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A B S T R A C T

A cerium oxide nanoparticles (nanoceria) has a wide range of applications in different fields, especially bio-
medical division. As a matter of concern, it has a major impact on the human health and environment. The aim
of this review is to address the different ways of synthesis of nanoceria using chemical and green synthesis
methods and characterization and the applications of nanoceria for antioxidant, anticancer, antibacterial ac-
tivities and toxicological studies including the most recent studies carried out in vivo and in vitro to study the
problems. We have exclusively discussed on the toxicology of nanoceria exposed to the general public along with
recent advances in the studies of antimicrobial, toxicity and anti-oxidant activity.

1. Introduction

Cerium belongs to lanthanide series and is rare earth metal (atomic
number = 58).It is the most abundant rare earth metal which is present
in two oxidation states i.e. +3 and +4 [1]. Cerium oxide is considered
to be a lanthanide metal oxide and is used as an ultraviolet absorber
[2,3], catalyst [4,5], polishing agent, gas sensors etc [6–10]. For com-
mercial purpose, nanoceria plays a vital role in cosmetic products,
consumer products, instruments and high technology. Moreover, they
behave as very good oxide ion conductors in case of solid oxide fuel
cells and used as a material in the electrode for gas sensors [11].

Recently, the importance of biomedical applications is growing as
they exhibit protection against radiation, cellular damage mediated by
toxicants and during pathological conditions such as brain or cardiac
ischemia, neurological disorders or neurodegeneration of retina [12].
Naked nanoceria has poor solubility in the water leading to complica-
tions in biological applications. Many studies have come out with the
polymer coating of nanomaterials which enhances the stability, bio-
compatibility and water solubility e.g. nanoceria coated with dextran
exhibits antioxidant property [13].

Due to the extensive use, nanoceria is getting released to the en-
vironment and exposure to humans (mostly via inhalation) is a major
concern. Contradictory results are found in the literature reporting the
toxicity of nanoceria. Few papers addressed nanoceria to have low
toxicity [14]. and don’t mediate cytotoxicity or inflammation [15,16].
On the contrary, evidence from literature also depicts nanoceria trigger
cell death. They trigger pro-oxidative effect due to reactive oxygen
species (ROS) which cause damage to the cell and ultimately lead to cell

death. Some studies addressed induction of oxidative stress caused by
nanoceria either in vitro or in vivo [17] whereas they act as direct an-
tioxidants and behave as free radical scavengers. It occurs by the in-
teraction of superoxide radical, hydroxyl radical and hydrogen peroxide
which restricts cell death due to oxidative stress. In addition to this,
controversial results are also seen regarding oxidative stress. Studies
have shown nanoceria either to exhibit pro-oxidative properties or
antioxidant properties [18–20].

In this review, we focus and discuss the chemical and green
synthesis of nanoceria and the underlying mechanisms in several stu-
dies like antimicrobial, toxicity (human health) such as cytotoxicity,
genotoxicity, neurotoxicity, antioxidant activities (in vivo & in vitro) and
biomedical applications.

2. Synthesis of nanoceria

Synthesis of nanoceria can be prepared by two means i.e. chemical
method and green synthesis.

2.1. Chemical method

Many chemical methods are reported by researchers for the synth-
esis of nanoceria. Different have proved the synthesis of nanoceria by
precipitation method [21–23] like co-precipitation [24] and chemical
precipitation [25,26], microwave [27,28], sonochemical [29,30], hy-
drothermal [31–34], reverse-co-precipitation [35], microwave-hydro-
thermal method [36].

A novel method for the synthesis of nanoceria is done by using the
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cage-shaped protein called apoferritin. It was a two and three-D array
formation using this protein. For the synthesis of nanoceria, apoferritin
was considered as bio-template. The chemical reaction occurred at the
cavity. There was oxidation of trivalent cerium ions and led to the
formation of nanoceria as seen in case of iron oxide formation. It was
confirmed as nanoceria with size 5.0 ± 0.7 nmThere was salt bridge
formation between the ferritins (each apoferritin containing a nano-
particle) by multivalent cerium ions. The best salt bridge formation led
to a 2-D array of nanoceria containing ferritin and 3-D arrays acquiring
ferritin with two different morphology i.e. Octahedral or prism struc-
tured [37].

