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Iuliu Haţieganu University of Medicine

and Pharmacy, Romania

*Correspondence:

Zhongxin Xu

xuzhongxin@jlu.edu.cn

Specialty section:

This article was submitted to

Stroke,

a section of the journal

Frontiers in Neurology

Received: 28 October 2020

Accepted: 03 May 2021

Published: 01 July 2021

Citation:

Dong R, Huang R, Wang J, Liu H and

Xu Z (2021) Effects of Microglial

Activation and Polarization on Brain

Injury After Stroke.

Front. Neurol. 12:620948.

doi: 10.3389/fneur.2021.620948

Effects of Microglial Activation and
Polarization on Brain Injury After
Stroke
Rui Dong 1, Renxuan Huang 2, Jiaoqi Wang 1, Hongyu Liu 1 and Zhongxin Xu 1*

1Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China, 2Department of Neurosurgery,

China-Japan Union Hospital of Jilin University, Changchun, China

Stroke is one of the most common causes of death worldwide. The subsequent

development of neuroinflammation and brain edema dramatically increases the risks

associated with stroke, leading to a substantial increase in mortality. Although

considerable progress has been made in improving cerebral perfusion in the acute

phase of stroke, effective treatment options for the subacute and chronic phases

associated with cerebral infarction are limited. Microglia, the innate immune cells

of the central nervous system (CNS), can be activated and polarized to take on

different phenotypes in response to stimulations associated with stroke, including

pro-inflammatory and anti-inflammatory phenotypes, which affect the prognosis of

stroke. Therefore, investigation of the activation and polarizing mechanisms of microglia

plays a critical role in treating stroke. The aim of this article was to investigate the

significance of microglial phenotype regulation in stroke treatment by summarizing the

activation, polarizing mechanisms, and general microglia characteristics.
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INTRODUCTION

Recent data from the World Health organization (WHO) shows that stroke is a leading cause
of death worldwide (1–4). Post-ischemic neuroinflammation and cerebral edema secondary to
stroke aggravate the damage caused by stroke to varying degrees (5, 6). Therefore, improvement
in therapeutic protocols targeting the regulation of the cerebral microenvironment during stroke,
and the repair of neural and tissue damage after stroke, are essential.

Microglia, the resident immune cells in CNS, continuously monitor the brain parenchyma.
Microglia can become activated and switch their phenotype in response to changes in the local
CNS microenvironment. They can have either a pro- or anti-inflammatory role and influence
the prognosis of ischemic stroke (7–9). The M1 phenotype can release cytotoxic factors, such
as inflammatory cytokines and nitric oxide (NO). M2-type microglia secrete anti-inflammatory
factors, remove cell debris, promote angiogenesis, and promote the repair of injured peripheral
nerves (10). Microglia, as an integral part of the immune system, produce inflammatory factors,
alter the permeability of the blood-brain barrier (BBB), phagocytose vascular endothelial cells,
and lead to BBB breakdown after stroke, which can result in reduced brain recovery following
infarction. M1-type microglia also remove necrotic tissue, which promotes neurogenesis, secrete
anti-inflammatory factors that regulate inflammation, and produce other neuroprotective effects
(11–14). Thus, microglia have a “double-edged sword” function to maintain the homeostasis of
the CNS microenvironment after stroke through two opposed pathophysiological effects, both of
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which play essential roles in recovery after brain injury.
Therefore, studying the activation and polarization mechanisms
of microglia and exploring possible means of regulating the
M1/M2 phenotype transition might provide new ways to
improve brain injury treatment after stroke.

This review summarizes the mechanisms associated with
microglial activation and polarization, as well as the impact of
microglia on stroke prognosis. Also, the therapeutic directions
for recovery after a brain injury caused by stroke are discussed.
We theorize that limiting microglial hyperactivation, inhibition
of the M1 phenotype, and promoting the M2 phenotype through
a combination of endogenous mechanisms and exogenous drugs
would be beneficial for repairing brain injury following stroke.
However, specific mechanisms need further investigation.

FEATURES OF MICROGLIA

Ginhoux has reported that microglia are derived from yolk sac
macrophages before embryonic day eight in mice, and contribute
to primitive hematopoiesis (15). The microglial stages progress
from embryonic to early postnatal then adult CNS (16). Under
different conditions of activation, microglia of the developing
can display different morphologies (17). Microglia are activated
in the embryo and early postnatal brains and display a “generic
macrophage”-like andmobile amoeboidmorphology, while adult
microglia exhibit characteristic ramified extensions that survey
the surrounding areas (18).

Early after Middle Cerebral Artery Occlusion (MCAO),
activated microglia were observed to be concentrated in the
lesion area, and fewer microglia were located inside the
ischemic center (19). Over time, the number of microglia
in the ischemic center gradually increased, with round and
amoeboid characteristics as the predominant morphologies.
Highly branched microglia were observed at the borders of the
ischemic region during reperfusion for up to 22 h (20). So it
is clearly to see that microglia have specific region- and time-
dependent features.

