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FGF19 and FGF21 analogues are currently in clinical development for the potential
treatment of NASH. In Phase 2 clinical trials analogues of FGF19 and FGF21 decrease
hepatic steatosis with up to 70% (MRI-PDFF) after 12 weeks and as early as 12–16 weeks
of treatment an improvement in NASH resolution and fibrosis has been observed.
Therefore, this class of compounds is currently of great interest in the field of NASH.
FGF19 and FGF21 belong to the endocrine FGF19 subfamily and both require the co-
receptor beta-klotho for binding and signalling through the FGF receptors. FGF19 is
expressed in the ileal enterocytes and is released into the enterohepatic circulation in
response to bile acids stimuli and in the liver FGF19 inhibits hepatic bile acids synthesis by
transcriptional regulation of Cyp7A1, which is the rate limiting enzyme. FGF21 is, on the
other hand, highly expressed in the liver and is released in response to high glucose, high
free-fatty acids and low amino-acid supply and regulates energy, glucose and lipid
homeostasis by actions in the CNS and in the adipose tissue. FGF19 and FGF21 are
differentially expressed, have distinct target tissues and separate physiological functions. It
is therefore of peculiar interest to understand why treatment with both FGF19 and FGF21
analogues have strong beneficial effects on NASH parameters in mice and human and
whether the mode of action is overlapping This review will highlight the physiological and
pharmacological effects of FGF19 and FGF21. The potential mode of action behind the
anti-steatotic, anti-inflammatory and anti-fibrotic effects of FGF19 and FGF21 will be
discussed. Finally, development of drugs is always a risk benefit analysis and the human
relevance of adverse effects observed in pre-clinical species as well as findings in humans
will be discussed. The aim is to provide a comprehensive overview of the current
understanding of this drug class for the potential treatment of NASH.
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INTRODUCTION

NAFLD
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of
liver disease ranging from simple steatosis to non-alcoholic
steatohepatitis (NASH) and cirrhosis. NAFLD is the most
common chronic liver disorder in Western countries and in the
USA 30% of the adult population suffers fromNAFLD (1). Simple
steatosis can if not treated progress to NASH, which is defined by
the presence of steatosis, lobular inflammation, cellular ballooning
and varying degrees of fibrosis (2). Eventually, NASH can lead to
cirrhosis and hepatocellular carcinoma (HCC) (3) and NASH is
expected to be the leading cause of liver transplantations by 2030
(4). Obesity is associated with an increased risk of NAFLD and the
risk is increasing with increasing BMI (4). Furthermore, the risk
of NASH is increased 2–3-fold in patients with Type 2 Diabetes
(T2D). It is also well established that genetic factors predispose
individuals to NAFLD and around 25% of people diagnosed with
NAFLD have polymorphisms in adiponutrin (PNPLA3) (5, 6).
Patients with NASH have an overall higher mortality rate
compared to age-matched controls and the primary cause of
death in the early stages of NASH is cardiovascular diseases,
while the cause of death in patients with late stage fibrosis is liver
related (7). There is currently no treatment for NASH (8) and with
the discouraging outlook of the amount of future liver
transplantations, there is a large unmet medical need to identify
and develop effective treatment options for the benefit of
the patients.

NAFLD is an integral component of the complex metabolic
disturbances observed in patients with type 2 diabetes and
obesity (7) and hepatic steatosis is an imbalance between free
fatty acid (FFA) influx, FFA utilization and very low-density
lipoprotein (VLDL) secretion. In addition, the de novo
lipogenesis (DNL) is increased secondary to hyperinsulinemia
and an excessive intake of simple sugars. The increasing quantity
of fructose in the Western diet may therefore be a major
contributor to the development of NAFLD (5, 7). The insult
caused by lipid accumulation in the hepatocyte induces
mitochondrial dysfunction, oxidative stress, dysregulated
apoptosis, activation of proinflammatory cytokines and
profibrogenic factors, which in turn active the hepatic stellate
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cell and cause fibrosis. Furthermore, dysregulation of adipokines
(like low adiponectin) (6) and increase in gut-derived
proinflammatory signals such as lipopolysaccharides (LPS) by
microbiota (9) may also contribute to the development of NASH.
The spectrum of NAFLD is shown in Figure 1.

Treatment for NASH
No treatment has been approved for NASH and non-
pharmacologic treatment of NAFLD/NASH aiming to reduce
fatty liver by body weight (BW) loss and exercise is
recommended. This is often found to be challenging for the
majority and experimental therapies may be initiated with insulin-
sensitizing agents (pioglitazone) and anti-oxidative compounds
(vitamin E) which demonstrate improvements in steatosis,
inflammation and fibrosis to some extent (10). However, the
effects of these therapies are not well established and safety
concerns makes pioglitazone less attractive in clinical practise (11)
leaving a large medical gap. Despite numerous drug candidates in
clinical development forNASH(12) there has been a few setbacks in
the field due failure of several clinical candidates [simtuzumab (13),
selonsertib (14), elafibranor (15)] which were unable to show any
significant effect on the resolutionofNASHor loweringoffibrosis in
phase 3, while treatment with obeticholic acid (OCA) led to a small
but significant reduction in fibrosis (16). However, an accelerated
approval has not been grantedby the FDAas the observed efficacyof
OCA potentially does not outweigh the potential risks. Many other
compounds are in clinical development (17) but most of these have
not yet reached phase 3. The drug candidates can on a top level be
divided into three main categories 1) metabolic compounds with
effect on steatosis (PPAR agonists, ACC inhibitors, Ketohexokinase
inhibitors, DGAT2 inhibitors, SCD1 inhibitors, SGTL2 inhibitors,
GLP-1 receptor agonist or derivates thereof, THRbagonists, FGF19,
and FGF21 analogues etc.); 2) compounds that target inflammation
(AOC3 inhibitors, CCR2/5 inhibitors, Gal3 inhibitors); and 3)
compounds with anti-fibrotic effect (FXR agonist, FGF19, and
FGF21 analogues, ASK-1 inhibitors, Loxl2 inhibitors).

By removing the insults (steatosis and inflammation) a
positive effect on fibrosis is expected. It is well established that
bariatric surgery resolves fibrosis over time (18, 19). Thus, the
duration of the trials may be of critical importance to reach
significant effect on fibrosis. It is therefore of great interest to
FIGURE 1 | The spectrum of NAFLD. Non-alcoholic fatty liver disease (NAFLD) is a spectrum of diseases, now recognized as the most common liver disease
worldwide. It ranges from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH), cirrhosis, and its complications. NAFL is defined as the presence of at
least 5% hepatic steatosis without evidence of hepatocellular injury. NASH is characterized histologically by presence of steatosis (> 5%), lobular inflammation and
ballooning hepatocytes, and can be present with or without fibrosis. Fibrosis is graded from 0–4 based on histological appearance, where stage 4 often is referred to
as cirrhosis and can be further divided into compensated or de-compensated cirrhosis.
December 2020 | Volume 11 | Article 601349

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Henriksson and Andersen FGF19 and FGF21 in NASH
note that both FGF19 and FGF21 analogues which often have
been categorized as metabolic compounds, show NASH
resolution and lower fibrosis in trials of relative short duration.

