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ABSTRACT: Here, we introduce an electronic circuit that mimics the
functionality of a biological spiking neuron following the Fitzhugh−Nagumo
(FN) model. The circuit consists of a tunnel diode that exhibits negative
differential resistance (NDR) and an active inductive element implemented by a
single MOSFET. The FN neuron converts a DC voltage excitation into voltage
spikes analogous to biological action potentials. We predict an energy cost of 2
aJ/cycle through detailed simulation and modeling for these FN neurons. Such
an FN neuron is CMOS compatible and enables ultralow power oscillatory and
spiking neural network hardware. We demonstrate that FN neurons can be used
for oscillator-based computing in a coupled oscillator network to form an
oscillator Ising machine (OIM) that can solve computationally hard NP-
complete max-cut problems while showing robustness toward process variations.

■ INTRODUCTION
Biological brains can perform computational tasks at an
∼100,000× efficiency compared to the digital computers.1−6 A
typical biological neuron has a surface area of ∼10 μm2, spends
∼10 pJ energy to generate each spike, and operates at a
frequency of ∼100 Hz, which translates to a power cost of ∼1
nW for biological systems.3,4,6 The first set of efforts in emulating
biological neurons dates back to 1960s following the FN model
using voltage controlled NDR devices7,8 paired with inductors
to produce relaxation oscillations similar to neuronal spiking
behavior.9−11 The inductor element is the main scaling
bottleneck of this circuit implementation of spiking neuron, as
coil-based passive inductors are difficult to fabricate at nanoscale
with the required inductance values. The emergence of current-
controlled NDR devices featuring metal−insulator phase
transition materials has enabled generation of relaxation
oscillations using capacitors, leading to considerable progress
in artificial spiking neurons.12−23 There have been other
approaches to producing NDR, such as band to band tunneling,
resonant tunneling, Gunn effect, real space electron transfer in
III−V heterostructures, body biasing of MOSFET, exploiting
graphene’s unique dispersion relationship near its Dirac point,
using trap-based recombination processes, redox behavior of
molecular junctions, and multiple circuits.7,8,24−42 Recently, we
have shown that a graphene−silicon photodetector can show
voltage-dependent NDR behavior under optical illumination
while operating in the photovoltaic regime.43 This photosensor
coupled with an inductive circuit element generates optically
driven voltage oscillations similar to those of ganglion cells in the
retina, following the FN model of spiking neurons. Using a
frequency multiplexed parallel computing approach, these

oscillatory retinal neurons (ORNs) were then used to
demonstrate ultralow-power in-sensor neuronal computing for
machine vision. Purely electronic oscillatory neurons can extend
the ability of FN neurons to different types of sensors and enable
the construction of deep oscillator-based neural networks. In
addition, electronic oscillatory neurons are instrumental to
traditional oscillatory neural networks (ONNs), where a
network of coupled oscillators can be used as associative
memory44−58 or an engine for convolution-like opera-
tions.44,45,59−62 However, there are three important challenges
to achieving ultralow power oscillator-based computing: (1)
scalability, (2) energy consumption, and (3) variability of the
oscillatory neurons. These neurons serve as the smallest unit of
computation in oscillator networks similar to the different logic
gates in digital computing systems. Therefore, a cohesive effort is
necessary to improve the design of individual neuron circuits
and the algorithms that would allow the employment of these
neurons for the promised excellent performance of the brain-
inspired computing architectures.

In this work, we have introduced an FN neuron
implementation with a tunnel diode and an active inductor.
The scaling bottleneck presented by passive inductors is
removed in this implementation of the FN neuron by using
the active inductor that can easily be fabricated at nanoscale by
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traditional CMOS processes. The active inductor emulates the
behavior of a passive coil-based inductor by taking advantage of
an active element: a single MOSFET, and a resistor. Through
circuit simulations, we demonstrated the oscillation behavior of
the FN neuron implemented using this active inductor and
predicted the scalability limits. The key feature of this neuron is
that it is expected to generate voltage spikes with ∼2 aJ/cycle
energy cost, whereas the Mott transition-based neurons
consume an electrical energy of ∼50 pJ/cycle, and the state-
of-the-art CMOS neuron consumes ∼4 fJ/cycle.12,14,17−21,23

These FN neurons can generate firing patterns similar to
biological neurons. We have then used FN neurons to form a
coupled oscillator network onto which a computationally hard
combinatorial problem such as max-cut problem can be mapped
in an Ising machine-like fashion. This OIM can then minimize
the Ising Hamiltonian associated with the max-cut problem and
identify correct solutions while consuming a small electrical
energy.