Moreover, during embryonic development, the phenotypes
and functions of microglia are similar to those of yolk
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NOX, NADPHoxidase; TNF-α, Tumor necrosis factor-α; IL-6, Interleukin 6; II-1β,
Interleukin 1β; IL-10, Interleukin-10; TGF-β, Transforming growth factor-β; LPS,
Lipopolysaccharide; LCN2, Lipocalin 2; VEGF, Vascular endothelial growth factor;
AMPK, AMP-activated protein kinase; Nrf2, Nuclear factor erythroid-2-related
factor 2; LKB1, Liver kinase B1; CaMKKβ, Calmodulin-dependent protein kinase
kinase β; Keap1, Kelch-like ECH-associated protein 1; ARE, Antioxidant response
elements; HO-1, Heme oxygenase-1; NQO-1, NADPH quinone oxidoreductase-1;
GST, Glutathione S-transferase; ATF4, Activating transcription factor 4; MCP-
1, Monocyte chemoattractant protein-1; CCL2, CC chemokine ligand 2; CCR2,
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cell; TLR, Toll-like receptors; STAT, Signal PAMP, Pathogen-associated molecular
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1; BTX-A, Botulinum toxin type A; PDE5, phosphodiesterase of type 5; ARB,
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sac macrophages (15). Both cell types share the common
characteristics of performing surveillance of the immunological
microenvironment, mediating inflammation, and removing
debris from dead cells (21). However, these two cells may play
different roles during brain injury and can respond in opposite
ways to acute inflammatory stimuli (22). According to the results
from Yamasaki et al., microglia can protect the injured brain
while macrophages concomitantly damage the brain under the
same circumstances (21), which may be related to different types
of gene expression patterns.

ACTIVATION AND POLARIZATION OF
MICROGLIA

Microglial Activation and Function
Microglia are the first line of defense against brain injury
that takes place following stroke. They respond rapidly to
alterations in the brain microenvironment. Early after stroke
onset, microglia become activated rapidly, initiate migration,
and activate downstream cell signaling (23, 24). Microglia
activation is mainly characterized by changes in morphology,
phagocytosis, migration to the injured area, and secretion
of cytokines and oxidative metabolites such as NO and
reactive oxygen species (ROS) (25), the excessive expression
of which can lead to neuroinflammation after brain injury
(26). In several pathological conditions, including exposure
to lipopolysaccharide (LPS), inflammatory factors, hypoxia
and other injury- related moleculars, microglia become over
activated, and could be induced to exhibit a pro-inflammatory
phenotype, where numerous pro-inflammatory cytokines are
replicated, leading to neuronal cell damage (27). In fact, not
only do microglia aggravate the damage that occurs in the
brain and inhibit recovery, but they also remove necrotic
cells and debris that promotes nerve regeneration (14). Their
phagocytic functions can remove tissue fragments and foreign
substances, however, the hyperactivation of microglia and
mobilized macrophages caused by stroke reduces their clearance
capacity, which could eventually result in damage to neurons and
breakdown of the BBB (11, 12).

It’s already known that stimulation of microglia with
amyloid-β peptide (Aβ) activates transcription factors (e.g.,
nuclear factor kappa-B, NF-κB) involved in the expression
of pro-inflammatory genes (28). On the other hand, nerve
growth factor (NGF) promotes TrkA-mediated microglial
phagocytosis of Aβ and induces the degradation of Aβ.
NGF counteracts the pro-inflammatory activation induced
by exposure to Aβ (29). NADPH oxidase (NOX) is a
multi-subunit enzyme that produces peroxides and ROS in
microglia. The inhibition of NOX significantly reduces pro-
inflammatory activation of microglia and produces anti-
inflammatory effects (30, 31). Recently, evidence has suggested
that MCAO and OGD can induce biphasic microglia activation
(32, 33). After ischemia occurs, microglia become activated, and
produce detrimental and neuroprotective mediators (34). Thus,
microglia carry out dual roles in determining the prognosis of
brain injury.
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Microglial Polarization and Function
Microglial polarization follows two pathways, the classical
activation (M1) pathway and the alternate activation (M2)
pathway. When the M1 phenotype is induced by exposure to
LPS, microglia exhibit destructive effects in the CNS. However,
the M2 phenotype, which can be induced by IL-4, exhibits
neuroprotective effects (14, 35). The M1 phenotype is a pro-
inflammatory cell state that releases inflammatory cytokines,
including tumor necrosis factor-α (TNF-α), interleukin 6 (IL-
6), interleukin 1β (II-1β), NO, and so on. The M1 phenotype
is also associated with increased production of ROS, the
synthesis of extracellular matrix protein hydrolases (MMP3
and MMP9), and the cell surface marker of M1 phenotype,
CD68 and CD16/32 (36–38). M2 microglia express an anti-
inflammatory state in which cells release anti-inflammatory
mediators, including cellular interleukin-10 (IL-10), cellular
interleukin-4 (IL-4), Arginase-1(Arg1), chitinase-like protein-
1 (Ym1), transforming growth factor-β (TGF-β). In addition,
the cell surface marker of M2 phenotype, CD206, can promote
reductions in inflammation, increased clearance, and enhanced
expression of homeostasis-associated genes (24, 35, 39).

LPS is a critical component of the cell wall of gram-negative
bacteria that induces the release of pro-inflammatory cytokines,
produces neuroinflammatory responses, and promotes M1-
type microglial polarization1 (40). Lipocalin 2 (LCN2) also
promotes microglial M1-type activation. The expression of LCN2
in microglia was significantly increased after LPS treatment,
indicating increased gene expression related to inflammatory
processes in microglia (41).

Microglia and macrophages exhibit a protective M2
phenotype in the early stage after ischemic stroke, then
gradually transition to a more classically activated M1 phenotype
associated with nerve injury in the later stages after stroke. This
transition demonstrates that microglia can exhibit dynamic
changes in response to injury at different stages after stroke (23).
Therefore, regulation of the microglial M1 and M2 phenotype
balance is of great significance for the treatment of stroke.