The endocrine FGFs
FGF19 (FGF15 in rodents) and FGF21 belong to the FGF19
subfamily of endocrine FGFs based on their atypical structure.
Members of this subfamily lack the heparin binding domain and
have no or very low affinity for heparan sulphate (HS). This
enables the endocrine FGFs to escape the cellular matrix and
enter the circulation to act as hormonal-like messengers (20).
FGF15/FGF19 and FGF21 cannot bind the FGF receptors
without the presence of a non-signalling transmembrane co-
receptor beta-klotho (KLB) (8, 21–24). In contrast to the FGF
receptors, which are ubiquitously expressed (11), KLB expression
is limited to a few tissues/cells including liver, gallbladder,
exocrine pancreas, white adipose tissue (WAT), brown adipose
tissue (BAT) and in very specific regions of the central nervous
system (CNS), (suprachiasmatic nucleus/paraventricular nucleus
in the hypothalamus and dorsal vagal complex of the hindbrain)
(11, 25, 26). In the presence of KLB, FGF19, and FGF21 bind and
signal through the short isoforms (c-isoform) of the FGFR 1, 2,
and 3 (22, 23) while FGF19 also signals through FGFR4 (27).
FGF21 has the highest affinity for the FGFR1c/KLB complex
followed by the FGFR3c/KLB (22) while FGF19 has highest
affinity for FGFR4/KLB followed by the FGFR1c/KBL (23, 28).
FGF19 has, moreover, been reported to induce FGFR4 signalling
in the absence of KLB but in presence of HS (26, 29, 30). KLB is
co-expressed with FGFR1c in the CNS and in adipocytes, while
FGFR4 and KLB are co-expressed in hepatocytes (11, 23). Thus,
the primary target tissue of FGF21 is the CNS and the adipose
tissue, while FGF19 acts on the hepatocytes.

FGF15/FGF19
The FGF19 gene was cloned in 1999 by homology to the mouse
orthologue Fgf15 from retina (31, 32). The rodent FGF15 and
human FGF19 are orthologues but only share 52% amino acid
identity. FGF15/FGF19 is expressed in the ileal enterocytes (11)
and is released into the enterohepatic circulation postprandially
in response to bile acids via activation of the farnesoid X
receptor (FXR) (33, 34). FGF19/FGF15 regulates hepatic bile
acids synthesis by activation of the hepatic FGFR4/KLB
complex which decreases the expression of the rate limiting
enzyme [cholesterol 7 alpha-hydroxylase (CYP7A1)] in bile
acids synthesis (32, 35, 36). However, hepatic Cyp7a1
expression is also regulated directly by FXR through the small
heterodimer partner (SHP)-and the pregnane X receptor (PXR)
(37–40). Bile acids are strong detergents and thus their
synthesis is tightly regulated to prevent enterohepatic damage
(41). FGF19/FGF15 also controls refilling of bile acids into the
gall bladder after a meal (42, 43), and has been described to be a
postprandial activator of hepatic protein and glycogen
synthesis and to inhibit hepatic gluconeogenesis (42, 44).
Global deletion of the Fgf15 or Klb in mice increases hepatic
Cyp7a1mRNA expression, plasma bile acids and increases fecal
bile acids excretion (32, 45).
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FGF19 is also highly expressed in liver in HCC and has been
suggested to be responsible for growth and invasion of tumors
through its interactionswithFGFR4/KLB (46). (46, 47) Furthermore,
FGF15 knockout (ko) mice display an impairment in liver
regeneration after partial hepatectomy (48) and FGF15 ko
mice have less and smaller tumours and fewer histological
neoplastic lesions in response to diethylnitrosamine-(DEN)-
induced HCC compared to wild type-mice (49). Oppositely,
FGF15 overexpressing transgenic (tg) mice have very low bile
acids and an increase in hepatocyte proliferation suggesting that
FGF15plays a critical role in liver regeneration (50).Other authors,
however, claim that in contrast to FGF19, FGF15 is not
carcinogenic in several murine models (51) and that
fundamental species-associated differences between FGF19 and
FGF15 restrict the relevance of mouse models for the study of
carcinogenic effect of the FXR/FGF19 pathway.

FGF21
The mouse and human Fgf21/FGF21 genes were cloned by
Nishimura et al. in 2000 (52). FGF21 is highly expressed in
liver and pancreas while lower expression is observed in adipose
tissue and skeletal muscle across species (11, 52–56). In mice,
FGF21 is released from the liver in response to fasting and FFA
(57, 58) by activation of peroxisome proliferator-activated
receptors (PPAR)a receptor (59). The increase in plasma
FGF21 in response to PPARa stimulation has been suggested
to be involved in a negative feedback loop to inhibit lipolysis
(60). Hepatic FGF21 is also increased in response to high glucose
via activation of Carbohydrate-response element-binding
protein (ChREBP) (61) and FGF21 lowers the preference for
glucose intake (62) by stimulation of glutamatergic neurons in
the ventromedial hypothalamus (VMH) (63). Moreover, FGF21
facilitates glucose (64), lipid uptake (65) and adipogenesis in the
adipose tissue (66), which prevent ectopic lipid accumulation in
liver and skeletal muscle (67). Importantly, FGF21 is also
released in response to insufficient amino acid supply triggered
by the integrated stress response which activates the general
control nonderepressible 2 (GCN2) (68) and induces FGF21
transcription. In response to protein restriction FGF21 is
required to increase food intake (in order to meet the protein
demand) and energy expenditure (EE) (68). Moreover, FGF21-
treated mice are hyperphagic to overcome the increase in EE and
the mice prefer protein over carbohydrate (69, 70). The FGF21
ko mice (71–74) have decreased thermogenic ability (decreased
BAT activity) (75, 76) and lack the ability to expand
subcutaneous fat (77) potentially due to decreased PPARg
expression in the adipose tissue (71). The FGF21 ko mice are
furthermore insulin resistant (78) and the glucose excursion rate
in response to an intraperitoneal glucose tolerance test is
increased (71). A simplified overview of the physiological role
of FGF19 and FGF21 is shown in Figure 2.

Overlapping and distinct effect of FGF19
and FGF21 in mice
As FGF19 is not expressed in rodents it is important to notice
that FGF19 and FGF15 despite being orthologues display
December 2020 | Volume 11 | Article 601349
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different mitogenic and metabolic functions in mice (28, 51) and
interestingly the FGF19 overexpressing tg mice (79) display
overlapping phenotype with the FGF21 tg mice. Both genetic
models have increased EE, increased brown adipose tissue,
decreased BW, lower fat mass, lower liver fat, and lower
plasma IGF-1 (64, 76, 80). Also, treatment with FGF19
ameliorate the metabolic phenotype in high fat fed mice (81).
However, unlike FGF19, FGF15 does not lower blood glucose
(BG) in diabetic mice (28, 51) indicating that FGF19 display a
differential receptor selectivity compared to FGF15. Notably,
FGF15 does not activate down-stream signaling of the mouse
FGFR1c/KLB receptor complex despite binding (28). The
inability of FGF15 to lower BG in diabetic mice may be
associated with the lack of FGFR1c/KLB activity (28, 51).
This is in agreement with data showing that a FGFR4/KLB
selective variant of FGF19 lowers bile acids and induces
hepatic proliferation while it does not decrease BG in diabetic
mice, while a FGFR1c selective FGF19 variant (FGF19dCTD)
maintains the ability to lower BG but does not regulate bile acids
in mice (24, 30).