2.2. Green method (from plant extracts)

The synthesis of nanoceria using different sources shown in
Table 1.Nanoceria can also be synthesized by using green methods.
There are many studies which have reported the green synthesis of
nanoceria using Gloriosa superba L. leaf extract. The nanoparticles
formed were confirmed by XRD and was found to be spherical in shape
[38].

Another study also addressed the synthesis of nanoceria using cul-
ture filtrate of Curvularia lunata. This even confirmed the spherical
shape of the nanoparticles which ranged from 5 to 20 nm [39]. These
synthesis nanoparticles also exhibited antibacterial activities against
different bacterial species. However, it was concluded that nano-
particles couldn’t penetrate the bacterial cells [40].

Recently, another study has also confirmed the use of Acalypha in-
dica and Aloe vera plant leaf extract for the synthesis of nanoceria
[41,42]. These extracts were used as a capping agent for the synthesis.
The most recent study of nanoceria synthesis is acquired by using the
flower extract of Hibiscus sabdariffa as a chelating agent. The char-
acterization of nanoceria confirmed the size to be approx. 3.9 nm in
diameter [43].

2.3. Synthesis from nutrients

The green approach synthesis is widely accepted by the researchers
due to its reliable and eco- friendly purpose. Several studies have re-
ported the synthesis of nanoceria using different nutrients like egg
white protein [44]. It has been proposed that ovalbumin and lysozyme
are the two proteins of egg white which acted as stabilizing agent for
the synthesis of nanoceria. The mechanism of nanoparticles formation

can be explained by the electrostatic interaction held between the
cerium ions (Ce3+) and protein with opposite charge enhances the
growth along with small stable isotropic nanoparticle formation [45].

However, another study also reveals the synthesis of nanoceria
using honey. The presence of vitamins, carbohydrates, and enzymes in
the honey matrix structure possess hydroxyl and amine groups.
Therefore, it was extensively used as stabilizing and coating agent to
the cerium species along with nanoceria which inhibited their crystal
growth [46].

3. Applications of nanoceria

Nanoceria is having a lot of applications in the biomedical field
shown in Fig. 1.

Table 1
Synthesis and applications of nanoceria.

S. no Synthesis route Size Applications Reference

1 co-precipitation method 20 nm (TEM and XRD) – [24]
2 Commercial nanoceria 8nmto 20 nm (TEM) molecular mechanism of cytotoxicity on lung adenocarcinoma (A549) cells [55]
3 hydrothermal process 3.1 nm (TEM) High oxidation activity [34]
4 Fungal culture filtrate of Curvularia

lunata
5 to 20 nm (TEM) Antibacterial activity against Gram positive (Staphylococcus aureus, Streptococcus

pneumoniae and Bacillus subtilis) and three Gram negative bacteria (Pseudomonas
aeruginosa, Proteus vulgaris and Klebsiella pneumoniae)

[39]

5 Leaves of Aloe barbadensis Miller plant 63.6 nm (dynamic light
scattering analysis)

– [42]

6 Precipitation method using ammonia
water and oxalic acid as precipitant

100–300 nm (SEM) – [21]

7 Gloriosa superba L. leaf extract 5 nm (TEM) Antibacterial activity against both gram positive and gram-negative bacteria [38]
8 Acalypha indica leaf extract 25–30 nm (TEM and XRD) Antibacterial activity [41]
9 Olea europaea leaf extract 24 nm (SEM and TEM) Antibacterial and antifungal activity against Gram-positive (G + ve)

(Staphylococcus aureus ATCC 6538) and Gram-negative (G−ve) (Escherichia coli
ATCC 15224, Pseudomonas aeruginosa ATCC 15442, Klebsiella pneumoniae ATCC-
BAA 1706) strains and Mucor species (FCBP-0300), Aspergillus flavus (FCBP-0064),
Fusarium solani (FCBP-434), and Aspergillus niger (FCBP-0198)

[40]

10 Hibiscus Sabdariffa's flower aqueous
extract

3.9 nm (HR TEM and XRD) Stability, surface morphology, chemical bonding and chemical valance states are
studies

[43]