CHARACTERISTICS OF MICROGLIAL
ACTIVATION AND POLARIZATION IN
DIFFERENT ENVIRONMENTS

BBB permeability increases with aging, as does the release of
pro-inflammatory mediators in the nervous system. When the
pro- and anti-inflammatory cytokine levels become unbalanced,
this leads to an increased inflammatory state in the brain
environment. Also, microglial activation and polarization change
with aging (42, 43). It has been reported that decreased expression
of chemokines is accompanied by increased microglial activation
in the brains of aged rats. Additionally, the treatment of aged
rats with chemokines can attenuate microglial activation (13).
The data from Shoucai Zhao et al. showed an age-related
difference in microglial activation after stroke. Indeed, the young
stroke brains had higher IRF4 expression, corresponding to
a stronger M2 microglial phenotype, as indicated by an up-
regulated membrane CD206 level. In contrast, a stronger M1

phenotype was probably induced by up-regulated expression
of IRF5 (44).

Microglia exhibit some differences between sexes. It is
widely known that estrogens have anti-inflammatory activity,
which may be a determining factor in the gender-dependent
manifestations observed in brain lesions. Estrogen and
progesterone could have neuroprotective roles in ischemic stroke
by regulating the expression of chemokines and enhancing the
effect of vascular endothelial growth factor (VEGF) (45). Villa
et al. described significant differences in the transcriptomes
of microglia from adult male and female that may arise from
perinatal exposure to sex steroids (46). They also discovered
that microglia from female were neuroprotective because they
limited the injury caused by acute focal cerebral ischaemia (46).
Bodhankar et al. reported that the expression of microglial M2
markers was higher in female mice than in male mice after
ischemic stroke. In contrast, the expression of M1 markers, such
as TNF-α and IL-1β, were significantly lower (47).

A recent study revealed that hypothermia has a regulatory
effect on brain injury after stroke. Specifically, using a MCAO
model, hypothermia decreased the number of M1 microglia and
the expression ofM1markers and increased the expression ofM2
markers. Thus, hypothermia can transform microglia from the
M1 state into the M2 state. This supports the supposition that
hypothermia has neuroprotective effects on ischemic stroke (48).

The results discussed above demonstrate that the activation
and polarization of microglia differ based on age, sex, time after
insult, and location. Microglia also are affected by temperature,
and the effects of microglial cell production vary according to
their environment. These observations suggest that the types
of treatments that are effective and the prognostic results for
patients experiencing different types of stroke will be different in
clinical settings. These data also provide a range of new ideas to
target and design novel treatments for stroke.

MECHANISMS OF MICROGLIAL
ACTIVATION AND POLARIZATION AFTER
STROKE

Given the importance of microglial responses during brain
injury, it is critical to investigate the mechanisms of microglial
activation and polarization. This will help to understand the
molecular processes that underlie microglial morphological
and functional changes caused by changes in the brain
microenvironment and also provide direction for developing
novel therapies to reduce the damage caused by stroke
(Figure 1). According to previous studies, we know that
the effects of microglia on cerebral ischemic injury are
divided into three processes. First, microglia detect changes
in the brain microenvironment after ischemic injury and
detect extracellular signals through cell-surface and intracellular
receptors. Second, these signals are integrated and transduced,
through downstream reactions. Finally, these interactions cause
microglia to produce pro-inflammatory or anti-inflammatory
effects. Chemokine receptor-ligand pairing, transcription factors,
signal transduction, activation of transcription, and other
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FIGURE 1 | Microglial responses to cerebral ischemia. Microglial responses to cerebral ischemia can be divided into three parts. The sensory component can detect

extracellular signals, the signal transduction component can influence gene expression, and the effector component can active pro-inflammatory or anti- inflammatory

responses.

pathways are known to influence microglial activation and
polarization through regulation of the activation of the pro-
inflammatory transcription factor, NF-κB, which, in turn,
regulates cytokine secretion.

NF-κB regulates the transcription of a range of pro-
inflammatory factors. After ischemic stroke, NF-κB is activated
in activated microglia and translocates from the cytoplasm into
the nucleus, which induces the production of inflammatory
cytokines and results in secondary brain injury after stroke (49).
NF-κB also induces microglia activation and polarization of
the M1 phenotype (50). Recently, it has been shown that zinc
induces microglial activation through activation of NOX and
NF-κB (51). MAPKs are a family of serine/threonine protein
kinases that regulate cell proliferation and survival. This family
includes JNK, ERK, and p38, which are involved in ischemia-
induced neuroinflammation (49). It is evident that MAPK and
NF-κB plays an essential role in regulating neuroinflammation
after ischemic stroke, as well as the activation and polarization
of microglia. Therefore, targeting inhibitors of NF-κB or the
activation of pathways that inhibit NF-κB activity might provide
a new direction for the treatment of stroke.

AMPK/Nrf2
Several recent studies have demonstrated that AMP-activated
protein kinase (AMPK) and nuclear factor erythroid-2-related

factor 2 (Nrf2) play crucial roles in the transition from a pro-
inflammatory phenotype in microglia to an anti-inflammatory
phenotype (52–54). AMPK is a trimeric serine/threonine kinase
with two in vivo upstream kinases, including liver kinase B1
(LKB1) and calmodulin-dependent protein kinase kinase β

(CaMKKβ). These kinases activate AMPK in AMP-dependent
and Ca2+-dependent pathways, respectively (55, 56). AMPK,
known as a central regulator in the body (57), stimulates energy
production by shutting down energy-consuming pathways
and phosphorylating antioxidant transcription factors, thereby
maintaining metabolic and cellular energy homeostasis (58,
59). Activation of AMPK inhibits NF-κB activation and LPS-
mediated pro-inflammatory activation of microglia, promoting
M2-type microglial polarization (54). Recently, it has been
reported that telmisartan can induce AMPK activation and
regulate M2 phenotype polarization in microglia (60).

