
protein functions. In the past two decades, large-scale PPI networks of a handful of organisms were 
determined by experimental techniques. However, these experimental methods are time-consuming, 
expensive, and are not easy to perform on new target organisms. Large-scale PPI data is particularly 
sparse in plant organisms. Here, we developed a computational approach for detecting PPIs trained 
and tested on known PPIs of Arabidopsis thaliana and applied to three plants, Arabidopsis thaliana, 
Glycine max (soybean), and Zea mays (maize) to discover new PPIs on a genome-scale. Our method 
considers a variety of features including protein sequences, gene co-expression, functional association, 
and phylogenetic profiles. This is the first work where a PPI prediction method was developed for is the 
first PPI prediction method applied on benchmark datasets of Arabidopsis. The method showed a high 
prediction accuracy of over 90% and very high precision of close to 1.0. We predicted 50,220 PPIs in 
Arabidopsis thaliana, 13,175,414 PPIs in corn, and 13,527,834 PPIs in soybean. Newly predicted PPIs 
were classified into three confidence levels according to the availability of existing supporting evidence 
and discussed. Predicted PPIs in the three plant genomes are made available for future reference.

Identification of protein-protein interactions (PPIs) is important for understanding how proteins work together 
in a coordinated fashion in a cell to perform cellular functions. PPIs are essential for individual protein functions, 
forming various cellular pathways, and are also involved in the development of diseases. PPI data is directly use-
ful for identifying protein multimeric complexes1,2, identifying biological pathways as well as predicting protein 
function3–5. For more on the application side, PPIs are also important targets for drug design6 and artificial design 
of protein complexes7.

There are experimental methods for determining individual PPIs, such as co-immunoprecipitation8, fluo-
rescence resonance energy transfer9, and surface plasmon resonance10. Ultimately, biophysical methods such 
as nuclear magnetic resonance spectroscopy (NMR)11,12, X-ray crystallography13, and electron microscopy14, 
can be used to determine the tertiary structure of protein complexes to obtain detailed atomic or molecular 
level information about how the proteins interact. Moreover, from late 1990’s, PPIs have been determined in 
a large-scale using yeast-two hybrids15–18 and affinity chromatography combined with mass spectrometry19–22. 
However, experimental methods have several shortcomings for detecting PPIs. First, these experimental methods 
are time-consuming and labor-intensive. Second, the applicability of experimental methods depends on how well 
assay protocols are established in target organisms. Also, a method may not work on some classes of proteins23,24. 
Third, it is known that experimental methods often have difficulty in identifying weak interactions, which leaves 
out many transient interactions25. Fourth, it is discussed that the results of large-scale methods often have a sub-
stantial disagreement with each other, which may be partly due to false positives and false negatives26–28.

Consequently, PPIs have been identified only for a limited number of organisms; moreover, the coverage of 
PPI networks is very small for the majority of organisms. This is particularly true for plant species. Table 1 shows 
the statistics of experimentally identified PPIs in representative plant species taken from the BioGRID database29. 
Surprisingly, except for Arabidopsis thaliana, virtually no other plant species have experimentally determined 
PPI data available. Even for Arabidopsis, known PPI data cover interactions with only about 34.55% of proteins. 
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Other representative plant species cover even less protein involved in known PPIs. Thus, it is apparent that plants 
are largely lagged behind from PPI studies. In this omics era when various types of large-scale data are combined 
and used for formulating hypotheses and to interpret experimental data, PPI networks are fundamental reference 
data to have for studying an organism.

To complement experimental methods for identifying PPIs, several computational methods have been devel-
oped30. These methods typically use a machine learning framework and consider various features of proteins as 
input. Protein features used for PPI prediction include occurrence of functional domains31–33, short sequence 
patterns (e.g. n-grams, auto-covariation)34–38, interlog (interaction inferred from homology)39–43, codon usage44, 
function45,46, similarity in phylogenetic trees47–49, phylogenetic profiles50, gene expression51, and protein ter-
tiary structures52–57. Although many approaches were explored, there are not many works that applied devel-
oped methods to provide new proteomics-scale PPI predictions. Existing works are mainly limited to microbial 
genomes and eukaryotes40,43,56,58–65, and only applications to the plant domain are for Arabidopsis thaliana61,63,64 
and Oryza sativa (rice)43,63.

In this work, we developed a computational method for PPI prediction, named PPIP (PPI prediction for Plant 
genomes) and applied to three major plant proteomes, Arabidopsis thaliana, Zea mays (corn), and Glycine max 
(soybean). To capture different aspects of proteins that are relevant to PPIs, we used a combination of four features 
for predicting PPIs, i.e. protein sequence properties, protein functional similarity, co-expression patterns, and 
phylogenetic profile similarity. To provide a confidence level of predictions, two machine learning methods, sup-
port vector machine (SVM) and random forest (RF), were separately trained on different features, and commonly 
predicted PPIs by the two methods were considered to have high confidence. The machine learning methods 
were trained on known PPIs from Arabidopsis. The accuracy on the testing dataset of Arabidopsis achieved a high 
accuracy of over 90%. PPIP predicted 50,220, 13,175,414, and 13,527,834 confident PPIs in Arabidopsis, corn, and 
soybean, respectively.

Examples of predicted novel PPIs with high confidence are discussed. All confident predictions are provided 
on our lab website (http://kiharalab.org/PPIP_results/) so that they can be referenced by plant biologists.