The extracellular domain of KLB is approx. 80% conserved
between mouse and human, but species differences have been
observed and FGF15 does for example not bind human KLB
(28). Oppositely, FGF19 and FGF21 bind mouse KLB with
higher affinity than human KLB (28, 82). FGF19 is
furthermore a potent activator of both FGFR4/mouse and
human KLB complex (28) and is approximately 1000-fold
more potent than FGF21 in inhibiting CYP7A1 mRNA
Frontiers in Endocrinology | www.frontiersin.org 4
expression in primary human hepatocytes (28, 83, 84). FGF19
also binds FGFR1c/KLB complex and binds FGFR1c/mouse KLB
with approx. 25 higher potency than the FGFR1c/human KLB
(28). FGF21 binds the FGFR1c/human KLB complex with 2-fold
higher affinity than FGF19. The ability of FGF19 to activate
FGFR1c in presence of both mice and human KLB is of high
importance in order to understand themetabolic actions of FGF19
inmice andhumans asFGF19 thereforehas overlapping effectwith
FGF21 which primarily use FGFR1c/KLB as its major receptor
complex. However, in contrast to FGF21 which decreases plasma
triglycerides (TG) and cholesterol (28, 85) FGF19 increases plasma
TG and cholesterol (86, 87) inmice. As the FGFR4 selective FGF19
variant (FGF19dCTD) retains its ability to lower bile acids
synthesis and increases plasma TG and total cholesterol levels
the negative effects of FGF19 on plasma lipids is mediated by
FGFR4/KLB activation (30). An overview of FGF15, FGF21, and
FGF19 with respect to protein size, expression, order of receptors
affinity, metabolic, and mitogenic effects is shown in Table 1.
PRECLINICAL MODELS AND MODE
OF ACTIONS

Tissue specific actions of FGF19
and FGF21
The insulin sensitizing, BG and BW lowering effects of FGF21 are
lost when co-receptor KLB is globally deleted (88). Nevertheless, the
global KLB ko mice are surprisingly resistant toward HFD-induced
obesity (89). However, KLB is, as described, also a co-receptor for
the FGF19/FGF15 system, and therefore mice lacking FGF15
activity have increased plasma bile acids (24, 90). The high
plasma bile acids found in the global KLB ko mice may increase
EE by activation of G-protein-coupled bile acids receptor (TGR5),
which increases EE and GLP-1 release (89). Therefore, tissue-
specific silencing of KLB is required to study the contribution of
KLB-expressing tissues to the metabolic actions of FGF21.
Disruption of KLB, using the Calcium/calmodulin-dependent
protein kinase type II subunit alpha (Camk2a) Cre recombinase
expressed in neurons, abolishes the beneficial effects of FGF19 and
FGF21 on BW loss, glucose, and insulin levels (91). However, KLB
in the adipose tissue has been shown to contribute to the insulin-
sensitizing effect of FGF19 and FGF21 (88, 91) and mice lacking
adipose tissue and mice with adipose-specific deletion of FGFR1 are
moreover, refractory to the metabolic benefit of FGF21 (92, 93).
FGF19 requires KLB expression in the liver to regulate Cyp7a1
expression in mice (91), while the positive effect of FGF19 and
FGF21 on hepatic steatosis was unaffected by adipose and liver
specific KLB deletion (91). It is therefore, clear that activation of the
receptor complex in the CNS is required for metabolic activity, but
unclear if FGF21 has any direct effect on hepatocytes that
contributes to amelioration of NASH.

Liver Phenotype in FGF21 Knockout Mice
In response to fasting (94), ketogenic diet (71), high fat diet (95),
alcohol (96), and protein restriction (97) the FGF21 ko mice
develop liver steatosis. Furthermore, liver weight is already
FIGURE 2 | Regulation and effect on FGF19 and FGF21. FGF19 is released
from the enterocytes in response to bile acids and suppresses bile acids
synthesis in hepatocytes. FGF21 is mainly expressed in hepatocytes in
response to FFA, glucose and lack of amino acids. FGF21 acts in the CNS
and in the adipose tissue to control glucose, lipid and energy metabolism, by
increasing glucose and TG uptake into the adipose tissue, by increasing EE
and altering food preferences.
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increased in the basal state in the FGF21 ko mice (98). This
indicate that FGF21 plays an important role in maintenance of
hepatic lipid metabolism. The accumulation of hepatic fat in the
FGF21 ko may be linked to an increased flux of FFA from the
adipose tissue (98) but may also be caused by a reduction in
hepatic b-oxidation due to higher plasma insulin (99) and
reduced TG uptake (65) and storage in the adipose tissue. Lack
of FGF21 also reduces hepatic FA oxidation in ko mice fed a
methionine-choline deficient (MCD) diet which is accompanied
with more severe steatosis, peroxidative damage, inflammation,
endoplasmic reticulum stress, and fibrosis when compared to
wild-type mice (100). FGF21 ko mice are, furthermore, very
sensitive to LPS-induced (101) and acetaminophen (APAP)-
induced hepatotoxicity compared to wild-type littermates.
Finally, FGF21 seems to protect against HCC development, as
FGF21 ko mice are found more prone to develop HCC when fed
a long term obesogenic diet (95) and mice overexpressing FGF21
are protected toward DEN-induced liver tumors (102).

Liver phenotype in FGF15 Knockout mice
Ablation of the Fgf15 gene in mice increases hepatic Cyp7a1
mRNA expression the total bile acids pool and faecal bile acids
(32). Due to increase bile acids, colon tumour carcinomas are
commonly observed in FGF15-deficient mice (103). FGF15 ko
mice are like FGF21 ko mice more susceptible to APAP-induced
liver injury (104). Interestingly, FGF15 ko mice fed a high fat diet
have decreased liver fibrosis while lack of FGF15 had no effect on
the severity of liver steatosis or inflammation (105). FGF15 ko
mice display an impairment in liver regeneration after partial
hepatectomy (48) and have less and smaller tumours and fewer
histological neoplastic lesions in response to DEN-induced HCC
(49). On the contrary, FGF15 tg mice has increased hepatocyte
proliferation suggesting that FGF15 plays a critical role in liver
regeneration (50). Other authors, however, claim that in contrast
to FGF19, FGF15 does not induce HCC in mice as previously
discussed (51).

Taken together, worsening of fibrosis and even earlier
development of pre-stage HCC are seen in the mice lacking
Frontiers in Endocrinology | www.frontiersin.org 5
FGF21. The opposite has been observed in mice lacking FGF15
where a decrease in fibrosis (105) and a decrease in progression
to HCC is observed (49). This is distinct from the actions
observed by pharmacological dosing, where a decrease in
fibrosis is observed in response to both FGF21 (106) and a
FGF19 variant (107). FGF19 is however, also a strong inducer of
liver carcinomas in mice (108) and it is of high importance to
mitigate the mitogenic, FGFR4-mediated effect of FGF19 to
allow human therapy, even though species difference may
indicate that FGF19 is less mitogenic in human cellular
systems (109, 110).