Nrf2 is a master transcriptional regulator of antioxidant
pathways and exerts its anti-inflammatory effects through the
activation of antioxidants. The N-terminal domain, Neh2, binds
to Kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm.
After oxidative stress, the Keap1-Nrf2 complex dissociates, Nrf2
accumulates in the nucleus and binds to antioxidant response
elements (ARE) together with small Maf transcription factors.
This complex promotes the generation of antioxidant and
anti-inflammatory proteins, including heme oxygenase-1 (HO-
1), NADPH quinone oxidoreductase-1 (NQO-1), Glutathione
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S-transferase (GST), and others (61–63). HO-1 has been reported
to result from binding of ARE to a dimer, consisting of Nrf2 and
activating transcription factor 4 (ATF4) (64). Similar to AMPK,
Nrf2 activation suppresses neuroinflammation by inhibiting
LPS-induced pro-inflammatory factor expression, and promotes
macrophage M2 polarization, resulting in an anti-inflammatory
effect (65). Tae et al. found that plumbagin, an activator of
the Nrf2/ARE pathway, reduced the area of brain injury in
a mouse model of MCAO and reduced the impairment of
neurological function (53). The work of Zhang et al. shows that
overexpression of SIRT6 in the brain by in vivo gene transfer
potentiated anti-oxidant NRF2 signaling, reduced oxidative
stress and the extent of cerebral I/R-induced brain tissue damage
and neurological impairments, while in NRF2 knockout mice
these neuroprotective effects were abolished (66). Another result
shows that L-F001 can increase the expression levels of the
M2 microglia marker CD206 via NRF2 signaling pathways
activation in vitro (67), which corroborated the protective effect
of NRF2 activation.

According to existing studies, AMPK phosphorylates Nrf2
at the Ser550 residue, leading to nuclear accumulation of Nrf2.
AMPK also induces HO-1 production through the Nrf2/ARE
pathway42 (59, 68), indicating that Nrf2 is a downstream
signal for AMPK, both of which participate in neuroprotection
following brain injury. 3-N-butylphthalate (NBP) has been
shown to activate Nrf2 (69, 70). HP-1c, which is composed
of telmisartan and the NBP derivative 2-(1-hydroxypentyl)-
benzoic acid (HPBA), has been shown to promote M2 microglial
polarization and exhibits antioxidant and anti-inflammatory
effects through activation of the AMPK/Nrf2 pathway (68).

In summary, activation of AMPK and Nrf2 pathways
promotes microglial M2 polarization, which reduces
inflammation in the brain after stroke and plays a role in
preventing further inflammation.

Chemokine Ligand and Receptor Families
CX3CL1 and CX3CR1

The chemokine fractalkine (CX3CL1)/CX3CR1 receptor-ligand
pair was reported to be a communication link between neurons
and microglia. CX3CL1 is an inhibitory factor expressed on
neurons, and its receptor, CX3CR1, is primarily expressed on
microglia (13, 71–73). The combination of these two components
keeps microglia quiescent. CX3CL1 release from neurons is
significantly reduced in the presence of nerve injury, which leads
to microglial activation (74). The CX3CL1/CX3CR1 signaling
axis promotes microglial phagocytic function in the early phase
after ischemia (74).

After establishing a MCAO model for local cerebral ischemia
in mice, Jolivel et al. observed that serum proteins lead to
pooling of activated microglia near blood vessels, and vascular
endothelial cells were phagocytosed, which ultimately led to
BBB disintegration. On the other hand, the CX3CR1−/−

(CX3CR1 loss of function) mouse model resulted in a reduction
in BBB breakdown and a decrease in the area of stroke
injury (12). Deficiency in CX3CR1 also leads to microglial
morphological arborization and reduced expression of M1

phenotypic markers, thereby promoting microglial conversion to
the M2 phenotype (74).

Overexpression of SIRT3 after ischemia leads to the
upregulation of CX3CR1 expression, which promotes G protein-
dependent migration of microglia (75). Thus, activation of the
CX3CL1/CX3CR1 signaling axis in the early stage after ischemic
stroke promotes microglial activation, migration, intrinsic
phagocytosis, the release of pro-inflammatory substances, and
exacerbate nerve injury. In contrast, a deficiency of the CX3CR1
receptor results in neuroprotective effects.

Recent experiments have revealed that a deficiency in CX3CR1
leads to significant reductions in the transcription factor, Nrf2
(76). These results suggest a link between CX3CR1 and Nrf2
during inflammation. CX3CL1 overexpression activates the
transcription factor, Nrf2, and its target genes. For example, HO-
1 limits the excessive activation of microglia, and when Nrf2
and CX3CR1 are knocked out, microglia do not express HO-1
(77). Also, CX3CL1 inhibits LPS-induced microglial activation
and reduces the release of inflammatory factors in microglia,
including NO, IL-6, and TNF-α through activation of the
PI3k/Akt pathway, which effectively inhibits neuronal death
(78, 79). The use of exogenous CX3CL1 in a MCAO mouse
model reduced the local ischemia-induced cerebral infarct size,
neurological deficits, and caspase-3 activation (80). These results
indicate that CX3CL1/CX3CR1 signaling also plays a role in
post-ischemic neuroprotection.