Results
Constructing a benchmark dataset of known Arabidopsis PPIs.  First, we tested two machine learn-
ing prediction algorithms in our prediction method, PPIP, namely, support vector machine (SVM) and random 
forest (RF) on the dataset of known Arabidopsis PPIs obtained from the TAIR database66 (Additional File 1: 
Table S1). These PPIs were determined by experiments including X-ray crystallography, affinity-capture mass 
spectrometry, co-immunoprecipitation, fluorescent resonance energy transfer, isothermal titration calorimetry, 
and surface plasmon resonance. The downloaded known Arabidopsis PPI dataset contained 4,908 PPIs, which 
were reduced to 4,759 PPIs after removal of short proteins of less than 50 amino acid residues and PPI identified 
by genetic experimental systems.

To train and test a machine learning method, we also need a negative dataset, i.e. a dataset of protein pairs that 
do not interact. We construct negative sets in two different ways as mentioned by Guo67. One is to pair proteins 
from different cellular localizations and thus highly unlikely to interact with each other. The cellular localization 
information was downloaded from the TAIR database. The dataset with the positive set and the negative set 
constructed in this way is named as PPIloc. Another one is to randomly pair proteins in the positive set and then 
exclude pairs that are already in the list of positive interacting pairs. The dataset with the positive set and the 
negative set constructed in this way is named as PPIrand. Both PPIloc and PPIrand included the equal number of 
interacting and non-interacting pairs; thus there are 9,518 pairs in total.

For training and testing RF, protein pairs that lack co-expression information needed to be removed. This 
reduced the number of interacting pairs to 3,427. By adding the equal number of non-interacting protein pairs 
either from PPIloc or PPIrand, the total number of the dataset for RF has become 6,854. The dataset was were split 
into a training, a validation, and a testing set, respectively, and a rigorous nested cross-validation evaluation was 
performed to evaluate the prediction accuracy of PPIP.

The design of PPIP.  PPIP predicts if a pair of proteins is likely to have physical interaction or not in physio-
logical condition from the proteins’ sequence and proteomic features. As illustrated in Fig. 1, for a query protein 
pair, their physical interaction is predicted from physiochemical property features of amino acid sequences of 
the protein pairs using SVM. The SVM protocol was named as SVMloc and SVMrand corresponding to the PPIloc 

Organism
Common 
Name

Number of 
Protein genes

Identified 
unique PPIs

Unique Proteins 
in PPIs

Fraction of proteins involved 
in known PPIs (%)

Arabidopsis thaliana mousear cress 27,636 35,908 9,574 34.55

Zea mays corn 37,376 13 21 0.056

Glycine max soybean 46,993 39 43 0.092

Oryza sativa (Japonica) rice 35,679 90 72 0.202

Solanum lycopersicum tomato 25,613 107 44 0.172

Solanum tuberosum potato 28,463 2 3 0.011

Table 1.  Statistics of the number of experimentally determined PPIs in representative plant species. The 
statistics of PPIs were taken from the BioGRID database. The numbers of protein genes were taken from the 
KEGG database.
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and PPIrand dataset used, respectively. The features used were hydrophobicity, hydrophilicity, side-chain volumes, 
polarity, polarizability, solvent-accessible surface area, and net charge index (NCI) of side-chains. In parallel, the 
complementary features of gene co-expression, functional similarity, and the phylogenetic profile68 were used 
to make another independent prediction by RF. The RF protocol was named as RFloc and RFrand corresponding 
to refer to the PPIloc and PPIrand dataset used, respectively. Predictions with RF were performed in two settings, 
one with all the features and the other without gene expression features (thus three functional similarity features 
and the phylogenetic profile) because gene expression data is currently not available for corn and soybean. See 
Methods for more details about the features.

Prediction performance on the known Arabidopsis PPIs.  On the PPIloc and PPIrand datasets of known 
PPIs and non-interacting protein pairs of Arabidopsis, parameters of SVM and RF were trained and tested using 
six-fold nested cross-validation. In this rigorous validation procedure, the dataset is split into six subsets, and pre-
diction accuracy was measured on each of the subsets using parameters optimized on the rest of the five subsets. 
See Methods and Supplementary Tables S2 and S3 for more details of this procedure.

Using SVM, the overall prediction accuracies for the PPIloc and PPIrand datasets were 91.9% and 70.8%, respec-
tively (Supplementary Table S4). Thus, SVM performed better on the negative set with protein pairs from dif-
ferent cellular locations than on negative protein pairs that were randomly combined from the interacting pairs 
(Supplementary Table S4). This is consistent with the conclusion in the paper by Guo67, who performed a similar 
comparison of negative datasets.

On the other hand, RFrand trained on PPIrand performed better than RFloc, which was trained on PPIloc. This 
order was consistently observed when the eight and the four features were used in RF. The accuracy of RF8rand and 
RF4rand were 92.0% and 92.6% accuracy, respectively. On the PPIloc, the accuracies were lower, 80.0% and 79.6% 
for RF8loc and RF4loc, respectively (Supplementary Table S5).

An advantage of random forest is that it can provide the importance of each feature in making correct clas-
sification using two metrics, the mean decrease of accuracy (MDA) and the mean decrease of Gini importance 
(MDGI) (see Methods and Supplementary Note)69. As shown in Supplementary Table S6, two functional associ-
ation scores, IAS, PAS, were found to be the two most important features for both RF8loc and RF8rand models. The 
IAS score was calculated based on the frequency of two GO terms annotating interacting proteins while the PAS 
score was calculated from the co-occurrence of two GO terms in PubMed abstracts. Therefore, it is reasonable 
that these two scores contribute largely to classifying interacting and non-interacting protein pairs, because they 
evaluate biological contexts of GO terms. The results in the table also showed that the phylogenetic profile was 
more informative than gene expression features.