■ RESULTS AND DISCUSSION
The spiking behavior of biological neurons was first described by
the Hodgkin−Huxley (HH) model. The HH model interprets
the dynamics of ion flows across neuronal membrane and the
resulting generation and propagation of action potentials
through a set of coupled differential equations. The Fitzhugh−
Nagumo (FN) model reduces the complexity of the HH model
by using just two variables: the membrane potential and the
recovery variable. Despite its simplicity, the FN model captures
some of the essential features of the Hodgkin−Huxley model,
such as the concept of a threshold for firing an action potential
and the recovery of the membrane potential after firing.
Moreover, the FN model can reproduce many of the behaviors
observed in the Hodgkin−Huxley model such as the
propagation of action potentials and the refractory period.
Dynamics of Fitzhugh−Nagumo neurons can be described by
the following coupled differential equations:63
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Here, v is reminiscent of the membrane potential of a neuron,
which is excited by an external stimulus iext analogous to the ion
pump current through a nonlinear medium f(v). f(v) can be
simplified as a third-order polynomial. Such an excitation is then
dissipated through a slower sink w. Figure S1a shows the

nullclines and the trajectory of the system for =f v v( ) v
3

3

for
parameter values of (a, b, r, τ, iext) = (0.7, 0.8, 0.5, 12.5, 0.4).
Figure S1b shows the waveforms obtained for the Fitzhugh−
Nagumo neurons for different values of iext , showing that action
potentials or spikes are not generated for under-excitation or
over-excitation conditions. Figure S2 shows the nullclines and
trajectories of the system under different parameter values.

Here, we develop a circuit to emulate FN neurons, with the
equivalent circuit shown in Figure 1a, with the third-order
nonlinear element f(v) approximated by a tunnel diode, a circuit
element that exhibits negative differential resistance. The
following coupled differential equations describe the dynamics
of this circuit:
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These equations are equivalent to those of the Fitzhugh−
Nagumo neurons and differ only by a scaling factor. In the
absence of the resistor R and the offset DC voltage Vapplied, this
circuit would simplify to a more traditional Van der Pol
oscillator.64−66 While such a circuit accurately captures the
description of a Fitzhugh−Nagumo neuron, the presence of an
inductor in the circuit limits its implementation and scalability.

To overcome this challenge, we explore the effect of
implementing this circuit with aHara active inductor comprising
a single FET and a resistor.67−69 Figure 1b shows the circuit
schematic for an FN neuron by using the Hara inductor and a
tunnel diode. The parasitic capacitance of the tunnel diode (C)
is implicit here. There are two sources of electrical power in this
circuit: VG and Vapplied. However, impedance of the series RG−
Cgs branch is +R

j CG
1

gs
, which blocks any DC current flow, and

therefore power consumption in the VG source is zero.
Therefore, all of the power in this neuron comes from the
source, Vapplied. This power can be calculated from

= +

=

P
T

V i i t

T
V i t

1
( ) d

1
d ,

T

T

osc
0

applied NDR C

0
applied NDR

where T is the period of one fundamental oscillation. Here, the
capacitive current integrates to zero over a full cycle of
oscillation. The energy in each cycle can be calculated from

Figure 1. Implementation of an FN neuron. (a) Equivalent circuit of an FN neuron using a tunnel diode. (b) Circuit schematic of an FN neuron using
Hara inductor.
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=E P Tosc osc . As a rule of thumb, the power consumptions in
both the tunnel diode and active inductor are ∼IpeakVpeak, where
Ipeak is the peak current of the tunnel diode before the start of the
NDR regime, and Vpeak is the voltage at which Ipeak is observed.
Since Ipeak decreases linearly with tunnel diode device area, any
reduction in power and energy consumption requires us to scale
down the diode to the smallest possible size.