The studies described above demonstrate that the
CX3CL1/CX3CR1 pathway can activate microglia, as well
as promote their phagocytosis, migration to regions of brain
tissue injury, and the release of inflammatory factors after
stroke. Silencing CX3CR1 during the early post-ischemic
period inhibited microglial activation, reduced the expression
of inflammatory factors, polarized microglial toward the M2
phenotype, and effectively reduced the area of brain injury.
Therefore, these data suggest that the lack of CX3CR1 is
neuroprotective. However, the expression of CX3CR1 is not
necessarily always detrimental to recovery after brain injury.
Over time, the deficiency of CX3CR1 might induce other
responses in the brain microenvironment, which may exacerbate
brain injury in severe cases. For example, a deficiency in
CX3CR1 leads to reduced expression of HO-1. Accordingly, we
speculated that the functional contradiction exhibited by the
CX3CL1/CX3CR1 pathway mightay be related to different times
of onset as well as the course of the disease. According to recent
reports, when inhibition of CX3CR1 is targeted early, or CX3CL1
expression levels are increased, administration of exogenous
CX3CL1 after ischemia can reverse the neurological damage
caused by stroke to some extent (81, 82). However, because
this pathway contradiction results in both neuroprotective and
neurodamaging effects, the specific mechanisms of action and
treatment need additional, extensive research.

CCL2/CCR2

Monocyte chemoattractant protein-1 (MCP-1), also named
CC chemokine ligand 2 (CCL2), can induce recruitment of
monocytes or macrophages and increase the production of
inflammatory cytokines, such as IL-1β and IL-6 (83, 84). The
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signaling pathway for MCP-1 is connected with CC chemokine
receptor 2 (CCR2), which also plays an important regulatory role
during stroke.

Overexpression of CCL2 has been shown to increase
macrophage infiltration and the area of cerebral infarction at
the injury site (84), suggesting that CCL2 can induce post-
stroke inflammation and adversely affect post-stroke recovery.
Overexpression of transforming growth factor-β1 (TGF-β1) after
ischemia-reperfusion injury down-regulates CCL2, resulting in
a significant reduction in the area of cerebral infarction (85),
indicating that the neuroprotective effect was due to inhibition
of the expression of chemokine CCL2, thus, confirming the
neurotoxic effect of CCL2. Meanwhile, deficienc in CCL2
and CCR2 greatly reduce the recruitment of macrophages
after stroke, the size of the cerebral infarction area, and the
degree of BBB disruption after ischemia-reperfusion injury.
Such deficiencies also reduce expression levels of inflammatory
cytokines (86–89).

A human umbilical cord mesenchymal stem cell (HUC-
MSC)-derived CCR2-overexpressing exosome, ExoCCR2,
promotes microglial/macrophage M2-type polarization by
competitively binding CCL2 to CCR2. This results in inhibition
of nerve injury caused by CCL2-mediated macrophage migration
and activation, reduction in the release of inflammatory factors,
and decreased NF-κB expression, all of which promote microglial
and macrophage M2-type polarization (90).

Therefore, activation of the CCL2/CCR2 pathway can recruit
inflammatory cells and release pro-inflammatory factors, which
are detrimental to the stroke prognosis. Inhibition of this
pathway activity has a significant effect on ischemic stroke and
cognitive impairment after stroke. Thus, targeting the inhibition
of the CCL2 expression or its receptor CCR2 could improve the
prognosis of stroke.

CXCL16/CXCR6

CXCL16 expression is increased in microglia treated with
CX3CL1, and cerebral ischemia can result in overexpression of
CXCL16 (91). Francesca Lepore proposed that activation of the
CXCL16/CXCR6 axis regulated microglial polarization to the M2
phenotype after ischemia, and inhibited LPS- and IFNγ-mediated
microglial polarization to the M1 type which, reduced the area of
necrosis, promoted neuroprotective mechanisms, and inhibited
ischemic neuronal death (92).

TLR
Toll-like receptors (TLR) are signaling receptors in the
innate immune system that promote microglial activation and
polarization (93). Currently, 10 and 12 members of the TLR
family have been found in humans and mice, respectively, and
exhibit different distributions and functions. For example, TLR2,
TLR4, and others are located on the cell surface, while TLR3,
TLR7, TLR9, and others are located inside the cell (93). TLR can
recognize both pathogen-associated molecular patterns (PAMPs)
and damage-associatedmolecular patterns (DAMPs). The dimers
that are formed bind to adaptor proteins such as MyD88, TRIF,
and other chaperones to activate downstream signaling pathways,

ultimately activating NF-κB and inducing the expression of
inflammatory factors in microglia (94, 95).

TLR4 recognizes LPS on the cell surface and mediates
microglial activation and the production of pro-inflammatory
factors after brain injury (40, 96, 97). These functions aid in
reducing secondary nerve injury caused by traumatic brain injury
through inhibition of TLR4 signaling and regulating microglial
polarization to the M2 phenotype (98).

Heme induces NF-κB activation after intracerebral
hemorrhage injury by activating microglia and signaling
MyD88 and TRIF through the TLR4 pathway, which in
turn increases the expression of inflammatory factors and
exacerbates inflammatory injury in brain tissue (99). In a
model of hemorrhage stroke, the use of the TLR4 inhibitor,
TAK-242, reduced the infiltration of peripheral inflammatory
cells, expression of pro-inflammatory factors, and resulted in
neurological deficits (100). This suggests that TLR4 is involved
in the process of neuroinflammation after brain injury, and
downregulation of TLR4 expression could control the adverse
process to some extent. A recent study revealed that after
ischemia-reperfusion treatment, smaller cerebral infarction areas
occurred in TLR4 knockout mice. Also, downstream NF-κB
and p65 expression were reduced, and there was no significant
difference in infarct size or p65 expression levels between TLR3
and TLR9 knockout mice and wild-type mice (101).