Comparison with STRING confidence scores.  We compared our prediction with the confidence score 
of protein-protein interactions provided in the STRING database50. Since SVM used in the PPIP pipeline perform 
binary classifications and do not provide probability values that are comparable to the STRING scores, we used 
SVM regression for this comparison. Two types of SVM regression models were used, SVM-  and SVM-υ70. 
SVM-  controls the error tolerance in the training set whereas SVM-υ uses an additional parameter υ to control 
the proportion of the data points to be used as support vectors. We trained these two SVM regression models 
using the same hyperparameters as SVMloc and SVMrand. As for RF, we used the fraction of decision trees in RF 
that vote for protein-protein interaction as the probability.

First, we checked how consistent the predictions by SVM-ε and SVM-ν were with the SVM models in PPIP if 
a probability value of 0.5 in the SVM regressions was used to convert a probability value of SVM-ε and SVM-ν to 
binary prediction. On the PPIloc dataset, the prediction by SVMloc-ε was consistent with SVMloc on 99.2% (9445 
among 9518) of the cases while SVMloc-ν was consistent with SVMloc on 97.8% of the cases (9312 among 9518). 

Figure 1.  The schematic workflow of protein-protein interaction prediction by PPIP. Given a pair of protein A 
and B, physiochemical property features from their amino acid sequences are extracted and their interaction is 
predicted by support vector machine (SVMloc). In parallel, functional features including functional similarity 
scores, gene co-expression scores, and phylogenetic profile similarity score are used to make an independent 
prediction of interaction by random forest (RFrand).
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On the PPIrand dataset, SVMrand-ε’s results were consistent with SVMrand on 73.9% (7032 among 9518) of the cases 
while SVMrand-ν’s results agreed with SVMrand on 73.4% (6987 among 9518) of the proteins.

With these agreement results, we then compared the performance of SVM-ε, SVM-ν, and RF with STRING. 
The two datasets, PPIloc and PPIrand, were used, and the comparison was made using Area Under the Curve (AUC) 
of Receiver operating characteristic (ROC) (Fig. 2). On the PPIloc dataset (Fig. 2A), two SVM models, SVMloc-ε 
and SVMloc-ν showed substantially higher AUC (0.98 and 0.97, respectively) than STRING. RF showed the same 
AUC value as STRING (0.88). On PPIrand, RFrand performed the best with AUC of 0.98 and STRING came the 
second (AUC: 0.86) (Fig. 2B). Thus, on the both datasets, at least one of our methods showed substantially better 
AUC than STRING.

Based on these results (Fig. 2), we combine SVMloc and RFrand in the PPIP pipeline (Fig. 1) since they achieved 
a very high AUC, substantially better than STRING, in the genome-scale prediction in Arabidopsis, corn, and 
soybean.

PPI detection by taking overlap between SVM and RF.  In Supplementary Table S7, we examined 
PPI detection performance by combining SVM and RF on the two datasets, PPIloc and PPIrand. As shown in the 
table, precision improved by taking consensus: On PPIloc, while the precision of SVMloc and RFloc were 0.947 and 
0.823, respectively, the combination of the two methods showed a higher value of 0.980. Similarly, On PPIrand, 
the combination of the two methods showed the perfect precision of 1.0. Note that the improvement of precision 
was a tradeoff with the accuracy, which decreased because apparently PPIs are missed if they are not detected by 
both SVM and RF. However, we consider that maintaining a high precision is more important when it comes to a 
genome-scale prediction because producing many false positive would be a serious concern.

We have further tested the performance of SVMloc and RFrand on a large negative dataset of 2,038,222 protein 
pairs that are assembled by exhaustively pairing proteins from different cellular locations. The false positive rate 
of SVMloc on this dataset was 63.7%. We also ran RFrand, after excluding pairs that do not have gene expression 
data (so that the RF model can run with gene expression features), which remained 1,048,575 pairs in the dataset. 
RFrand recorded a small false positive rate of 4.36%. Finally, as designed in the PPIP pipeline, we took the overlap 
between SVMloc and RFrand, which yielded a very small false positive rate of 2.68%. The results confirm that the 
design of PPIP was effective in reducing false positives and that PPIP is suitable for a genome-scale prediction.

Prediction performance on the BioGRID Arabidopsis Dataset.  We further tested the prediction abil-
ity of our prediction method PPIP on a different Arabidopsis dataset, which was obtained from the BioGRID data-
base29. BioGRID contained PPI data that were not included in the TAIR database, partly because it was updated 
more recently. In total, 3,280 Arabidopsis physical PPIs which have been verified by at least two experiments and 
not included in the TAIR-based dataset were found in BioGRID. The data were further pruned by the sequence 
identity cutoffs, 80%, 50%, and 30% (Table 2). The overlaps between the training dataset (PPIloc and PPIrand) were 
excluded. The sequence identity is a measurement of the protein sequence similarity from BLAST. Prediction by 
RF was applied for a smaller fraction of PPIs, only to those which have co-expression information. The data sets 
used by SVM and RF with different sequence identify cutoffs are provided in Supplementary Table S8. While an 
evaluation on over-prediction of our methods was extensively performed on a large negative dataset in the previ-
ous section, this benchmark provides an additional check of the SVM and RF models in terms of recall.

The recall values of SVM were somewhat lower than what was observed on the TAIR-based dataset (0.8880 
for SVMloc and 0.5606 for SVMrand, which can be computed as the fraction of the sum of “True Positives” 
from the 1–6 test sets among the total of positives, i.e. the sum of True Positives” and “False Negatives” in 
Supplementary Table S4). On the other hand, the recall values of RF were in the same range as the value observed 
on the TAIR-based dataset (0.7642 for RF8loc, 0.7610 for RF4loc, 0.8984 for RF8rand and 0.9050 for RF4rand from 
Supplementary Table S5, which can be computed in the same way). RF’s two predictions with different feature 
sets, the full features and the feature set without gene expression features, yielded almost identical recall.