Pre-clinical Effects of FGF19 and
FGF21 and Analogues Thereof in
Murine Models of NASH
Predictive pre-clinical models are essential to early drug
discovery and with several clinical failures the predictive value
of mouse NASH models must be carefully considered. Within
NASH several murine models are commonly being used. The
models can be divided into 1) dietary/metabolic models like high
fructose, high fat, high cholesterol fed mice (DIO NASH) and
mechanistic models deficient of essential amino acids like the
MCD and choline-deficient (CDA) model; 2) chemical-induced
mouse models like streptozotocin for diabetes, carbon
tetrachloride (CCl4) (liver toxicity), and DEN-induced models
for hepatocarcinogenesis (111). Overall, the more metabolic
models develop mild inflammation and fibrosis, whilst the
mechanistic and toxin-induced models need to be used in a
very hypothesis-driven approach with regards to inflammation
and fibrosis as they lack most metabolic aspects and are thereby
not representative for NASH, but rather a tool to study
inflammation and fibrosis in the liver.

The main features of NASH pathology in metabolic models,
i.e., steatosis, mild inflammation, and mild fibrosis have all been
found to be improved by treatments with FGF21, as well as
FGF19 and analogues thereof (86, 87, 107, 112) which may partly
be driven by a decrease in BW. However, in the lipotoxic
mechanistic models (MCD, CDA-HFD) with a higher degree
TABLE 1 | Overview of FGF15, FGF19 and FGF21.

FGF15 FGF19 FGF21

Amino acids (mature) 218 aa 216 aa 181 aa
Mw 25.2 kDa 24 kDa 20 kDa
Co-receptor KLB KLB (HS) KLB
Affinity Mouse KLB Mouse KLB>human KLB Mouse KLB>human KLB
FGFR signaling FGFR4 FGFR4>FGFR1c, FGFR2c, FGFR3c FGFR1>FGFR3c>>FGFR2c>>FGFR4
Knock-in Low bile acids levels Increased EE, low BW, increased insulin

sensitivity Low bile acids levels
Increased EE, low BW, increased insulin
sensitivity

Knockout Increased plasma and fecal bile acids
Decrease in liver fibrosis and
regeneration

Not relevant Decreased thermogenic ability
Decreased ability to
expand subcutaneous fat

Metabolic function Decreased bile acids synthesis Decreased bile acids synthesis, increased
EE, decreased BW, increased glucose
disposal and increased insulin sensitivity

Increased EE, decreased BW, increased
glucose disposal, increased insulin sensitivity

Mitogenic function Mitogenic but less mitogenic in mice
compared to FGF19

Highly mitogenic in mice No mitogenic effect in mice
FGF21 ko mice are prone to HCC
development
D
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of inflammation and fibrosis, FGF21 treatment improved all
parameters of importance in NASH, without lowering BW in the
MCD model (97, 106, 112, 113). Interestingly, an improvement
in steatosis was observed in response to FGF21 although the
deficiency to hepatic lipids in these models often limits treatment
effects on steatosis. The effect of FGF21 on steatosis in the MCD
and CDA-HFD models may be linked to FGF21’s ability to
increase FA oxidation or to decrease DNL (97, 113). However, it
has to be stressed that the MCDmodel is a very harsh model with
significant BW loss induced by the diet. Therefore, the CDA-
HFD fed mice which are more BW stable is the preferred
mechanistic model of the two (114).

In addition to the anti-inflammatory and anti-fibrotic effects
of FGF21 and FGF19 in the metabolic as well as more
mechanistic models of liver disease, several studies support a
role in resolving fibrosis independent of BW loss. Administration
of FGF21 improves inflammation and fibrosis in diabetic
nephropathy (115, 116), pulmonary fibrosis induced by
bleomycin (115), cardiac fibrosis (117, 118), as well as
pancreatic fibrosis (119). FGF19 has also shown beneficial
effects in diabetic cardiomyopathy improving both cardiac
function and decreasing fibrosis (120). Finally, FGF21 has been
shown to attenuate dimethylnitrosamine (DMN)-induced
hepatic fibrogenesis in mice by inhibition of hepatic stellate
cells (HSC) activation via down-regulating the expression of
transforming growth factor (TGF)b (121).

In summary, both FGF21 and FGF19 analogues decrease
steatosis, inflammation and fibrosis in various NASH models.
Furthermore, FGF21 prevents fibrosis in numerous tissues (lung,
heart, and pancreas) in mice, while less data is available
for FGF19.

Mode of Action
Anti-Steatotic Effects
Reversal of hepatic steatosis is of crucial importance to improve
liver health and several pharmacological approaches to lower DNL
or to increase lipid oxidation are in development (17). FGF19 and
FGF21 both depend on KLB expression in the CNS to lower
hepatic steatosis (91). The effect on steatosis is likely independent
of the FGFR4/KLB complex as a FGF19 variant lacking FGFR1c/
KLB activity lack metabolic activity (24, 30). Both FGF21 (64) and
FGF19 (79) increase EE in mice causing BW loss by inducing
corticotropin-releasing factor (CRF) and sympathetic nerve
activity (122) but beside that, there are several means by which
FGF19 and FGF21 decrease steatosis. First of all, FGF21 has been
described to inhibit lipolysis from the adipose tissue (60, 123)
preventing flux of FFA to accumulate in the liver. Furthermore,
FGF21 has been shown to increase TG uptake in the adipose tissue
by induction of LPL’ase activity (65). A decrease in the delivery of
triglyceride-enriched very low-density lipoprotein (VLDL) to the
liver by downregulating VLDL receptor expression has also been
described as a mechanism by which FGF21 treatment lowers
hepatic steatosis (124) (125). Interestingly, FGF21 has also been
shown to increase hydrogen sulfide (H2S) (125) which is a potent
stimulator of autophagic flux which plays an important role in
liver triglyceride clearance (126).
Frontiers in Endocrinology | www.frontiersin.org 6
Another important contributor to the observed improvement
in steatosis is the reduction in plasma insulin which decreases de
novo lipogenesis by lowering sterol regulatory element-binding
protein 1 (SREBP-1) activity (127) and increases beta-oxidation
(59, 86, 87). Inhibition of hepatic mTOR by FGF21 (128, 129)
may also be part of the lipid lowering mechanism as mTOR is a
major regulator of lipid metabolism (130) and likely contribute
to the effect of FGF19 and FGF21 on hepatic lipid metabolism. It
is still not fully understood if a direct action on hepatocytes
contribute to the positive effect of FGF19 and FGF21 on steatosis,
but overexpression of an inactive KLB mutant interestingly
induces intracellular lipid accumulation in HepG2 and Huh7
cells in vitro (131).

Regulation of Oxidative Stress and Autophagy
It is well described that metabolic stress in hepatocytes, as
induced by excess FFA, free cholesterol, and TG, will lead to
increased reactive oxygen species (ROS), endoplasmic reticulum
(ER) stress and oxidative stress, as well as impaired autophagy
(132). When the antioxidant capacity of the hepatocytes is
surpassed, DNA damage and oxidation occur, eventually
resulting in cell death, either via apoptosis or necroptosis,
which in turn triggers hepatic inflammation.