11 Fresh egg white 25 nm (FE SEM) non-toxic effect of concentration up to 800 μg/ml on human periodontal fibroblasts
cells

[44]

Fig. 1. Applications of Nanoceria.
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3.1. Antibacterial activity

Many studies have confirmed that nanoceria also showed anti-
bacterial activity against Pseudomonas aeruginosa through agar well
diffusion and broth dilution method. The experimental data confirmed
that there was a complete zone of inhibition in case of P.aeruginosa
(NCIM-2242) with the increase in the concentration of nanoceria i.e.
500,750 and 1000 μg L−1 per well in case of agar well diffusion
method. Moreover, with concentration 200 and 400 μg L−1 against P.
aeruginosa (NCIM-2242) the antibacterial activity was confirmed by
broth dilution method [47].

In addition to this, another study also addressed that at lower
temperature antibacterial activity was seen including E.Coli, B.subtilis,
Shewanellaoneidensis and Pseudokirchneriella supcapitata. The probable
mechanism behind this activity was due to the action of reactive oxygen
species (ROS) [48].

3.2. Toxicity studies (Impact on human health)

The impact of nanoceria in the human health has brought keen
interest among the researchers. There are two main routes through
which nanoceria are exposed to the public i.e. inhalation and ingestion.
Moreover, the inhaled cerium exits the respiratory tract mediated by
different pathways and at different rates which depend on the body
fluids solubility [49,50]. After the process of ingestion, cerium is ex-
creted in the feces.

As nanoceria get poorly absorbed in the intestine, the exposure
through inhalation is a major concern than ingestion. After the in-
halation, the lungs and lymph nodes associated with it are the major
targets. It may so happen that other organs might get affected. When
the nanoceria get absorbed through circulation, it may also get dis-
tributed in other organs like liver, spleen, and kidney. Therefore, with
variation in the size of nanoparticles can reach to different target areas
of respiratory tract where it gets absorbed.

Researchers have also confirmed that nanoceria is poorly absorbed
in the digestive system. Through oral route of exposure, the solubility of
cerium oxide nanoparticle is very less when compared to other forms.
So, it is probably thought that acute toxicity is less even though when
transformed into soluble forms when absorbed by the body [51].

3.3. Cytotoxicity

Nanoceria was also the reason to cause cytotoxicity and oxidative
stress. The 20 nm nanoceria was toxic towards cultured human lung
cancer cells. Sulforhodamine B was used to check the cell viability when
exposed to 3.5, 10.5 and 23.3 μg/ml of nanoceria for 24, 48 and 72 h.
There was a decrease in cell viability with respect to the dosage of
nanoparticles and exposure time.

There was a quantitative assessment of total ROS, malondialdehyde,
α-tocopherol, glutathione and lactate dehydrogenase which were the
indicators of oxidative stress and cytotoxicity. Ultimately, there was a
reduced level of glutathione and α- tocopherol. Free radicals were
generated due to nanoparticle exposure and increase in oxidative stress
led to high level of lactate dehydrogenase and malondialdehyde which
showed clear indication towards cell membrane damage and lipid
peroxidation [52].

In addition to the above study, nanoceria also caused cytotoxicity
towards prostate cancer cell lines (PC-3) which was confirmed by MTT
assay. But these were non- toxic towards normal cell lines (L929). The
fluorescent dye rhodamine-123 conjugated with nanoceria which con-
firmed the cellular uptake followed by the optical detection [53].

3.4. Genotoxicity

Human bronchial epithelial cells (BEAS-2B) were cultured in KGM
(Keratinocyte growth medium) defined the medium. Comet assay

confirmed that after 24 h the DNA single-strand broke when exposed to
different concentrations of nanoceria (10,50,100,150 μg/ml) [54].

Recently, a study explained the molecular mechanism behind the
toxicity of nanoceria on lung adenocarcinoma (A549) cells. These na-
noparticles were solely responsible for morphological changes in A549
cells. Moreover, it led to cell apoptosis, due to increase in annexin–V
positive cells and loss in mitochondrial membrane potential. These
were confirmed by immunoblot analysis of BAX, Bcl-2, Cyt-C, AIF,
caspase-3, and caspase-9. Hence, reactive oxygen species induced DNA
damage and cell cycle arrest which caused apoptotic cell death in A549
cells due to nanoceria [55].