Figure 2.  Comparison of PPI detection performance with STRING in identifying interacting protein pairs in 
Arabidopsis. Area Under the Curve (AUC) of Receiver operating characteristic (ROC) was used for comparison. 
(A) Evaluation on the PPIloc dataset; (B) Evaluation on the PPIrand dataset. SVMloc/rand-ε and –ν are SVM 
regression models trained on the PPIloc or PPIrand, respectively. The probability for RF was computed as the 
fraction of votes from decision trees. For STRING, protein pairs were not included if they are not listed in 
STRING. A dashed line shows a random retrieval, which has an AUC of 0.5.
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Among the two SVM models, SVMloc showed a higher recall. When the two RF models were compared, 
RFrand achieved a higher recall than the counterpart, RFloc. These results are consistent with what we observed on 
the TAIR-based dataset (Supplementary Tables S4 and S5), which would justify our earlier choice of combining 
SVMloc and RFrand for the genome-scale PPI predictions to be discussed in the subsequent sections.

PPI prediction for three plant genomes.  Next, we applied PPIP to the three plant genomes, Arabidopsis, 
Zea mays (corn), and Glycine max (soybean). The genome sequences of the three plants were downloaded from 
the UniProt database71. Since the number of all possible protein pairs in the whole genome is too large, we applied 
PPIP only for protein pairs that are likely to co-locate in a cell, having a sufficient similarity in their Cellular 
Component (CC) Gene Ontology (GO) category terms72, which describe the sub-cellular locations of proteins. 
Since many protein genes in corn and soybean do not have GO term annotations in UniProt, we used a function 
prediction method, PFP73–75 to predict GO terms to supplement annotations to proteins. PFP is one of the top 
performing function prediction methods, which performs better than conventional methods, e.g. BLAST76, as 
was also demonstrated in a community-wide function annotation assessment, CAFA77,78. From PFP, only high 
confidence GO predictions with a score of over 10,000 were used73. The similarity of CC terms of two proteins was 
evaluated by the FunSim score, which essentially is the average pairwise similarity of CC GO terms79,80. Protein 
pairs with a FunSim score of CC terms over 0.4 were subject to the prediction with PPIP. This cutoff was deter-
mined from the distribution of the CC-FunSim score of predicted Arabidopsis PPIs in three previous papers that 
made predictions based on the assumption that PPIs are conserved across species42,61,64 (Supplementary Fig. S1). 
Proteins that do not have CC annotations even with PFP prediction were also discarded from the PPI predic-
tion. Applying this pre-screening reduced the number of protein pairs to 21.36% (133,074,361 pairs), 13.54% 
(24,814,793 pairs), and 15.27% (54,814,995 pairs) of all possible protein pairs for Arabidopsis, corn, and soybean, 
respectively. This pre-screening process would likely miss some true PPIs that do not satisfy the CC similarity 
criteria, nevertheless, we decided to apply the process because having a common subcellular co-localization can 
serve as additional supporting evidence of PPIs.

The numbers of predicted PPIs in the three genomes by PPIP are summarized in Table 3. For protein pairs 
that satisfied the CC GO term similarity, SVMloc and RFrand were independently applied, and commonly predicted 
PPIs by SVMloc and RFrand were selected. Among protein pairs with CC-FunSim > 0.4, SVMloc selected about 10%, 
56% and 56% as interacting pairs while RFrand predicted 1.83%, 17.45%, and 18.06% as interacting, for Arabidopsis, 
corn, and soybean, respectively (Table 3). The final PPI predictions, which are the PPIs predicted commonly by 
SVMloc and RFrand, were 0.0081%, 7.19%, and 3.77% out of all the possible protein pairs for Arabidopsis, corn, 
and soybean, respectively. Compared to the fraction of known PPIs in several other well-studied organisms in 

Seq. Identity 
cutoff

PPIs subject to prediction 
by SVM (RF)(a) Recall by SVMloc

(b) Recall by RFloc
(c) Recall by SVMrand

(b) Recall by RFrand
(c)

All PPIs 3280 (2468) 0.7466 (0.7057) 0.8440 (0.8327) 0.3250 (0.2565) 0.9444 (0.9444)

80% 1123 (797) 0.7266 (0.7114) 0.7804 (0.7604) 0.2654 (0.2597) 0.9448 (0.9448)

50% 937 (660) 0.7033 (0.6818) 0.7758 (0.7561) 0.2465 (0.2303) 0.9470 (0.9470)

30% 825 (585) 0.6909 (0.6667) 0.7641 (0.7453) 0.2364 (0.2239) 0.9470 (0.9470)

Table 2.  The prediction accuracy (recall) on the BioGRID PPI dataset. The PPIs were clustered by the sequence 
identity cutoffs of 80%, 50%, and 30% to reduce similar sequences. The sequence identity of protein pairs was 
computed with the Needleman-Wunsch (global sequence alignment) algorithm implemented in the nwalign 
python library. On this dataset, we evaluated recall, i.e. the fraction of PPIs in the datasets that were correctly 
predicted as interacting protein pairs. SVM trained by PPIloc or PPIrand were named as SVMloc or SVMrand. RF 
trained by PPIloc or PPIrand were named as RFloc or RFrand. (a) RF with the eight features was able to be applied 
only for PPIs that have gene co-expression data available. The numbers in the parentheses count such PPIs with 
expression data available. (b) Recall is the fraction of PPIs that are correctly predicted. In the parentheses, SVM 
recall values measured on the PPIs with co-expression data i.e. the same dataset as used for prediction by RF 
with the eight features, are shown. (c) The values show the recall of RF using the eight features including the 
gene expression features. Results with the four feature combinations that only use the functional association 
scores and the phylogenetic profile are provided in the parentheses.