The MCD model, treated with FGF21 have enhanced hepatic
mitochondrial function which has been shown to attenuate
hepatic ER stress (112). Both FGF21 (120) and FGF19 (133)
have furthermore in heart and liver, respectively, been shown to
active the nuclear factor erythroid-2 related factor 2 (Nrf2)
pathway. Activation of Nrf2 increases the expression of
antioxidant proteins which protects the cells toward oxidative
damage. FGF21 has been shown to activate AMP-activated
protein kinase (AMPK) in adipocytes (134) and hepatocytes
(135) which prevents hepatocyte apoptosis (136) and reduces
ER-stress in NASH (137). Likewise, FGF19 has been shown to
activate the AMPK pathway and promote antioxidant response
in muscle and heart (120). It is still not fully understood if FGF21
activates AMPK through direct effects on hepatocytes, but
interestingly adiponectin which is induced by FGF21 in several
species (64, 138–140) is an activator of AMPK release (141).
Adiponectin ko mice are also refractory to increase insulin
sensitivity in response to FGF21 treatment (142). More data
are needed to understand if the beneficial effect of FGF21 on
NASH is dependent of adiponectin. It is not clear if FGF19 also
increases the expression of adiponectin as one study shows that
FGF19 does not increase plasma adiponectin (91), while another
study found that mice deficient in FGF15 have lower adiponectin
levels (143).

Anti-Inflammatory Effects
The anti-inflammatory effect following administration of a FGF21
analogue has been shown to be mediated via inhibition of
interleukin (IL)-17A expression in pro-inflammatory T helper 17
(Th17) (113) and the effect seems to be mediated via increases in
adiponectin (113). Furthermore, in ob/ob mice, FGF21 treatment
reduces the phosphorylation of hepatic nuclear factor kappa B
(NF-kB), the main inflammatory signaling pathway activated by
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proinflammatory cytokines, which also indicate an anti-
inflammatory action of FGF21 (144). Interestingly, NF-kB is also
a downstream target of AMPK activation (145). Moreover, as
FGF21 has been shown to increase the HPA axis in mice (122,
146) an increase in plasma corticosterone may also contribute to the
anti-inflammatory effect.

Anti-Fibrotic Effects
During liver injury, HSCs become activated and trans-differentiate
into myofibroblasts. The effect is mediated by connective tissue
growth factor (CTGF) and Transforming growth factor beta
(TGFb) which increase proliferation and fibrogenesis augmented
by inflammation and immunoregulation, as well as altered matrix
degradation. Oxidative stress is one of the important drivers of
fibrogenesis through activation of TGFb in several pathological
conditions (147). FGF21 and FGF19 may exert anti-fibrotic effects
by resolving lipotoxicity and activating the oxidative stress defence
as described above. Whether some of the anti-fibrotic effects of
FGF21 are mediated via adiponectin actions cannot be excluded
(148). Furthermore, the reduced bile acids toxicity is believed to
play a role in the FXR- and FGF19-mediated anti-fibrotic
effect (107).

Surprisingly, direct anti-fibrotic actions by FGF19 and FGF21
have been described in human LX-2 cells (106, 149, 150). It is,
however, unclear if these myofibroblast express KLB and more
data required to understand if FGF19 and FGF21 act direct on
HSC. In vivo, FGF21 has been shown to decrease the expressions
of G-protein coupled receptor (GPR)91 and markers of fibrosis
(alpha-smooth muscle actin (a-SMA) and collagen type 1) in the
liver of MCD fed mice (106) but it is unknown if this is mediated
by a direct effect in the liver. Finally, FGF21 is upregulated in
response to protein restriction (68) and downstream actions of
FGF21 may therefore also involve regulation of protein synthesis
and catabolism which may affect the novo synthesis of collagen,
but more data are required to support this hypothesis. FGF15/
FGF19 has on the other hand been shown to increase hepatic
protein synthesis (44).

Regulation of Bile Acids
Bile acids are toxic (41) and are tightly regulated by several
mechanisms and excessive amount of bile acids is known to
cause liver damage (41). The decrease in bile acids synthesis
observed in response to NGM282 and FXR agonist treatment
have a beneficial effect on the liver especially in cholestatic liver
diseases (151, 152). Therefore, FGF19 may also promote liver
health by reducing the bile acids levels in NASH (49, 153). The
effect of FGF21 in bile acids metabolism is less well described but
supraphysiological doses of FGF21 may interact with the FGFR4/
KLB system and FGF21 has been shown to decrease Cyp7A1 and
bile acids in pre-clinical species (83).

Regulation of Plasma Lipids
In contrast to FGF19 and analogues thereof, which increase
plasma cholesterol and TG (28, 85) FGF21 lowers plasma
cholesterol and TG (86, 87). Based on receptor specific FGF19
analogues it is well established that the negative impact on
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plasma cholesterol and TG by FGF19 treatment is mediated
via FGFR4/KLB activation (85). Inhibition of Cyp7a1 decreases
bile acids synthesis from cholesterol hence plasma cholesterol is
likely to increase. The increase in plasma TG induced by FGF19
in mice (28, 85) may be linked to a decrease in FXR activity as
FXR KO mice have increased plasma TG (152) but the high
plasma cholesterol may also activate hepatic liver x receptor
(LXR)a causing an increase in plasma TG (154). The positive
effect of FGF21 on plasma lipids is mediated by FGFR1c/KLB
(91) and as FGF19 can activate both FGFR1c/KLB and FGFR4/
KLB the effect of FGF19 on plasma lipid is a mixture of FGFR1/
KLB lipid lowering effect and the negative impact of FGFR4/KLB
activation on plasma lipids.

Summary
FGF21 clearly lowers hepatic steatosis in mice and multiple
mechanisms ranging from decreases in BW, increases in beta-
oxidation to increases in autophagy may play important roles.
The mode of action behind the anti-inflammatory and anti-
fibrotic effects are less elucidated. A strong increase in
adiponectin may link the positive effect of FGF21 to the
observed anti-inflammatory and anti-fibrotic effects. As FGF19
also activates the FGFR1c/KLB receptor complex (28) and
requires CNS receptor action for metabolic activity (91) it is
likely that FGF19 resembles FGF21 in the regulation of
adiponectin. The contribution of bile acids lowering to the
anti-fibrotic action is another topic of interest and therefore
the effect of FGFR4-selective FGF19 analogues on NASH
outcome in mice will be of great interest. Increased knowledge
of the receptor complex expression in healthy and diseased
murine and human liver cells (hepatocytes, immune cells, and
myofibroblasts) with validated cell specific markers will
furthermore help elucidate if direct effect of FGF19 or FGF21
on immune and/or HSC can be expected.
CLINICAL FINDINGS

Regulation of Endogenous FGF19 and
FGF21 in NASH
Plasma FGF21 is mainly liver derived (155) and is as described
previously regulated by high FFA (57–59), high glucose (61) and
lack of amino acids (68). Plasma FGF21 displays a circadian
regulation with peak levels around 3-6 am (156, 157). Plasma
FGF21 is positively correlated to BMI and insulin resistance in
humans (158–162) which has resulted in discussion of FGF21
resistance (163). However, other authors found no evidence of
FGF21 resistance in obese mice (164) and as described below
FGF21 analogues are able to lower BW, plasma lipids and
improve insulin sensitivity in obese humans indicating lack
of overt FGF21 resistance in obese humans (165–167).
Furthermore, liver fat is also positively correlated to plasma
FGF21 (168, 169) and plasma FGF21 is increased in patients with
NAFLD (170–173) and NASH (158, 174–176). Liver fat is the
strongest BMI-independent marker of hepatic FGF21 expression
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and plasma FGF21 (174, 175). FGF21 has, therefore, been
suggested to be a potential diagnostic biomarker of NAFLD
(177). It is, however, important to note that fibroblast activating
protein (Fap) which has been found to inactivate FGF21 (178) is
increased in NASH patients (179) and future studies are needed
to distinguish between total and active plasma FGF21 in NASH.
The increase in plasma FGF21 in response to metabolic
impairment and NAFLD may represent an adaptive protective
response where increases in FGF21 may act to increase insulin
sensitivity and decrease liver fat. Reduction of liver fat by
tesamorelin treatment in HIV patients or by GLP-1 receptor
agonist treatment in T2D lead to reductions in liver fat content
which has been associated with a decrease in plasma FGF21. The
regulation of plasma FGF21 in health and disease has recently
nicely been reviewed by Keuper, et al (180).