Another genotoxicity study was carried out in female albino Wistar
rats when exposed to nanoceria using comet and chromosomal aber-
ration (CA) assay and micronucleus test (MNT). It was concluded from
the results that with high dose (1000 mg/kg BW) of nanoceria mediated
DNA damage in liver cells and peripheral blood leukocytes (PBL). It
further led to cytogenetic changes and micronucleus formation in bone
cells and bone marrow [56].

In addition to this, another study consisted of the cytotoxic and
genotoxic study of nanoceria in human neuroblastoma cell line (IMR
32). Nanoceria caused cytotoxicity which was confirmed by lactate
dehydrogenase assays and 3-[4,5-dimethylthiazol-2-yl-2, 5-diphenyl
tetrazolium bromide whereas genotoxicity assessment was confirmed
using the cytokines-block micronucleus and comet assays. It was con-
cluded that ROS were involved in the toxicity of nanoceria [57].

3.5. Neurotoxicity

Delivery of a targeted drug is a major concern and the most difficult
job in neuroscience due to the fact that the blood-brain barrier (BBB)
blocks most of the molecules and acts as a selective filter. In vitro and in
vivo study confirmed that nanoparticles were used as carriers to move
across the BBB i.e. the drug called suramin was used to cure the in-
fection caused by the African trypanosomes which are the extracellular
parasites. Presently, there is the availability of very few toxic drugs for
this disease.

Therefore, the study was carried out to understand the responsive
action of the brain that instructs the administration of suramin into the
intracerebral region. Results have shown that the nanoceria which was
fluorescently tagged when IV injected into mice induced nanoparticles
accumulation in the liver and spleen. Moreover, very less penetration
was seen in the brain.

Another in vitro and in vivo study elucidated neurotoxic effect caused
due to nanoceria when exposed to serotonin (5-HT) which plays a vital
role as a neurotransmitter. In vitro study of 5-HT demonstrated that
nanoceria interacted with 5-HT and formed a 5-HT nanoceria complex.
And in vitro study carried out in live zebrafish embryos depicted the
lower level of 5-HT in the intestine due to prolonged exposure for more
than 3 days. Therefore the exposure of 20 and 50 ppm nanoparticles
decreased the 5-HT level to 20.5(± 1.3) and 5.3(± 1.5) nM respec-
tively when exposed to 30.8 (± 3.4) nM in control embryos (un-
exposed) [58].

4. Antioxidant activity

The most recent study described that when nanoceria was con-
jugated with levan, it depicted antioxidant activity. Levan coated na-
noceria were synthesized using the system called one pot-and green
synthesis. Levan acted as reducing and stabilizing agent. Moreover,
there was a reduction in the level of ROS when levan coated nano-
particles were treated with hydrogen peroxide which stimulated
NIH3T3 cells. Therefore, levan coated nanoparticles were beneficial
towards the disease induced by ROS [59].

Another study has demonstrated that an average 10 nm size nano-
ceria extended the lifespan and preserved the neuronal function ex-
pressed in brain cell cultures. It was examined that the impact of Fe-
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doped nanoceria (6%Fe) was proved out to be less effective as com-
pared to nanoceria.

The examination of 3 groups of nanoceria was done using H₂O₂, UV
and Aβ₁₋₄ ₂ to find out the neuroprotective capacity. When compared to
7 nm nanoceria, the level of cell death decreased in 10 nm nanoceria
which was induced by UV and H₂O₂. It was concluded that nanoceria
depicted antioxidant activity and is size dependent. These nanoparticles
protected the neurons from Aβ₁₋₄ ₂ toxicity and damage from free ra-
dicals [60].

4.1. In vitro study

In vitro studies are the evidence which proves nanoceria to be best
antioxidants. They show ROS scavenging which protects different cells
like stem [61], neuronal [62,63], human breast [64], gastrointestinal
epithelium [65] and endothelial [66]. Another study expressed that the
drug doxorubicin had antitumor activity in human melanoma cells
[67]. In A375 human melanoma cell line, cytotoxicity was seen and the
cell viability decreased due to co-incubation of nanoceria and the drug
doxorubicin. Anti-tumor activity and induced apoptosis were seen in
A375 cell line but didn’t cause DNA damage.