Similarly, the use of β-caryophyllene after ischemia-
reperfusion injury decreased TLR4 expression levels, reduced
the release of pro-inflammatory factors, and inhibited microglial
activation as well as M1-type polarization (93). These results
suggest that TLR4 expression by microglia is associated with
aggravation of stroke-induced secondary brain injury. Thus,
targeted inhibition of TLR4 could reduce microglial activation
and release of pro-inflammatory factors, coordinate the
M1/M2 polarization of microglia, and play a protective role in
stroke-induced brain injury.

Beside TLR4, also TLR3 plays a key role in microglia
activation. TLR3 induces activation of IFN regulatory factor
3 (IRF3) and NF-κB via the TRIF pathway (96). Pan et al.
established an ischemia-reperfusion model after preconditioning
rats using the TLR3 agonist, polyinosinic-polycytidylic acid
[poly (I:C)]. They reported that the degree of nerve injury,
cerebral infarction area, and the expression levels of TNFα
and IL-6 were significantly reduced compared with the control
group (102). Injecting poly (I:C) into animal models after
cerebral ischemia also down-regulated the conduction of the
TLR4/MyD88 signaling pathway by activating the TLR3/TRIF
pathway. Poly (I:C) significantly reduced the expression levels
of TNF-α and IL-1β, indicating it could have a therapeutic
role in ischemia-reperfusion injury (103). Based on the results
discussed above, we hypothesize that there is an antagonistic
effect between the TLR3 and TLR4 pathways. Activation of
the TLR3/TRIF pathway could down-regulate the levels of
TLR4/MyD88, reducing microglial activation and the expression
of inflammatory factors to reverse the adverse effects of
TLR4 on post-stroke injury. Therefore, activation of TLR3
should be investigated as a possible therapy for ischemic brain
injury. In summary, TLR could be an important target for
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stroke treatment due to its essential role in regulating the
inflammatory response.

STAT
The JAK/STAT pathway is one of the signal transduction
cascades and plays an essential role in cytokine receptor signaling
(104). JAK is a member of the Janus kinase family of protein
tyrosine kinases, which is found primarily on cell membranes.
It binds to and phosphorylates a JAK-binding site containing
domains for cytokine receptors, and subsequently forms STAT-
binding sites to recruit signal transducers and activators of
transcription (STATs). The STATs are then phosphorylate and
translocated to the nucleus to regulate gene expression (105).
IL-10 protects against inflammation by inhibiting the release
of pro-inflammatory cytokines from monocytes/macrophages
and the activity of LPS (106–108). One of the IL-10 signaling
pathways is the JAK/STAT pathway. Binding of IL-10 to the IL-10
receptor (IL-10R) activates JAK1 and STAT3, which is necessary
to induce IL-10 to inhibit macrophage activation and produce
anti-inflammatory effects (109–111).

Recently, it has been reported that the neuroprotective effect
induced by the inhibition of NOX may be generated through
activation of the IL-10/STAT3 pathway (31). Melatonin has been
shown to inhibit microglial M1-type polarization by activating
STAT3 and induces M2-type polarization in microglia, which
results in neuroprotection (112). Resveratrol up-regulated the
expression of the suppressor of cytokine signaling 3 (SOCS3) by
promoting the release of IL-10, which activated the JAK1/STAT3
signaling pathway and, in turn, inhibited LPS-induced microglial
pro-inflammatory factor release and M1-type polarization (113).
On the other hand, STATs also exhibit several negative roles.
For example, the activation and phosphorylation of STAT1 is
associated with M1 microglia activation in hypoxia-activated
BV2 cells, and acts as the increased expression levels of M1
microglia (114). Furthermore, STAT3 was also associated with
M1 microglia polarization in both an MCAO-induced and a
bilateral common carotid arteries stenosis (BcaS)-induced model
of ischemic stroke (115, 116). The results discussed above reveal
the regulatory role of STAT on the inflammatory response
after stroke. However, due to these contradictory evidence on
regulation of microglia polarization, further studies are required.

P2X7, P2Y12, and NLRP3
Extracellular nucleotide receptors (P2 receptors) include two
families, ionotropic receptors (P2X) and metabotropic receptors
(P2Y). The purinergic ligand-gated ion channel 7 receptor
(P2X7) is a trimeric cation channel, which is activated by
extracellular ATP. P2X7 activates Pyrin domain-containing 3
(NLRP3). After injury resulting from ischemic stroke, elevated
extracellular ATP concentrations activate P2X7, triggering a
series of intracellular responses that lead to NLRP3 inflammatory
body activation and assembly (117). Botulinum toxin type A
(BTX-A) inhibits M1-type microglial polarization and induces
M2 polarization in rats through inhibition of P2X7 expression
(118). A role of P2Y12 receptor in microglia activation
was also shown. Indeeed, extracellular ADP acting on the
P2Y12 receptor activated NF-κB and the NLRP3 inflammasome

to enhance microglial inflammation (119). Furthermore, in
primary cultured microglia, ticagrelor, a direct-acting, reversibly
binding P2Y12-receptor antagonist, fully inhibited ADP-induced
chemotaxis (120).

NLRP3 is a member of the Nod-like receptor (NLR) family
(121). It is a cytosolic complex that activates caspase-1, and its
interaction with the adaptor protein, Asc, also can recruit and
activate caspase-1 that subsequently leads to the maturation of
IL-1β and IL-18 (122, 123). It has been shown that upregulation
of NLRP3 expression and increased release of pro-inflammatory
cytokines in microglia after ischemia exacerbated the resulting
post-ischemic neurological damage. However, after inhibiting the
expression of NLRP3 in an ischemic mouse model, the brain
injury caused by ischemia was alleviated by reducing the degree
of cerebral infarction and the BBB disruption (124). This study
also found that NLRP3 expression was down-regulated in the
NOX2-deficient model, suggesting that NOX is involved in the
activation and expression of NLRP3 in microglia. These results
further elucidated the mechanisms by which NOX exerts its
toxic effects.