FGF19 is expressed in the intestinal enterocytes and is as
described increased in response to bile acids by activation of the
FXR (181). FGF19 displays a diurnal rhythmwith twomajor peaks
at 3 and 9 pm (182). Fasting FGF19 has been shown to be
increased in response to bariatric surgery (183, 184) where bile
acids are known to be increased (185). Opposite to plasma FGF21,
fasted serum FGF19 levels are reduced in individuals with
overweight, obesity (186) and NAFLD (187, 188). FGF19 has
therefore also been suggested as a diagnostic biomarker in NASH
where a decrease should indicate increases in steatosis (187). The
reduced serum FGF19 levels in children with NASH is, however,
not statistically associated with paediatric NAFLD histological
score (187, 189). Furthermore, hepatic response to FGF19
seemed to be impaired in humans with NAFLD (190) and lack
of FGF19 and decreased FGF19 activity may worsening NASH
due to accumulation of toxic bile acids. As expected, serum FGF19
correlates with severity of cholestatic liver disease (191) where
increases in serum FGF19 is associated with a decrease in CYP7A1
expression (191). The differential regulation of plasma FGF21 and
FGF19 in humans further support distinct physiological roles of
the two endocrine FGFs. Plasma FGF21 is increased in NASH
while FGF19 seem to be downregulated, thus it is of high interest
that pharmacological intervention with analogues of the two
hormones improves NASH resolution and decrease fibrosis in
humans as described below.

Genetic Evidence
Human genetics are important to understand the relevance of a
given gene in a specific disease. Within the last few years
polymorphisms in the FGF21 and KLB gene have revealed
important phenotypic information supporting findings in gene
modified animal models.

Polymorphisms in FGF21
Two independent studies in humans have shown that single
nucleotide polymorphism (SNPs) in the FGF21 locus are
associated with changes in intake of macronutrients. The two
alleles rs838133 and rs838145 are both associated with higher
carbohydrate intake and therefore, potentially, also with a loss of
FGF21 function. In the Danish Inter99 cohort, rs838133 was
furthermore linked to an increased consumption of candy and
Frontiers in Endocrinology | www.frontiersin.org 8
decreased fat and protein intake (192, 193). The effect of FGF21
on food preference was later confirmed in a meta-analysis
including up to 123,000 individuals (194). A GWAS from the
UK Biobank (>450,000 individuals) showed that the common
rs838133 allele also is associated with insulin resistance, higher
blood pressure (PB) and a higher waist-to-hip ratio despite a
lower total body-fat percentage (195). Nevertheless, the effect
of the rs838133 allele on these parameters is extremely
small (0.33 mm Hg in PB and a 1 mm difference in hip
circumference), but the effect sizes of common genetic variants
does not always predict the potential efficacy of a target in
response to pharmacological intervention. Notably, subjects
with a high hip-to-waist ratio have low plasma adiponectin
(196) and subjects with high hip-to-waist ratio are also prone
to develop NASH (197, 198). The inverse correlation between
adiponectin and fasting insulin, HOMA-IR, triglyceride, systolic
and diastolic BP (196, 199) potentially links adiponectin to
FGF21 biology (142). The FGF21 rs838133 allele is, however,
not associated with fasting plasma glucose, but is interestingly,
associated with higher plasma low-density lipoprotein
cholesterol (LDLc) and higher gamma-glutamyl transpeptidase
(GGT) levels (195).

Polymorphisms in FGF19
FGF19 loss of function in humans is expected to increase bile
acids to a toxic level and we have not been able to identify any
GWAS on FGF19 loss of function. Two common SNPs (rs948992
and rs1789170) in the FGF19 gene were not found to be
associated with bile acids diarrhea (BAD) (200), however,
reduced plasma FGF19 levels have been correlated to BAD
(201). On the other hand, increased FGF19 copy number is
frequently detected in HCC (202).

Polymorphisms in KLB
Loss of KLB function will of course affect both FGF19 and FGF21
activity in humans. A SNP (rs17618244) in KLB has been
associated with colonic transit in patients with diarrhea-
predominant irritable bowel (203) which presumably is due to
change in bile acids metabolism caused by a decrease in FGF19
activity. Furthermore, in a meta-analysis including more than
105,000 individuals, a locus in KLB was associated with increased
alcohol consumption (204). A common SNP in the KLB gene
(rs2608819) has also been associated with a reduction of KLB
expression in the adipose tissue and a higher body mass index
(BMI) potentially linking FGF21 activity to EE in humans (205).
It is therefore, of interest to note that rs17618244 SNP is
associated with increased risk of ballooning and lobular
inflammation in children with NAFLD (131). It is, however,
unknown if loss of KLB function prone children to NASH due to
lack of FGF19 or FGF21 activity or both.

FGF19 and FGF21 Analogues in Clinical
Development for NASH
FGF19 Analogues
While a handful of FXR agonist are in late stage clinical trials (17)
there is currently only one FGF19 analogue in clinical
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development and as described previously it is important to
separate the mitogenic signaling from the metabolic action
of FGF19.