In addition to this, researchers have reported that when PC12
neuron-like cells were incubated with an increase in the concentration
of nanoceria, it was seen that PC12 cells depicted no deficiency in their
metabolic activity and cell differentiation capabilities were retained.
Moreover, there was an increase in neuronal length when cells were
exposed to nanoceria. Further, there was a reduction in the production
of ROS when stimulated with hydrogen peroxide. An increase in the
production of dopamine was also seen [68].

Cytotoxicity assay of nanoceria was carried with human breast
cancer (MCF-7) and fibrosarcoma (HT- 1080) cells. No cell death was
seen when the cells were treated with 20 μg mL−1,
50 μg mL−1,100 μg mL−1 and 200 μg mL−1 concentration of nano-
particles. These nanoparticles treated cells lead to increase in the pro-
duction of glutathione (GSH) and decrease the depletion of GSH caused
due to hydrogen peroxide [69].

4.2. In vivo study

Many in vivo animal studies were carried out using rats and mice to
understand the involvement of nanoceria in organs like liver, spleen,
kidneys, lungs, and brain [70–74]. Another study reflected the ab-
sorption of ̴ 30 nm in the liver and spleen via time and dose dependent
manner [75]. And study was examined to understand the effects of
5 nm vs. 30 nm nanoceria in terms of size, shape and dose. But no
difference was seen on the basis of retention and bio-distribution [76].

Very few studies were carried out with non-rodent models e.g.
Drosophila melanogaster was chosen for in vivo study with nanoceria. It
was confirmed that the uptake of nanoceria was seen in microvilli, in-
terior parts of the intestine, intestinal lumen, hemolymph tissues and
cytoplasm of intestinal cells. This was caused due to the ingestion of
nanoceria as food, which passed through the intestine followed by the
absorption in the mid-gut cells [77]. In addition to this, Caenorhabditis
elegans was chosen as a model organism which was exposed to different
charged surface coated nanoceria. It was observed that different surface
coated nanoparticles had different uptake. Positively charged showed
the best candidacy with highest bio-accumulation when compared to
negative and neutral particles [78].

Several in vivo studies are carried out with plant crops like rice [79],
wheat, sunflower, pumpkin [80], alfalfa, corn, tomato [81], kidney
bean [82], radish [83,84], cucumber [85], Rubia cordifolia [86] to study
the uptake of nanoceria. Results have shown the highest uptake in roots
as compared to other parts of plants like leaves shoots etc. [80–83].
This is caused due to several factors like nanoceria size [80,83,85],
agglomeration [85,80] and concentration [81,82] that lead to the up-
take and distribution of nanoparticles.

5. Conclusion

The effect of nanoceria is a major concern among the researchers on
the human health. We have discussed the overall processes and a recent
synthesis of nanoceria via chemical and green methods. Synthesis using
parts of plants extract is carried out for several years but we have in-
cluded the most recent synthesis using flower extract that acts as che-
lating agent. Another recent chemical synthesis includes the prepara-
tion of nanoceria from a protein supra-molecule called apoferritin.

We have focused on the positive and negative impacts of nanoceria
on different living organism model e.g. rat, mice, human cancer cell
lines and non-rodent models. Controversy is seen in the study of na-
noceria in the application of antioxidant property and toxicity analysis.
However, mostly the studies focus on the toxicity of nanoceria on
human health and different types of toxicity including cytotoxicity,
genotoxicity, and neurotoxicity. We have exclusively focused on the
antioxidant activities which are carried out both in vitro and in vivo.
Many in vitro studies have concluded that nanoceria can be considered
as safer nanoparticles as compared to the in vivo models.

We concluded that nanoceria was toxic towards human cancer cell
lines. They can lead to the release of free radicals and oxidative stress
ultimately leading to cell membrane damage and lipid peroxidation.
However, ROS mediated DNA damage and cell cycle arrest. Finally,
nanoceria can be used for several biomedical applications mostly for
ROS related diseases like cardiac diseases, Alzheimer’s disease, and
cancer. So, the ROS scavenging nanoceria can be considered as an al-
ternative therapy for oxidative stress and several diseases and disorders.
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