Organism CC > 0.4 SVMloc RFrand Common
Degree 
exponent

Arabidopsis 133,074,561 (21.36%all) 13,682,168 (10.28%cc) 2,440,139 (1.83%cc) 50,220 (0.0081%all) 1.362

corn 24,814,793 (13.54%all) 13,902,459 (56.02%cc) 23,223,947 (17.45%cc) 13,175,414 (7.19%all) 0.204

soybean 54,814,995 (15.27%all) 30,844,273 (56.27%cc) 24,031,016 (18.06%cc) 13,527,834 (3.77%all) 0.401

Table 3.  The Summary of the number of predicted PPIs in the three plant genomes. CC > 0.4, the number and 
the percentage of protein pairs among all the possible protein pairs that satisfied the CC FunSim score criterion 
of over 0.4; (%all); SVMloc and RFrand, predicted PPIs among pairs that satisfied the CC > 0.4 criterion by SVMloc 
and RFrand, respectively; Common, commonly predicted PPIs by SVMloc and RFrand; Degree exponent, the 
parameter value of the power-law distribution of PPIs (Fig. 3). %all is the percentage relative to the all possible 
protein pairs of the organism while %cc is the percentage relative to the protein pairs that satisfied CC > 0.4.
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Supplementary Table S9, the fraction of Arabidopsis, corn, and soybean PPIs from the current study is at the same 
level. Particularly, the fraction of predicted PPIs for Arabidopsis (0.0081%) seems relatively small, but this fraction 
is consistent in Table S9. All the predicted PPIs for the three plant genomes are available as Supplementary Data 
on our lab website (http://kiharalab.org/PPIP_results/).

It is known that the degree distribution of a PPI network of an organism follows a power-law distribution, 
i.e. the histogram of the number of interactions (called the degree) for each protein is well approximated with a 
power-law, p(k) ~ k−γ where k is the fraction of proteins with a certain number of interactions, and γ is a parame-
ter called the degree exponent, which determines the slope of the distribution79,81,82. Figure 3 shows that the PPIs 
of the three plants detected in the current work follow the power-law, with γ being 1.362 in Arabidopsis, 0.204 in 
corn, and 0.401 in soybean. Smaller degree exponents for corn and soybean indicate that these two plants have 
more hub proteins that interact with many proteins.

Next, we compared our PPI prediction on Arabidopsis with three existing genome-scale prediction results. 
These three works used a very different approach for prediction, the interlog concept39, which assumes that interac-
tions of orthologous proteins across different species are conserved. Geisler-Lee et al.61 and De Bodt et al.42 used the 
same reference organisms, S. cerevisiae, C. elegans, D. melanogaster, and H. sapiens, whereas Dutkowski et al.64 used 
the same four organisms with two more organisms, M. musculus, and R. norvegicus (Supplementary Table S10). 
Supplementary Table S11 shows the number of PPIs predicted by the three works. All the three works predicted 
about the same number of PPIs, 14,009 to 19,974. The works by Geisler-Lee et al. and De. Bodt et al. made a 
very similar number of predictions, which is probably due to them using the same set of reference organisms. In 
Supplementary Table S11, we compared commonly predicted PPIs by pairs of works including our method, PPIP. 
Geisler-Lee et al. and De. Bodt et al. had the largest number of common predictions, although the common predic-
tions would be small considering the same approach and the reference organisms they used. Common predictions 
by other pairs including pairs with PPIP are roughly about the same numbers. Thus, PPIP has a similar level of 
agreement with the three previous works, although they took a very different approach from ours.

Examples of predicted PPIs in Arabidopsis.  From the predicted PPIs for the three plant genomes (http://
kiharalab.org/PPIP_results/), here we discuss examples with three different levels of confidence. Supplementary 
Table 12–21 provide examples from Arabidopsis. All the listed PPIs in the tables were predicted consistently by 
the SVMloc and RFrand and the probability score of RFrand was over 0.95. The difference of the confidence levels is 
based on the availability of additional supporting data.

The predictions are separated into three classes for each genome according to the availability of other evidence 
that supports the predictions. Supplementary Table S12 lists predicted PPIs with two more supporting evidence: 
a very high score of over 900 in the STRING database50 and also satisfy at least one of the following three condi-
tions: (a) the two proteins are known to locate in the same pathway in the KEGG database83, (b) the two proteins 
are co-mentioned in a literature. The predicted PPIs with correlated elution profile in PPI detection using mass 
spectrometry (MS)84,85 are also included in Supplementary Table S12. STRING collects several different types of 
evidence for the functional association of protein pairs and provides a score that ranges from 0 to 1000 with 1000 
as the most confident score. In the works by Aryal et al.84,85, proteins in Arabidopsis were fractionated using size 
exclusion chromatography, and abundance profiles across the column fractions were quantified using label-free 
precursor ion (MS1) intensity. Proteins with correlated profiles and clustered together among all detected pro-
teins were more likely to form complexes (see the original papers for more details). Supplementary Table S13 lists 
predicted PPIs with at least one piece of additional evidence, either a common KEGG pathway or literature that 
co-mention the two proteins. Protein pairs listed in the Supplementary Table S14 do not have additional evidence 
because the proteins were not much studied before but were predicted with the highest score (1.0) by RFrand.