Aldafermin
NGM282 (Aldafermin) is a non-mitogenic FGF19 analogue with
5-amino acid deletion (P24-S28) and 3 amino acids substitutions
at critical positions (A30S, G31S, H33L) within the amino
terminus (183, 206). The analogue is not protracted, and once
daily subcutaneous dosing is required. These mutations prevent
Aldafermin to activate signal transducer and activator of
transcription 3 (STAT3), a signaling pathway essential for
FGF19-mediated HCC, while Aldafermin retains its ability to
inhibit CYP7A1 (107, 110, 151, 207). Aldafermin is thereby
designed to be non-mitogenic and does not induce liver
proliferation in mice (208). Aldafermin decreases serum levels
of 7a-hydroxy-4-cholesteb-3-one (C4) by inhibition of hepatic
CYP7A1 transcription in humans (151). In a randomized,
double-blind, placebo-controlled study in patients with type 2
diabetes 2, 5, 10 mg NGM282 (sc injection once daily for 12
weeks) did not correct hyperglycemia while a significant
improvement in insulin sensitivity was observed at the high
dose at the end of the study (183). In a phase 2 trial in patients
with primary biliary cholangitis, a devastating liver disease
caused by hepatic accumulation of toxic bile acids (209), once
daily administration of Aldafermin for 28 days lowered plasma
bile acids and improved liver function (210). Furthermore, in a
phase 2 study in patients with NASH 12 weeks of Aldafermin
treatment reduced absolute liver fat by 5%measured by magnetic
resonance imaging proton density fat fraction (MRI-PDFF) in
80% of the patients (207). A significant decrease in plasma liver
enzymes alanine aminotransferase (ALT) and aspartate amino
transferase (AST) was also observed in response to Aldafermin
treatment (207). Furthermore, plasma C4 was decreased by more
than 95% within the first day of treatment and a significant
increase in plasma LDLc was observed while plasma TG was
decreased (207). A significant decrease in BW was observed in
the highest dose group (207). Co-administration with statins was
later shown to be able to normalize the Aldafermin-induced
increases in plasma LDLc (211). Aldafermin also improves
histological endpoints after 12 weeks of treatment in patients
with biopsy-confirmed NASH (212). Of the 43 patients who
received subcutaneous Aldafermin (1 mg, n=24; 3 mg, n=19)
once daily for 12 weeks a significant improvement in NAS score
by 2 or more points without worsening of fibrosis was observed
in more than 50% of the patients. Furthermore, liver fibrosis was
improved by one stage or more without worsening of NASH in
25% and 41% of patients who received Aldafermin 1 or 3 mg,
respectively (212). Aldafermin, furthermore, reduced pro-
peptide type III collagen (Pro-C3), a biomarker of fibrogenesis
(140, 213), in plasma with 22% and 33% in response to 1 and 3
mg respectively (212). However, no placebo group was included
in the trial and the significance of these effect needs to be
confirmed. The data was recently confirmed in a 24 weeks trial
(78 patients with F2/F3) where fibrosis improvement (>1) and no
worsening of NASH was observed in 38% of patients treated with
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Aldafermin versus only 18% in the placebo group (214). NASH
resolution with no worsening of fibrosis was observed in 24% of
patients receiving Aldafermin compared to 9% in the placebo
group (214). It is therefore, of interest to note that the effect of
OCA, which is a upstream regulator of FGF19, had limited on the
regulatory endpoints in the phase 3 trial (REGENERATE), but
the endogenous levels of FGF19 induced by OCA (215) may not
be high enough to induce the metabolic response mediated by
FGFR1c/KLB interaction.

Adverse Effects
Aldafermin is in general well tolerated, but dosing of Aldafermin
is associated with dose-related abdominal cramping and diarrhea
(207, 210, 212, 216). Approximately, 10% of the patients
receiving Aldafermin were discontinued due to gastrointestinal
(GI) side effect such as high frequencies of diarrhea, abdominal
pain and nausea. In a follow up study Aldafermin was shown to
alter bowel function and accelerates gastric and colonic transit
(216) which is likely caused by changes in bile acids metabolism.
Furthermore, 14% of subjects dosed with 3 mg Aldafermin
reported an increase in appetite (216) similar to observations
in clinical trial with FGF21 analogues (166, 217, 218), thus
overlapping effects on regulation of appetite may appear. The
increase in LDLc is furthermore, a major concern as most
patients with NASH have an increased risk of cardiovascular
diseases (7, 219) and hence counterregulatory treatment with,
i.e., statins is required.

FGF21 Analogues
Native FGF21 has a short half-life (t½) (220) and analogues with
protracted action have been designed. A variety of approaches
(polyethylene glycol-modified (pegylation) (221–224), Fc-
fusions (225–227) and immunoglobulin-fusion (228) have been
applied to increase the half-life. The N- and C-terminals of
FGF21 are furthermore important to maintain potency (229,
230) and FGF21 analogues with stabilized N- and C-terminal
have been designed (231, 232). In this review we only include the
two most advanced FGF21 analogues (Pegbelfermin and
Efruxifermin) as these have clinical data in NASH. For more
specific review of other FGF21 analogues see (233).

Pegbelfermin
Pegbelfermin is a PEGylated FGF21 analogue (224), however,
no amino acids are substituted in the C-terminal to protect
toward C-terminal degradation (82). In a double blinded,
placebo controlled study in obese patients with T2DM an
increase in plasma high-density lipoprotein cholesterol (HDLc)
and a decrease in plasma TG was observed in response to
Pegbelfermin treatment (1, 5, or 20 mg once daily or 20 mg
once weekly for 12 weeks) while no effect on glycemic control or
BW was observed (167). A dose dependent increase in plasma
adiponectin was observed (167). In a Phase 2 clinical trial, 16
weeks of Pegbelfermin treatment (10 mg once daily or 20 mg
once weekly) decreased absolute hepatic lipid content by 6.8%
measured by MRI-PDFF in the 10 mg once daily group while 20
mg once weekly induced a decrease of 5.2% compared to placebo
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(140). As observed in the phase 1b trial, Pegbelfermin increased
plasma adiponectin and HDLc while fasting plasma LDLc and
TG were decreased (140). Liver stiffness, measured by magnetic
resonance elastography (MRE), was also decreased as well as
plasma Pro-C3. Currently, two clinical phase 2b trials
(NCT03486899 and NCT03486912) of 24- and 48-weeks
duration are ongoing in patient with NASH F2-F3 and F4,
respectively and the result is expected to support further
development of Pegbelfermin for the treatment of NASH.

Efruxifermin
Efruxifermin is a FcFGF21 analogue with N- and C-terminal
modification to prevent degradation and increase potency (82).
In mice as well as monkeys FcFGF21RG outperform native
FGF21 (82). The t½ of Efruxifermin is 2-4 days in humans
supporting a once weekly dosing. In a Phase 1b trial of 4 weeks
duration 7–140 mg of Efruxifermin lowered plasma TG and
LDLc and increased HDLc. Postprandial decrease in FFA was
also observed in subjects treated with Efruxifermin (206).
Efruxifermin also lowered BG and glycosylated HbA1c and an
increase in insulin sensitivity was observed at the 70 mg once
weekly dosing. As seen for other FGF21 analogues, a dose-
dependent increase in adiponectin was observed. Recently, data
from a phase 2 study in patients with biopsy confirmed NASH
has been published (www.akerotx.com). In response to 12 weeks
of Efruxifermin treatment (28, 50, and 70 mg once weekly) liver
steatosis was reduced up to 70% (MRI-PDFF) in all patients. No
significant dose response was observed indicating that the tested
doses of 27, 50, and 70 mg once weekly were on the upper flat
curve of the dose response. Patients with more than 30%
reduction in liver fat were eligible for a liver biopsy post
treatment and thus, unfortunately, only a couple of biopsies
were taken from the placebo treated subjects. Nevertheless, a
significant effect on NASH resolution and a decrease in fibrosis
of >1 stage was observed in 39% of the subjects treated with 50
mg Efruxifermin. A dose dependent increase in plasma
adiponectin was observed in all dose levels. The pronounced
and significant effect of Efruxifermin make this compound a
promising treatment option for NASH and recently Efruxifermin
obtained European Medicines Agency Priority Medicines
(PRIME) Designation in NASH.