The nonlinear element in the FN neuron does not necessarily
have to be a tunnel diode, as there are many different CMOS
compatible circuit topologies that allow NDR with a small
footprint. However, a tunnel diode is also a CMOS compatible
device that allows aggressive scaling to the nanometer scale.
Figure S3a shows the experimentally measured J−V and C−V
curves of a silicon tunnel diode.70 We have considered a linear
scaling behavior between diode current and physical diode area,
which is a reasonable assumption for tunnel diodes as discussed
in Section S2.1. This silicon tunnel diode is composed of a
vertically stacked p++ (∼1020 cm−3)/n++ (∼1020 cm−3) silicon
homojunction, completely compatible with CMOS fabrication
processes. As discussed in Section S2.2, a large peak current
density of 1.75 μA/μm2 indicates that a tunnel diode can be
scaled down to 100 nm × 100 nm size while keeping a ∼30 dB
signal-to-noise ratio at 1 GHz bandwidth. In addition to tunnel
diodes that achieve NDR behavior through band-to-band
tunneling, resonant tunneling diodes (RTDs) utilizing the
resonant tunneling phenomenon in multiple quantum well-like
structures can also be used in this implementation of FN
neurons. Due to the near unity transmission probability for
carriers, Si/SiGe-based RTDs can achieve a much higher NDR
peak current density (2.18 mA/μm2)42 compared to tunnel
diodes while maintaining similar capacitance per area. As a
result, an RTD-based oscillator can potentially reach a much

higher oscillation frequency.36,38,39,41 Recently, RTDs have
therefore been explored for designing spiking neurons for
applications in neuromorphic computing.35,37,40 However,
fabrication of RTDs is more complicated, since RTDs are
heterojunction devices. It is also more difficult to achieve NDR
behavior in RTDs at room temperature due to its inherent
physics. On the other hand, the simplified fabrication process,
increased variation tolerance, and comparatively smaller
susceptibility to thermal noise of silicon tunnel diodes make
them better candidates for practical implementation of FN
neurons.

Figure 2a,b shows a small signal equivalent circuit for theHara
inductor. The small signal model gives us an equivalent

inductance of =L
R C

geq
G gs

m
, where RG is the series resistance to

the gate, Cgs is the gate to source capacitance of the FET, and gm
is the transconductance of the FET.67,69 The DC voltage source
in series to the gate determines the bias point and consequently
gm of the FET. However, it is important to note that the spiking
neuron operation can lead to voltage swings of ∼100 mV, and
the small signal model would not be applicable in that case.
Nevertheless, it is a good starting point to design the neuron
circuit regardless of the nonidealities introduced by the large
signal voltage swings. Figure 2c shows Leq as a function of
operating frequency for a 65 nm CMOS process MOSFET with
W/L = 1 at different bias voltages and RG = 200 MΩ. Figure 2d
shows the equivalent resistance seen at the input terminal. These
results show that Leq can be tuned by the bias voltage. However,
an active inductor has a positive equivalent inductance only
within a certain frequency range, which puts certain design
constraints on the FN neuron.

Figure 2. Small signal behavior of the Hara inductor. (a) Small signal model for Hara inductor and (b) equivalent circuit. (c) Equivalent inductance
and (d) series resistance of Hara inductor using a 65 nm process MOSFET with W/L = 1 and RG = 200 MΩ.
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Using the established behavior of the individual elements, we
combine them to form the FN neuron, as shown in Figure 1a.
We have performed circuit simulations for a FN neuron using
the I−V curve and device capacitance obtained from the
experimental data of a silicon tunnel diode and an ideal inductor
with no series resistance (ideal Van der Pol oscillator case). The
experimentally obtained I−V curve was first mathematically fit
and then interpolated to generate a lookup table. Using a lookup
table allows us to speed up simulations by avoiding evaluation of

the nonlinear function as we solve the system of ordinary
differential equations at each time step. Figure 3a−d shows the
colormaps for oscillation amplitude, frequency, power con-
sumption, and energy consumption, respectively, for a diode of 1
μm2 device area. We observe from these colormaps that
oscillation is only possible within certain applied voltage ranges,
and the oscillation amplitude is significant after a threshold
inductance. These values are functions of the tunnel diode I−V
curve as oscillations can only be sustained at the voltages for

Figure 3. Simulated oscillation behavior of a silicon tunnel-diode-based FN neuron. Colormaps of (a) fundamental oscillation frequency, (b)
amplitude, (c) power, and (d) energy consumption in the FN neuron using passive inductors. (e) Normalized fundamental oscillation frequency and
amplitude of the FN neuron. (f) Typical oscillation waveforms at different L C/ values.