The first half of Supplementary Table S12 lists predicted Arabidopsis PPIs with literature that describes evi-
dence of their interaction. This list selected the most confident prediction in the Arabidopsis. Most of the inter-
acting proteins are ribosomal proteins. Besides ribosomal proteins, several pairs of Sm-like proteins are predicted 
to interact, which are known as subunits of the heteroheptameric complexes and function in mRNA splicing and 
degradation86,87. Another predicted PPI is plastid division protein PDV2 (AT2G16070) and protein accumulation 
and replication of chloroplasts 6 ARC6 (AT5G42480), which has been shown to interact in the intermembrane 

Figure 3.  Degree distribution of proteins in the predicted protein-protein interaction network. The X-axis 
is the degree of proteins in the PPI network and the Y-axis is the frequency of proteins with a certain number 
of degrees. A log scale is used for both axes. (A) Arabidopsis thaliana; (B) Zea mays (corn); (C) Glycine max 
(soybean). The exponents of power-law distribution are 1.362, 0.204, 0.401, respectively.
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space to coordinate the division machinery of chloroplast membrane88. Our predicted PPIs also included some 
subunits of known complexes such as coatomer, RNA polymerase, DNA directed RNA polymerase, augmin, and 
adaptor complex 1 (AP-1).

The latter half of the table provides PPIs with similar MS elution profiles84,85. For example, V-type proton 
ATPase subunit C (AT1G12840) and V-type proton ATPase subunit G2 (AT4G23710) are predicted to interact by 
RF and SVM. Additionally, they have highly correlated protein elution profile and are involved in the two com-
mon KEGG pathway including oxidative phosphorylation (ath00190), and phagosome (ath04145).

Supplementary Table S13 lists predicted PPIs in Arabidopsis with the next level of confidence, which has extra 
evidence but no information available in STRING or with a low STRING score (<400). An interesting example is 
asymmetric leaves 2 (AS2) (AT1G65620) and histone deacetylase 6 (HDA6) (AT5G63110). Although they have a 
very low STRING score a previous study showed that HDA6 functions with AS2 to regulate the leaf development 
and suggested that HDA6 may be the part of the AS1-AS2 repression complex to repress KNOX gene expression 
in Arabidopsis89. Another interesting example is protection of telomeres protein 1a POT1a (AT2G05210) and CST 
complex subunit TEN1 (AT1G56260). It is known that CTC1, STN1, and TEN1 consist of telomere complex and 
POT1a interplay with CST components to regulate the telomerase enzyme activity90.

The last table for Arabidopsis, Supplementary Table S14, shows a list of PPIs with the highest RF prob-
ability score yet have no other known evidence. An interesting example in this table is pentatricopeptide 
repeat-containing protein (AT1G05600 and AT5G27270). They may function in RNA editing in chloroplast91.

Examples of predicted PPIs in corn.  Predictions for corn are shown in Supplementary Tables S15–S17, 
and Fig. 4A. PPIs shown in these tables are predicted both by the SVMloc and RFrand with a high RF probability 
score of 0.9 or higher. As in the tables for Arabidopsis, Supplementary Table S15 lists predicted PPIs with two 
additional supporting pieces of evidence, and Supplementary Table S16 is for PPIs with a single existing piece of 
additional evidence, in this case having a common KEGG pathway, while Supplementary Table 18 includes the 
predicted PPIs with no existing evidence for interaction.

In Supplementary Table S15, 12 protein pairs out of 18 listed turned out to be NAD(P)H-quinone oxidore-
ductase subunits. This list also includes interaction between hydroxymethylglutaryl-CoA synthase (UniProt ID: 
B6U9M4) and acetyl-CoA acetyltransferase (UniProt ID: B4F9B2), both of which are involved in the four same 
pathways including terpenoid backbone biosynthesis (zma00900), valine leucine and isoleucine degradation 
(zma00280), butanoate metabolism (zma00650), and synthesis and degradation of ketone bodies (zma00072), 
and they have a very high database score in STRING.

Supplementary Table S16 shows predicted PPIs with the highest RF score (1.0) locating in at least one com-
mon KEGG pathway. For these PPIs, a STRING score was not available. As shown, most of the proteins are 
kinases in the same pathways, the plant hormone signal transduction (KEGG: zma04075) or the plant-pathogen 
interaction pathway (KEGG: zma04626). Thus, it is reasonable to conclude that they are interacting. In the table, 
we also provided protein functional association score (FunSim) with IAS scores. As mentioned in the Methods, 
IAS directly indicates the likelihood that proteins with the GO annotations interact. Since the IAS scores listed 
in the table are very high relative to the background distribution (within top 1% for IAS and PAS for proteins in 
Arabidopsis protein pairs), these scores also support the PPI predictions.

The third list, Supplementary Table S17, includes PPIs that were predicted with a high confidence score (RF 
probability = 1) and high functional correlations (IAS > 200 and PAS > 20 and phylogenetic similarity >0.9), but 
do not have other existing supporting information or protein annotations. When the 226 proteins involved in 
these PPIs were represented into a network by connecting protein pairs in the PPIs using Cytoscape92, 224 of them 
(99.1%) are clustered into four subnetworks (Fig. 4A). Since they have no functional annotations, we used PFP 
to predict their GO terms and performed GO enrichment analysis using NaviGO80,93 as shown in Supplementary 
Table S18. It turned out that each of the subnetworks has enriched GO terms that are common in the proteins in 
the network: The largest subnetwork involved in 101 proteins were predicted by PFP to be involved in flavonoid 
glucuronidation, flavonoid biosynthetic process, cellular glucuronidation, and quercertin 3-O-glucosyltransferase 
activity. In the second largest subnetwork, 57 out of 59 proteins were predicted to be involved in the RNA met-
abolic process and RNA secondary structure unwinding. All proteins in the third subnetwork were predicted to 
function in proteolysis and protein catabolic process while proteins in the last subnetwork were predicted to be 
involved in the regulation of the metabolic process, regulation in gene expression, and regulation of transcription 
DNA-templated. Thus, proteins in the predicted PPI networks have coherent biological functions.