Thus, P2X7, P2Y12, and NLRP3 play essential roles in
regulating the occurrence of neuroinflammation after ischemic
stroke. Inhibition of their expression reduces the release of pro-
inflammatory factors in microglia and can alleviate post-stroke
brain injury.

GLS1
Glutaminase-1 (GLS1) is a mitochondrial enzyme that catalyzes
the hydrolysis of glutamine to produce glutamate. Elevated GLS1
expression can be observed in activated microglia, and GLS1
induces inflammatory activation of microglia and the release
of exosomes (125). Gao et al. observed that the degree of
upregulation of GLS1 expression after ischemia was positively
correlated with increased expression of microglial M1-type
markers. Also, overexpression of GLS1 induced microglial
activation by increasing the release of inflammatory exosomes
(126). Meanwhile, inhibition of GLS1 activity by CB839 reduced
the release of exosomes, which alleviated neuroinflammation
resulting from cerebral ischemia. Thus, this effect was the same as
inhibition of exosome release by GW4869, which also alleviated
the inflammatory response (126). Therefore, inhibition of GLS1
expression might produce neuroprotective effects and could be a
new treatment avenue for ischemic stroke.

PPARγ

Peroxisome proliferator-activator receptor γ (PPARγ) is a
member of the nuclear receptor family that binds to PPAR
response elements (PPRE) in the promoter region of target genes.
Currently three PPAR subtypes have been discovered, including
PPAR-γ, PPAR-α, and PPAR-δ (127).

PPARγ is known to play a key role in regulating lipid
metabolism, cell apoptosis and inflammation (128, 129).
In addition, PPAR-γ activation is reported to reduce
neurodegenerative and inflammatory processes in the brain
(127). Recent studies have described a close relationship between
PPARγ and ischemia injury, suggesting that the effect of PPARγ

on ischemic injury is primarily associated with regulation

Frontiers in Neurology | www.frontiersin.org 7 July 2021 | Volume 12 | Article 620948

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Dong et al. Microglia; Polarization; Stroke; MCAO; Phenotype

TABLE 1 | Drug factors affecting microglial activation and polarization.

Drug Targets Mechanisms Therapeutic effects References

Telmisartan AMPK Angiotensin II receptor blocker Promotes M2-type polarization by activating the AMPK pathway

and inhibit microglial activation

(60)

HP-1c AMPK/NRF2 A mixture of telmisartan and NBP

derivatives

Activates the AMPK/NRF2 signaling pathway and regulates

microglial M2-type polarization

(68)

β-

caryophyllene

TLR4 Decreases TLR4 activity Reduces the secretion of pro-inflammatory cytokines IL-1β, IL-6,

and TNF-α, decreases the M1/M2 microglial ratio

(93)

TAK-242 TLR4 A TLR4 inhibitor Reduces the expression of inflammatory factors and promotes

neuroprotective effects by inhibiting M1-type polarization

(100)

poly(I:C) TLR3 A TLR3 agonist Reduces the expression levels of pro-inflammatory cytokines and

inhibites the inflammatory activation of microglial cells

(102, 103)

Melatonin STAT3 A hormone secreted by the pineal gland Can cross the BBB and play a neuroprotective role in brain injury

caused by ischemic stroke, regulates the polarization of microglia

to the M2 phenotype through the STAT3 pathway, inhibits the

neurotoxic effects of M1-type microglia, and improves neurological

function

(112, 133,

134)

Resveratrol JAK/STAT A natural polyphenol found in a wide range

of plants, an agonist of JAK/STAT pathway

Crosses the BBB, prevents ischemic brain injury, reduces the

production of microglial pro-inflammatory factors, and has

anti-inflammatory and neuroprotective properties, reduces the

expression of pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 in

microglia after LPS stimulation by activating the JAK/STAT

pathway and increasing the release of IL-10

(113, 135)

DBD MAPK/NF-κB Inhibitor of MAPK and NF-κB Inhibits microglial activation and can reduce the release of

inflammatory cytokines and up-regulate the expression of M2

markers

(136)

Anisalcohol MAPK/NF-κB A phenolic compound isolated from

gastrodin

Inhibites LPS-induced NO production and the release of

pro-inflammatory cytokines such as TNF-α in microglia, also

increases the expression of factors such as TGF-β. The protective

effect may be related to inhibition of the MAPK/NF-κB signaling

pathway

(137)

Baicalein MAPK/NF-κB A bioactive ingredient extracted from the

root of Scutellaria baicalensis Georgi, a

NF-κB inhibit

Inhibited NF-κB activation and signaling, as well as reduced the

phosphorylation of JNK, ERK, and p38, thereby reducing the

release of pro-inflammatory factors IL-6, TNF-α, and others, which

inhibited the polarization of microglia to the M1 phenotype

(49)

Rosiglitazone PPAR-γ A PPAR-γagonist Reduces the numbers of M1 microglia and increases the numbers

of M2 microglia, promotes microglial M2 polarization after MCAO

in mice

(131, 138)

Malibatol A PPAR-γ A novel natural anti-oxidant extracted from

the Chinese plant Hopea hainanensis

Decreases the infarct size and alleviates the brain injury after

MCAO in mice, decreases M1 markers (CD16, CD32, and CD86)

and increases M2 markers (CD206, YM-1) while promoting the

activation of nuclear receptor PPARγ in MCAO mice and in

LPS-stimulated microglia

(139)