Figure 4. Simulated oscillation behavior of FN neuron implemented with the Hara inductor. (a) Colormap of fundamental oscillation frequency. (b)
Example oscillation waveforms at different conditions. (c) Fundamental oscillation frequency, (d) power, and (e) energy consumption as a function of
diode area. (f) Energy cost comparison with other artificial spiking neuron technologies.
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which NDR behavior exists. We have then introduced a

normalized quantity L
C

analogous to the characteristic

impedance of a transmission line. When the device area (A)
decreases, both the current and capacitance of the diode
decrease linearly. This quantity captures the effect of scaling
both the device area and inductance. Figure 3e shows the
fundamental oscillation frequency ( f peak,1) normalized to the
resonant frequency of the LC circuit ( =f

LCLC
1

2
) and

oscillation amplitude for Vapplied = 0.4 V. We can observe a sharp

increase in oscillation amplitude at 1 KL
C

clearly marking

the onset of oscillation. It is noteworthy that such an oscillator

approximates an LC oscillator for < 100 KL
C

, where

f fpeak,1 LC. Figure 3f shows some example oscillation

waveforms for the FN neurons at different values of L
C
,

where we can observe the emergence of sharp spikes as we keep

increasing L
C
. As we scale the tunnel diode down to smaller

sizes, both I and C will scale linearly, and we would need to
increase the inductance L linearly to maintain the same
oscillation threshold and frequency. For a tunnel diode with
an area of 1 μm2, C = 25 fF, we would need an inductance of
∼100 nH to start the oscillations.

In order to understand the scaling limits of this FN neuron, we
have then simulated the Hara inductor-based neurons using the
65 nmCMOS process-basedMOSFET.71 It is important to note
that while a 65 nm MOSFET has been used here for these
simulations, quantitatively similar results can be obtained by
using any other FET such as 5 nm FINFETs. Since the inductive

load depends on RG, Cgs, and gm ( =L
R C

geq
G gs

m
), FETs of different

sizes and processes can achieve the same inductance by adjusting
their transconductance (gm) by applying an appropriate VG so
that

C

g
gs

m

ratio remains constant. In addition, the capacitive load

seen by the oscillator is a parallel combination of the parasitic
capacitance of the diode and the drain-to-source capacitance
(Cds) of the FET. Since Cds is typically much smaller (∼100×)
compared to diode capacitance, the operational frequency of the
oscillator will not be affected significantly by using different
FETs as long as Cdiode ≫ Cds. Figure 4a shows the oscillation
frequency colormap for a FN neuron comprising a 1 μm2 tunnel
diode and RG = 200 MΩ. As shown in Figure 4a, there is a
particular range of VG and Vapplied values at which spiking neural
behavior can be sustained. A decrease in VG decreases the
inductance and increases the series resistance. As a result, we see
a larger oscillation frequency at a smaller VG. However, the
increasing series resistance requires us to increase Vapplied to
sustain oscillation. Figure 4b shows some oscillation waveforms
for different VG and Vapplied. We then performed the same
simulation for tunnel diodes of different device areas between
400 nm2 and 1 μm2. Figure 4c shows f peak,1 as a function of diode
area, showing an ∼80MHz oscillation frequency for the smallest
devices. Figure 4d,e shows the Posc and Eosc for the FN neuron for
a minimum oscillation amplitude of 50 mV. Posc and Eosc are
calculated using the following equations,

=P
T

V i t1
d

T

osc
0

applied NDR

=E V i td
T

osc
0

applied NDR

Here, T is the fundamental oscillation period. The decrease in
Posc and Eosc is linear to the neuron area until the MOSFET area
becomes the limiting factor. For a 0.0046 μm2 neuron area (20