Examples of predicted PPIs in soybean.  The last plant genome we analyzed was soybean. Soybean has 
much less available functional information in databases comparing with Arabidopsis and corn. Supplementary 
Table S19 selected a list of predicted PPIs using the same standard as Supplementary Table S15 for corn, i.e. PPIs 
supported by two additional evidence. This list includes subunits from known complexes, including ATP syn-
thase, chalcone synthase, cytochrome, and NADH dehydrogenase.

The next table, Supplementary Table S20 shows PPIs without conclusive information in STRING. However, 
two proteins in each pair are found in the same KEGG pathway, and most of them have a similar function, judg-
ing from the name in KEGG or UniProt annotation. The predicted PPIs in this list include protein interaction 
between glycosyltransferase and protein kinase involved in plant hormone signal transduction, plant-pathogen 
interaction, zeatin biosynthesis, and carotenoid biosynthesis signaling pathway.

Supplementary Table S21 lists high confident PPIs (RF probability = 1, IAS > 200, PAS > 20 and phylogenetic 
similarity >0.9), which do not have other existing supporting evidence and functional annotation in UniProt. 
As we did for the predicted PPIs in corn, in Fig. 4B we constructed networks with 224 proteins that are involved 
in the PPIs in Table S21 and performed the functional enrichment analysis using predicted GO terms by PFP 
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(Supplementary Table S18, the bottom half). 215 (96.0%) out of 224 proteins were included in four subnetworks. 
As observed in the subnetworks in corn (Fig. 4A), proteins in each subnetwork are highly functionally relevant 
and would be reasonable to conclude that they are most likely to interact. All proteins in the largest subnetwork 
were predicted to be involved in the MAPK signaling pathway in response to stimuli. The second largest sub-
network with 41 proteins was predicted to be involved in the flavonoid biosynthetic process. Proteins in the 
third subnetwork are predicted to be involved in RNA processing and intracellular protein transport. The fourth 
subnetwork with 9 proteins is in a pathway for signal transduction and cell communication in response to the 
stimulus.

Discussion
A PPI network is fundamental for understanding an organism’s functional and structural units. For example, 
PPIs are very useful for predicting the function of individual proteins3 as well as pathways of protein groups94. 
Although large-scale PPIs of several model organisms have been revealed by experimental methods95–97 and by 
computational methods42,61,64,98, the works for plant PPIs were sparse. This work is intended to fill the gap for plant 
PPIs by providing PPI predictions with the method that was calibrated on known PPIs in Arabidopsis.

Figure 4.  The networks constructed with predicted PPIs with the highest RF confidence scores (1.0) but do not 
have documented other supporting evidence. Connected PPIs are predicted by both SVMloc and RFrand. PPIs 
were further selected by high functional similarity scores: IAS-FunSim (>200), PAS-FunSim (>20), and the 
phylogenetic profile similarity (>0.9). (A) Predicted PPIs for corn. 224 out of 226 proteins in the PPIs qualified 
for the criteria are included in four subnetworks shown. The number of proteins in each network is 101, 59, 41, 
and 23 for the subnetwork 1 to 4, respectively. Supplementary Table S17 provides the subnetwork index of each 
predicted PPI. (B) Predicted PPIs for soybean. 215 out of 224 proteins in the PPIs qualified for these criteria 
are included in four subnetworks shown. The number of proteins in each network is 145, 41, 20, and 9 for the 
subnetwork 1 to 4, respectively. Supplementary Table S21 provides the subnetwork index of each predicted PPI. 
See Supplementary Table S18 for the results of the functional enrichment analysis of the subnetworks.
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It is inevitable that a computational method often makes wrong PPI predictions. However, as discussed in the 
introduction, the situation would be similar in experimental methods, as it has been reported that independent 
experiments have substantial disagreements26–28. To reduce errors of a method, either computational or exper-
imental, it would be useful to compare outputs from multiple methods. Having this idea in mind, we designed 
PPIP such that it combines two independent predictions, one using sequence-based features and the other with 
a combination of orthogonal features (Fig. 1). This architecture sacrificed the recall rate but in return achieved 
a very low false positive rate, which we consider as a higher priority since we provide all predicted PPIs for 
reference information for biologists. Also, in the genome-scale predictions for the three genomes, we provided 
additional evidence from other sources whenever available. In the analysis, we highlighted predicted PPIs with 
three levels of confidence. All the PPIs in these three levels were predicted not only with high scores but with 
additional supporting evidence. PPIs in the first (best) confidence have direct literature information or multiple 
supporting data, including a high score in STRING and co-existence in the same pathway. In the second level, 
PPIs have at least one evidence including the co-existence in the same pathway. PPIs of the third level confidence 
are between proteins with functional coherence. While it is true that functional similarity between proteins does 
not necessarily indicate physical interaction between them, it is certainly highly related with each other as it is a 
common practice to verify experimentally detected PPIs by checking their functional similarity17,18,96 and func-
tional similarity is an informative feature of proteins for predicting PPIs45,46,99–101. PPI predictions made for the 
three plants are made available on our lab website (http://kiharalab.org/PPIP_results/). We hope they are used as 
a reference and found informative.

Methods
Below we describe details of features and the machine learning methods used to predict PPIs.