Adverse Effects
Both Pegbelfermin and Efruxifermin are well tolerated. The most
common side effect is GI related with increased frequency of
diarrhea and nausea, but also an increase in appetite have been
reported (140, 206). Interestingly, incidence of diarrhea is
increasing with increasing doses which may indicate an
interaction with bile acids synthesis and thereby FGFR4/KLB
activity. Finally, anti-drug antibodies (ADA) will have to be
carefully evaluated as, e.g., Pegbelfermin induces ADA, which
may cross-react with the endogenous FGF21.

The FGF21 tg mice have reduced female fertility (25),
increased plasma corticosterone (76) and lower bone mineral
density (234). In the clinical setting bone markers have been
shown to change in response to treatment with an FGF21
analogue (PF05231023) in obese subjects, however a decrease
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in BW was also observed in response to PF05231023 (166, 235)
and therefore, it is impossible to conclude whether the change in
plasma bone marker was related to FGF21 treatment or BW loss
per se (236). Moreover, no apparent effect on bone density
(assessed by bone densitometry) was observed in patients
receiving Pegbelfermin for 16 weeks (140). However, based on
previous data with PAPRg agonists (Thiazolidinediones) which
decrease BMD (237), future studies of longer duration are
required to understand the impact of FGF21 on bone health in
humans. The negative effect on female fertility of FGF21 also
needs to be closely monitored but in the lean tg mice the adverse
effect of FGF21 on fertility may be linked to lack of energy due to
a large decrease in BW (86). It is well established that low leptin
decreases fertility (238) and in the tg mice the decrease in fertility
cause by FGF21 can be overcome by feeding the mice a high fat
diet (239). As FGF21 have overlapping activities with FGF21 in
mice by activation of the FGFR1c/KLB complex (28), it is of great
interest to understand if similar adverse findings were observed
in rodents or NHPs treated with Aldafermin.

Overlapping and Distinct Effect of FGF19
and FGF21 in Humans
A summary of the pharmacological effects of FGF21 and FGF19
analogues in humans is shown in Table 2, highlighting that both
FGF19 and FGF21 analogues lower hepatic steatosis and fibrotic
biomarkers in humans. However, differential effect on plasma
cholesterol is observed. The FGF21 analogues have strong effect on
the FGFR1c/KLB complex and potential also a slight effect on the
FGFR4/KLB complex, however, as plasma C4 and total bile acids
have not been measured in response to FGF21 treatment in
humans, it is not possible to conclude on this. As FGF19 also
binds with high potency to the human FGFR1c/KLB complex
overlapping effect with FGF21 analogues is expected. As
adiponectin may be involved in the anti-inflammatory and anti-
fibrotic actions of FGF21 it will be of interest to understand if also
Aldafermin increases plasma adiponectin in humans. Future
clinical studies are required to determine which approach is
more beneficial for patients with NASH and if blockage of bile
acids synthesis, which may increase plasma LDLc and increase
bowel movement, is advantageous in NASH and hence acceptable.
TABLE 2 | Summary of observations in clinical trials of FGF19 and FGF21
analogues.

Compound Aldafermin Pegbelfermin Efruxifermin

Blood glucose ↔ ↔ ↓ ↓
Body weight ↔ ↔ ↓
Insulin sensitivity ↔ ↑ ↑
Hepatic steatosis ↓ ↓ ↓
Hepatic fibrosis ↓ ↓ ↓
Serum Pro-C3 ↓ ↓ ↓
Plasma TG ↓ ↓ ↓
Plasma cholesterol ↑ ↓ ↓
Serum C4 ↓ ND ND
Plasma adiponectin ND ↑ ↑
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Conclusion
FGF19 and FGF21 analogues have overlapping effect on
steatosis, inflammation and fibrosis in mice and human
subjects. The suggested mode of action studied in pre-clinical
models are therefore likely also presented in humans
emphasizing that BW loss is not the major driver of NASH
resolution and decrease in fibrosis. Whether the effects are direct
or indirect actions on the liver is still to be confirmed. However,
while FGF21 analogues lower plasma lipids, FGF19, and
Aldafermin have been shown to increase plasma cholesterol
and decrease plasma bile acids in mouse and human. The
beneficial effect on NASH is likely mediated by the FGFR1c/
KLB complex, while the contribution of the FGFR4/KLB
complex and lowering of bile acids preventing hepatocyte
damage and subsequent fibrosis is not fully established in
NASH. The results from phase 2b trials (e.g., NCT04171765)
TABLE 3 | Future research questions for FGF19 and FGF21 with the NASH field.

• Why does FGF15 and FGF19 display differential receptor selectivity?
• Dissect the contribution of direct actions of FGF21 and FGF19 on the liver in NAS

In which cells are FGF receptor subtypes co-expressed with KLB in healthy and d
What is the impact of FGFR4/KLB mediated effects on NASH resolution and fibros
analogues in pre-clinical models)?
What is the contribution of FGFR2c/KLB and FGFR3c/KLB activation by FGF19/F
Are the beta KLB CNS and adipose tissue specific ko models more prone to deve

• What is the contribution of increased adiponectin levels, induced by FGF21 and po
• Does FGF21 analogues regulated bile acid metabolismin humans
• Are carriers of the FGF21 rs838133 allele at higher risk for development of NASH
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where administration of FGFR1c/KLB specific antibodies (240) are
subjected to NASH patients will reveal more details on the
contribution from the FGFR4/KLB complex to NASH resolution
and lowering of fibrosis. It is furthermore, to be established if
Aldafermin is non-mitogenic or even protective toward HCC by
inhibiting actions of endogenous FGF19 in humans. FGF21 has
been shown to protect toward development of HCC in mice and
long-termoutcome studies are required to show adecrease inHCC
progression of potentially both Aldafermin and FGF21 analogues.
Future research questions related to FGF19 and FGF21 within the
NASH field are summarize in Table 3. The metabolic effects of
FGF19 and FGF21 is summarized in Figure 3. In conclusion,
FGF19 and FGF21 analogues have significant effect on NASH
resolution and fibrosis in small, short term clinical trials. Thus,
much is to expect of these classes of compounds for future
treatment of NASH if long term safety is acceptable.
FIGURE 3 | FGF19 and FGF21 treatment of NASH. The effect on hepatic steatosis, inflammation and fibrosis seem to be mediated via activation of the FGFR1c/
KLB complex in the CNS and in the adipose tissue. FGF21 has been shown to decrease insulin release which will increase hepatic beta-oxidation and decrease
DNL. FGF21 is furthermore a strong inducer of adiponectin release which has been shown to have several beneficial effects on NASH. FGF21 also increases the
antioxidant capacity of the liver and increase the mitochondrial function. In addition, FGF21 lowers plasma TG, LDLc, and increases plasma HDLc. FGF19 has also
been shown to activate the FGFR1c/KLB pathway but in addition FGF19 decreases bile acids synthesis via FGFR4/KLB activation, which has beneficial effect on
NASH. It is unknown, if FGF21 activates the FGFR4/KLB complex and if other FGFRs (FGFR2c and FGFR3c) expressed in liver are involved in direct action of FGF19
or FGF21.
H resolution and fibrosis:
iseased livers?
is vs FGFR1c/KLB mediated effects (effect of FGFR4 vs FGFR1c specific FGF19

GF21 in NASH?
lop NASH?
tentially FGF19 therapies, on NASH resolution and fibrosis?

and/or HCC?
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