Figure 5. Biological neuron-like firing patterns. (a) Firing patterns of a single FN neuron showing tonic and phasic spiking and (b) corresponding FFT
spectra. (c) Circuit schematic of two cascaded FN neurons. (d) Tonic bursting patterns generated by the cascaded circuit.
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nm × 20 nm diode, 65 nm × 65 nm MOSFET), we estimate a
Posc of 1.4 nW and a Eosc of 2 aJ, which is the lowest among
reported energy per oscillation cycle for different electronic
neurons.6,12−15,17,18,22,34,72−78 It is important to note that the
spread in the data comes from all possible oscillation conditions
at different VG and Vapplied. The current flow and operation
voltage for this FN neuron implementation depend on the
tunnel diode I−V characteristics. As discussed in more detail in
Section S5, we do not expect any significant influence of the FET
sizing or process on the oscillation frequency or amplitude and
therefore also on power and energy consumption. Figure 4f
shows the comparison between the energy consumption per
cycle for different types of neurons found in the literature. There
aremainly three other approaches tomaking an artificial neuron:
(1) metal−insulator transition (MIT) memristors and a
capacitor, (2) circuit-based techniques implemented with
CMOS technology, and (3) ferroelectric FETs (FeFETs) with
a regular FET. While the MIT neurons can be scaled down to
∼1000 nm2, the minimum energy cost is ∼50 pJ for oscillation,
which is significantly larger compared to that of biological
neurons.6,12−15,17,18,22,72 CMOS-based neurons have a large
distribution of power and energy costs depending on the circuit
techniques used for implementing the spiking neural behav-
ior.34,73−78 Current state-of-the-art spiking neuron75 has a 35
μm2 area with a 4 fJ energy consumption, whereas a typical
biological neuron of ∼10 μm2 area has an energy consumption
of ∼10 pJ. FeFET neurons also demonstrate promise in
achieving oscillation with an energy cost of ∼1 pJ. In contrast
to all these artificial neurons, our proposed FN neuron
consumes an electrical energy of 2 aJ, which can further the
state-of-the-art of this field.

An FN neuron is a two-dimensional dynamical system capable
of showing several biological neuron-like firing patterns, such as
phasic and tonic spiking. Excitability of an FN neuron is
dependent on the design parameters. Figure 5a shows three
different operations of an FN neuron with a diode area of 0.02
μm2, RG = 110MΩ,Vapplied = 0.39 V, and three different values of
VG. At smaller VG (0.1 V), transconductance of the FET is
smaller, and the Hara inductor presents a large inductive
impedance. As a result, the nonlinear term in the FN neuron
model becomes smaller, and the FN neuron shows nearly
harmonic oscillations. As VG becomes larger (0.2 V), inductive
impedance becomes smaller, and the oscillations become more
nonlinear with sharper spiking nature. This is similar to tonic
spiking in biological neurons. When VG becomes even larger
(0.35 V), the neuron shows a transient spike, followed by
overdamped oscillations similar to phasic spiking patterns.
Figure 5b shows the corresponding FFT spectra of the
oscillation time series shown in Figure 5a. As expected, the
nearly harmonic oscillations show much smaller high harmonic
peaks compared to the fundamental frequency, while the tonic
spiking pattern shows significantly larger high harmonic
contents. The phasic spiking pattern does not show any
significant frequency peak as the oscillation dies away with
time. It is important to note that FN neuron model inherently
lacks the capability to generate bursting patterns due to its
limited dimensionality. However, it is possible to cascade two
FN neurons, as shown in Figure 5c to increase the
dimensionality and generate tonic bursting patterns (Figure
5d). Essentially, when the oscillations generated by one neuron
are much slower than the other (RG1 = 100RG2 = 11 GΩ), it is
possible to modulate the VG2 input of the second neuron using
the output of the first neuron (Vosc,1). As a result, the second

neuron only fires when the first neuron provides the necessary
voltage. Therefore, it is possible to generate different firing
patterns by designing electronic circuits with multiple FN
neurons.