XQ-1H PPAR-γ A novel derivative of ginkgolide B Promotes anti-inflammatory microglia polarization via activating

PPARγ signaling pathway after ischemic stroke

(130)

Montelukast CysLT1 A potent CysLT1 receptor antagonist Influences the phenotype of microglial cells, increasing the number

of M2 polarizes microglia/macrophages, over the M1 phenotype,

at acute phase after MCAO in mice

(140)

BTX-A P2X7 Can inhibit the expression of rat P2X7 Acting as a neuroprotective agent by inhibiting M1-type microglial

polarization and inducing M2 polarization

(113)

Sildenafil PDE5 A PDE5 inhibitor Inhibits LPS-induced M1 polarization of microglia by decreasing

the production of nitric oxide, TNF-α, and IL-1β, induces M2

polarization, which has been shown to provide protection against

lesion extension in the late phase of MCAo in neonatal mice

(141, 142)

Yonkenafil PDE5 A PDE5 inhibitor Inhibits LPS-induced M1 polarization of microglia by decreasing

the production of nitric oxide, TNF-α, and IL-1β

(141)

Minocycline A member of the tetracycline antibiotic

family, a selective inhibitor of M1-type

microglia

Protects against brain injury by inhibiting microglial activation and

selectively inhibites microglial M1-type polarization

(35, 143)

Ginsenoside The main active component of ginseng Exerts anti-inflammatory effects through inhibiting the expression

of pro-inflammatory cytokines and inducing M2-type polarization

of microglia.

(144–147)
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of the inflammatory response (130). Also, PPARγ has been
shown to coordinate the switch in the microglia/macrophage
phenotype from a pro-inflammatory to an anti-inflammatory
phenotype, leading to inhibition of inflammation (131).
For example, a current study showed that 10-O-(N,N-
dimethylaminoethyl)-ginkgolide B methanesulfonate (XQ-1H)
promoted anti-inflammatory microglial polarization through
activation of the PPARγ signaling pathway after ischemic stroke
(130). Also, rhFGF21 treatment inhibited M1 polarization and
pro-inflammatory cytokine expression in microglia by inhibiting
NF-κB and upregulating PPAR-γ (132). This evidence suggests
a neuroprotective effect of PPAR-γ activation on cerebral
ischemic injury.

Drug Factors Affecting Microglial
Activation and Polarization
Based on the analysis described above, we conclude that
microglia play a critical role in regulating the repair process that
takes place in post-stroke injury. Microglia not only sense the
changes in the brain microenvironment and respond through
regulation of key factors but microglia, in turn, are regulated
by specific signaling pathways and cytokines. Thus, finding
treatments that effectively inhibit the activation and polarization
of the pro-inflammatory microglial phenotype has important
clinical implications for improving stroke prognosis. Some of the
proven drugs categorized based on their targets are listed below
(Table 1).

CONCLUSION

Stroke is a leading cause of death worldwide, and effective
treatments are a pressing challenge. Over the years, research into
the cellular events and mechanisms associated with stroke has
been ongoing. However, there are still unanswered questions,
such as the activation of some targets that are protective against
stroke and also have adverse effects. There are still disputes
concerning how these targets can be regulated to maximize their
protective effects, how to use activators of these targets, and
whether the timing and dose of these drugs might have different
effects on prognosis. These questions need further exploration.

It is known that microglia are rapidly activated and polarized
into M1 and M2 phenotypes after stroke, which produces
opposite effects on post-stroke brain injury. Based on current
experiments, we conclude that inhibiting M1 microglia and
promoting M2 microglia is protective against neurological
damage. However, some signaling pathways and drugs have been
shown to induce both M1 andM2-type polarization in microglia.
Does this indicate a dual role for these pathways and drugs, or
do microglia possess additional, undiscovered properties? These
questions need to be resolved by further experiments. Moreover,
microglia can exhibit a mixed phenotype between M1 and M2
(8). Thus, limiting microglia to the two phenotypes representing
two polar states after stroke is oversimplified. Therefore,
the classification and nomenclature of microglia requir
further exploration.

Although successful experimental treatment protocols for
stroke have been developed, they have not been entirely

successful in humans. We know that the current treatment for
stroke in the clinical setting is still challenging. There are two
possible reasons for this: (1) In experimental models, the MCAO
model is usually used to simulate stroke in vivo as well as
the OGD model in vitro, which may not adequately simulate
clinical stroke. This is because stroke involves a long process of
disease progression, which is influenced by a range of factors,
including age, gender, temperature, environment and others.
Several cellular events also are involved in the stroke process.
For stroke patients experiencing other diseases at the same time,
the diseases may interact and could cause increases or decreases
the damage caused by the stroke. This is why experimental
models have limitations. (2) Species differences exist between
humans and experimental models. Also, the expression level
of the same targets and effects of drugs are likely to vary
in different species. Therefore, experimental results can only
provide therapeutic ideas for clinical research, and translational
research is particularly important.

In conclusion, we suggest several recommendations: (1)
Researchers should search for novel and accurate experimental
stroke models. (2) The communication between human
microglia and neurons should be observed directly to study the
protective effects of human microglia on the nervous system. (3)
Stroke-related pathway proteins, targets or markers of M1 and
M2microglia phenotypes should be extracted and evaluated from
the cerebrospinal fluid or serum of stroke patients to observe
the effects of stroke on different molecular pathways and cell
phenotypes in humans. (4) Additional drugs need to be identified
that may have protective effects against stroke, e.g., network
pharmacology should be used to find herbal medicines that have
the same targets as stroke, and identify new nanomaterials.
In addition, the mechanisms that influence microglia
activation and polarization during stroke need to be studied in
greater depth.
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