Sequence-based prediction.  We explain protein sequence features used in PPIP. It is the left branch of the 
flowchart in Fig. 1. To capture physicochemical properties of interacting proteins the following seven features are 
assigned to each amino acid of query protein sequences102–108: hydrophobicity, hydrophilicity, side-chain volumes, 
polarity, polarizability, solvent-accessible surface area, and net charge index (NCI) of side-chains. Then each 
query protein sequence is represented with auto-covariance (AC) using strings of the seven features as follows:
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where lag is the distance between covariant residues to consider, which ranges from 1 to 30, j is the j-th physi-
ochemical feature, i is the position in the sequence, Pi,j is the value of the physicochemical feature j of amino acid 
position i, and L is the length of the sequence. Thus, AC of a physicochemical feature with a certain lag length 
will be large if amino acid with a large (or small) property value appears periodically with an interval of lag. AC is 
computed for each protein sequence, and thus a query protein pair is represented as a 2 (sequences) * 7 (features) 
* 30 (lag intervals) = 420-dimensional vector. The vector representation was used as input of SVM for predicting 
if protein pairs are interacting or not interacting. We took this approach because it was reported to be successful 
in a previous paper67.

Gene expression features.  On the other branch of PPIP (Fig. 1), we used three features, gene 
co-expression, functional similarity, and phylogenetic profile similarity in the framework of RF to predicted PPI 
of a query protein pair. We explain the three features in the following three subsections.

If two proteins are upregulated or down-regulated simultaneously under various conditions, it is highly likely 
that the two proteins are involved in the same pathway and have a higher chance that they physically interact with 
each other. Thus, co-expression patterns can provide indirect evidence for predicting PPIs. We obtained gene 
coexpression information derived from microarray experiments and RNA-seq experiments from the ATTED-II 
database (http://atted.jp/)109. It is a database of pre-calculated Pearson’s correlation coefficients (PCC) and the 
mutual rank (MR) of co-expressed genes. MR is defined as the geometric mean of the rank of the correlation 
gene A to gene B among proteins in the genome and the rank of gene B to gene A. The smaller MR is, the stronger 
the genes are co-expressed. Since gene expression data are provided in two sources, microarray and RNA-seq, 
four features (microarray MR, microarray PCC, RNA-seq MR, and RNA-seq PCC) were used to represent the 
co-expression profile of protein pairs.

Protein function features.  The second feature used is protein functional similarity. Proteins with the same 
or similar biological functions are likely to physically interact because they may form permanent complexes or 
take part in the same pathway. Functional similarity of proteins was quantified by established similarity scores 
of Gene Ontology (GO) terms72. GO annotations were obtained from UniProt71 and TAIR (for Arabidopsis). 
We used three GO similarity/relevance scores, Interaction association score (IAS)45, Co-Occurrence Association 
Score (CAS), and PubMed Association Score (PAS)80,93,110. IAS, CAS, and PAS quantify how significantly a pair of 
GO terms appear in physically interacting proteins, annotations of individual genes, and PubMed abstracts. Thus, 
they evaluate co-occurrence of GO terms in biological contexts and shown to be effective in identifying proteins 
that physically interact)45 or in the same pathways111.

Phylogenetic profile similarity.  It has been observed that interacting proteins tend to coevolve112. We 
use the phylogenetic profile to exploit the evolutionary co-occurrence patterns of interacting proteins. The basic 
assumption of the phylogenetic profile method is that interacting proteins either co-present or co-absent across 
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organisms68. The original phylogenetic profile68 is a binary pattern of presence or absence of homologs in a set 
of reference genomes, but we used a modified version of the profile that used BLAST bit score instead of binary 
values as follows113:
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The similarity of protein i and j are defined in Eq. 2. k is the k-th reference genome, Rik is the BLAST search bit 
score of homolog of protein i in the k-th genome divided by the BLAST search bit score of i in the query genome 
(Eq. 3). We used 100 reference genomes (n = 100) (Supplementary Fig. S2). These genomes were selected in the 
following steps: we ran BLAST searches from all Arabidopsis protein sequences against the UniProt database 
using the default E-value cutoff of 10. Then, we constructed a phylogenetic tree for the genomes and manually 
selected the genomes from each branch of the tree so that the selected genomes are well distributed and represent 
the tree.

Machine learning methods.  We used two machine learning methods in PPIP, SVM for making predictions 
from sequence features and RF for predicting from a combination of four other features (Fig. 1). For SVM, we 
used the software package libsvm 2.84114. SVM uses a kernel function to transform input features and two 
hyper-parameters that need to be determined, a regularization parameter γ, which defines how far each training 
data influences the model and C, which controls the tradeoff of misclassification on training examples. For our 
kernel function, we used a radial kernel following previous works that predict PPI prediction from protein 
sequence features38,115–117. The two hyper-parameter values, C and γ, were determined to be =log C 52  and 

γ = −log 12  for SVMloc and =log C 12  and γ =log 12  for SVMrand by performing nested cross-validation118,119 as 
shown in Supplementary Table 2.

In parallel to the sequence-based prediction with SVM, RF was used to make an independent prediction from 
three features, functional similarity, gene co-expression, and phylogenetic profile similarity. RF is an ensemble 
learning method, which combines predictions made by a number of decision trees by a majority vote. RF can 
also determine important variables that contributed most in classification by calculating two metrics, the mean 
decrease of accuracy (MDA) and the mean decrease of Gini importance (MDGI) (refer to Additional file 8: Note 
S1 for more details)69,120. MDA is the difference of the error rate of classification caused by permuting feature 
values with values of other data points in a dataset. MDGI tells how much less a particular feature is selected as 
a node in the random forest after permuting this feature. The larger MDA and MDGI of a certain feature are, 
the more important that feature is. Similarly to SVM, we performed nested cross-validation to determine three 
hyper-parameter values used in RF (Supplementary Table S3).

Data Availability
All data generated or analyzed during this study are included in this article and its supplementary information 
files. The genome-scale prediction results are available on our lab website http://kiharalab.org/PPIP_results/.
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