FN neurons can be used to create traditional spiking neural
networks (SNNs) for performing tasks typical of artificial neural
networks (ANNs). These traditional SNN architectures encode
information in the timing (temporal encoding) or frequency
(rate encoding) of spiking patterns and make use of all-or-
nothing spiking dynamical behavior of neurons to process
information.79−81 These architectures typically mimic the
behavior of ANNs while utilizing the low energy consumption
behavior of spiking neurons. Performance of these networks has
been further limited by their incompatibility with back-
propagation methods of learning. The dimensionality of these
networks is reduced due to their all-or-nothing spiking nature.
On the other hand, oscillator-based computing approaches
utilizing synchronization behavior of oscillator networks
through interaction can potentially make use of a much richer
computational space to perform more versatile tasks. A liquid
state machine comprising a network of oscillators is theoretically
capable of performing all tasks doable by a Turing machine
without resorting to any learning mechanism.82−87 OIMs have
been used to solve computationally hard combinatorial
problems by exploiting the oscillation dynamics of a coupled
oscillator network. In our previous work, we have shown that it is
possible to perform massively parallel computing by multi-
plexing operations in the frequency domain. SNNs are therefore
a subset of the massive computational space offered by
computing systems by using oscillator dynamics.

While an oscillatory neuron is the building block for
neuromorphic oscillatory computing, the actual computation
emerges from the macroscopic behavior of a network of coupled
oscillators. Harnessing these emergent computational behaviors
is contingent on the construction of the coupling network.
There have been prior works on associative memory property of
coupled oscillators where the oscillator phases settle to certain
values resulting from the minimization of the “energy” of the
system.44,45,47,50,55,61,62 OIM is a special case of such a phase-
based computation scheme, where a computationally hard
combinatorial optimization problem can be mapped to the
coupling impedances of the oscillator network. Under certain
circumstances, the oscillators would then settle to a combination
of binary phases (0 or π) that result in a minimization of the
system energy that corresponds to the Ising Hamiltonian of the
problem.55−58 Typically, the oscillator phases can take
continuous values between 0 and π. However, if the oscillators
are externally injected with a signal with twice their fundamental
oscillation frequency, it is possible to force them to have binary
phase differences of 0 or π because of subharmonic injection
locking (SHIL).55−57 Detailed mathematical analysis on
mapping NP-hard and NP-complete combinatorial problems
to OIMs has been carried out elsewhere.44,55−58,62 This work
focuses on how FN neurons can be utilized for oscillator-based
computing, and we have chosen to demonstrate how an FN
neuron-based OIM can be used to solve an NP-complete
problem such as the “max-cut” problem. If we have a graph with
N-nodes and the nodes have M-edges between them with
different weights, then themax-cut problem aims to find a binary
partition between the N-nodes that results in the maximum
number of cuts to the edge weights. For the sake of simplicity, let
us consider a graph with 2-nodes with a single edge with unity
weight. Then, partitioning the two nodes into different groups
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results in the max-cut of 1 (Figure S5a). Figure S5b shows how
this problem can be mapped on two FN neurons coupled with a
resistor, Rcoupling. When Rcoupling is too small, the oscillators are
always in phase, and there is no partition between the oscillators.
On the other hand, when Rcoupling is large, the oscillators are
almost uncoupled, and therefore they do not maintain a specific
phase difference between them. However, for intermediate
values of Rcoupling, they would always couple with a phase
difference of π, resulting in a partition. We have performed
simulations for X different random initial conditions for the FN
neurons for a given Rcoupling and then calculated the probability
o f fi n d i n g c o r r e c t s o l u t i o n a s

= #P
Xsolution

instances leading to correct solution . Figure S5c shows Psolution

as a function of Rcoupling for Vinj = 0.5 V and RSHIL = 50 MΩ (X =
1000). Figure S5d shows evolution of the oscillation waveform
toward the correct solution, i.e., coupling antiphase. It is
noteworthy that the symbol of oscillator includes the FN neuron
as well as an externally applied SHIL signal, as shown in Figure
S6a.

Figure 6a shows the graph for an 8-node max-cut problem and
the solution that yields maximum cuts of 10. Figure S6b shows
the circuit schematic implementing this max-cut problem. Here,
we consider Rij = Rcoupling for all values of (i,j). Figure 6b shows
the evolution of oscillator phases toward the partition that gives
us maximum cuts. This result was achieved for Rcoupling = 150
MΩ, RSHIL = 50 MΩ, and Vinj = 0.5 V for f SHIL = 150 MHz. It is
important to note that Psolution is heavily dependent on the

parameters of the coupling network. The correct partition
between oscillators depends critically on two factors: (1) the
ability to achieve phase bipartition and (2) the ability to achieve
the correct order of phase bipartition. While phase bipartition
ability comes explicitly from the SHIL signal and therefore
depends on the strength of Vinj, the correct order of phase
bipartition comes from the coupling between different
oscillators and hence on Rcoupling. Figure 6c shows the colormap
of Psolution as a function of Rcoupling and Vinj for RSHIL = 50 MΩ (X
= 768). As shown in Figure 6c, high values of Psolution can be
achieved only when the combination of Rcoupling andVinj is within
a certain range. However, one of the key issues with
implementing OIMs is the variation between the oscillators.
Since the phase bipartition is very sensitive to the oscillation
dynamics, variations in oscillators can lead to significant
degradation of Psolution. For nanoscale devices, these variations
are more pronounced due to random dopant fluctuation,
lithography-based size variations, etc. Random dopant variation
is most pronounced since ion implantation in CMOS processes
is inherently a stochastic process, and such variation leads to
significant spread in threshold voltages across different
MOSFETs. In addition, the tunnel diodes also feature heavily
doped p++ (>1019 cm−3) and n++ regions (>1019 cm−3).
Therefore, we can also expect some variations in the tunnel
diode current levels. However, when there is current flow in a
diode, its capacitance is dominated by the charge transport
capacitance or diffusion capacitance. This capacitance is directly

Figure 6. Implementation of an Ising machine with FN neurons. (a) A 8-node graph for max-cut problem and its solution. (b) Evolution of oscillation
waveforms toward correct solution from random initial conditions. (c) Colormap of solution probability as a function of Rcoupling and Vinj without
considering any variation. (f) Robustness of Psolution to variations in tunnel diode current.
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proportional to current, and therefore, such current variations
also lead to linear variations in device capacitance. As discussed
in Section S6, when there is a variation in both device current
and capacitance, the differential equation governing the
oscillation dynamics remains immune to these fluctuations
when the fluctuations are small. We have then introduced a
Gaussian variation in both device current and capacitance of the
tunnel diodes for the 8-node max-cut circuit and simulated the
OIM oscillation dynamics. Figure 6d shows Psolution as a function
of standard deviation (σcurrent) in tunnel diode peak current,
showing the insensitivity of Psolution as σcurrent increases. When we
consider variations in Vth ( Vth

= 20 mV), as experimentally
observed in a previous study on 65 nm MOSFETs,88 there is a
slight degradation in Psolution as shown in Figure 5d. These results
clearly show the promise of FN neurons in oscillator-based
computing. While CMOS compatibility and scalability would
allow realization of large scale coupled oscillator networks,
electrical energy consumption of such networks can also be
minimized because of the superior energy efficiency of FN
neurons.

■ CONCLUSION
In conclusion, we have demonstrated an active inductor-based
implementation for an FN neuron and predicted the scaling
behavior of this neuron through simulations. Our simulations
show that it is possible to generate the oscillation behavior in
these neurons at an extremely low energy cost of 2 aJ per cycle.
These FN neurons can generate firing patterns similar to
biological neurons, such as tonic and phasic spiking. Firing
patterns unachievable by a single FN neuron, such as bursting
patterns, can also be generated by designing appropriate circuits
with these neurons. FN neurons can be used in a coupled
oscillator network to form an Ising machine and solve NP-
complete combinatorial problems such as the max-cut problem
while being robust to process variations. This work shows a
roadmap to designing and implementing FN neurons through
voltage controlled NDR devices, replacing the real inductor with
the MOSFET-based inductor, generation of oscillations with
ultralow electrical energy, and possible application in large scale
variation insensitive oscillator-based computing systems.
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