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To understand the mechanisms of immunomodulatory effect, Dendrobium

Officinale polysaccharides (DOP) were treated by ultrasound and mild base

separately to generate fractions of various weight-average molecular weight

(Mw) and degrees of acetylation (DA). The structural features, conformational

properties, functional properties and immunomodulatory activities of original

and modified DOPs were investigated. Ultrasonic treatment decreased the

Mw and apparent viscosity and improved the water solubility of DOP. Mild

base treatment remarkably reduced the DA and the water solubility, while

the overall apparent viscosity was increased. Conformational analysis by

triple-detector high performance size-exclusion chromatography showed

that the molecular chain of DOP turned more compact coil conformation with

decreased DA. Results from the macrophages RAW 264.7 analysis showed that

samples sonicated for 200 min (Mw 34.2 kDa) showed the highest immune-

regulation effects. However, the immunomodulatory effects of the samples

after de-acetylation were all compromised compared to the original DOP. This

study inspires further research to establish the structural-immunomodulatory

relationships, which promote the application of DOP in both the food and

medicine fields.
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Introduction

Dendrobium officinale polysaccharides (DOP) have been
successfully discovered and widely used in healthy food
and medicine due to the broad spectrum of their biological
properties. Many in vitro and in vivo studies indicated that DOP
had immunomodulatory, antitumor, maintenance of colonic
health, gastro-protective, hypoglycemic, antiinflammatory,
antioxidative, antimutagenic, hepatoprotective, and vasodilating
effects (1–3). These effects are closely related to various
structural characteristics of DOP, e.g., molecular weight,
higher-order structure (i.e., conformation), functional groups,
and degree of branching (4, 5). DOP is a linear glucomannan
consisting of D-mannose and D-glucose linked by β-1,4
glycosidic bonds at varied ratios. Acetyl groups in DOP
have been identified to attach to O-2 and O-3 of mannan
in the majority of mono-substituted and small amounts of
di-substituted forms (6, 7). The MW of DOP has been reported
to be varied from 8.5 to 399 kDa (4).

A variety of biological activities, such as immunomodulating
and immuno-pharmacological activities, are observed with
DOP. DOP plays a vital role in regulating the immune system
by strengthening one or several nonspecific immune responses,
cellular-mediated immune responses, and humoral immune
responses (4). Results of recent in vitro experiments on different
kinds of murine or human cells (dendritic cells, spleen cells,
macrophage cells, and THP-1 cells) demonstrated that DOP
could promote cell viability, NO production, and cytokine
secretion (TNF-α, IL-1β). Some in vivo studies have shown
that DOP could stimulate the proliferation of splenocytes,
balance the ratio of spleen lymphocyte subsets and the secretion
of serum cytokines, up-regulate the serum IgM, IgG, and
haemolysin formation, and accelerate the phagocytotic function
of peritoneal macrophage (8–10). The immune response exerted
by DOP was reported to be mediated through the TLR-4
signaling pathway (8). However, detailed information regarding
the relationship between the molecular structure of DOP and its
immunomodulatory effects remains scant.

To bridge the gap between the molecular structure and
immunomodulatory effects of DOP, structural modification
is not neglectable. Different molecular degradation and
derivatization methods have been used, including alkylation,
carboxymethylation, sulfation, selenylation, phosphorylation,
ultrasonic disruption, and the degradation of polysaccharides,
which are generally classified as chemical, physical, and
biological modifications (11). However, finding a suitable
modification method is difficult. For example, decreasing
the Mw of polysaccharides without affecting the other
structural features, e.g., degree of branching or monosaccharide
composition, is challenging. Recently, our team have tried
trifluoroacetic acid (TFA) hydrolysis, xylanase treatment, and
ultrasonication treatment to degrade arabinoxylan from wheat
bran. Results indicated that TFA favored the removal of

the arabinose side chain; xylanase treatment results in two
fractions with different Mw; only ultrasonication treatment
could decrease the Mw without affecting the overall degree
of branching and solubility of arabinoxylan (12). Similarly, to
understand the effects of DA on the bioactive properties of
DOP, either acetylation or de-acetylation needs to be conducted
to obtain samples of varied DA. However, the acetylation
reaction can not control the reaction sites, given that the acetyl
groups of naturally occurring DOP locate only on O-2 and/or
O-3 positions of mannose residues (7). For de-acetylation
reaction, strong bases such as NaOH solution excludes most
acetyl groups altogether, even under a small concentration and
short time duration. The produced DOPs by NaOH treatment
contains only trace amount of acetyl groups, leading to poor
water solubility (13). Therefore, mild bases, e.g., Na2CO3, were
gradually used to remove the acetyl group to get DOP fractions
with varied DA values (14).

In this study, DOP was degraded and de-acetylated using
the ultrasonic and Na2CO3 treatments separately. The structural
features, conformational properties, functional properties, and
immunomodulatory activities of native and modified DOPs
were investigated, aiming to understand their structure-
bioactivity relationships and facilitate applications in health and
functional food areas.

Materials and methods

Materials

The RAW 264.7 macrophages were obtained from the key
laboratory of food nutrition and safety, Tianjin University of
Science and Technology, Tianjin, China. The monosaccharide
standards (D-Glucose, D-Xylose, L-Rhamnose, D-Mannose, L-
Arabinose, and D-Galactose) were purchased from Sigma
Chemical Co. (St. Louis, MO, USA). The ELISA kits were
purchased from Multisciences (Lianke) Biotech Co. Ltd.
(Hangzhou, China). All other chemical reagents and solvents
purchased were all analytical grade unless otherwise stated.

Extraction and purification of
Dendrobium Officinale
polysaccharides

The extraction and purification of DOP were conducted
according to Wang et al. with slight modifications (15). Briefly,
dry powder of the D. officinale herbal (250 g) was suspended
in 95% ethanol (250 ml) in a beaker with constant stirring
for 24 h. The suspension was subjected to two more cycles of
24-h soaking and subsequent centrifugation at 10,000 g and
25◦C for 20 min. Then, the residue was extracted with water
(1:20 w/v) stirred at 70◦C for 4 h followed by centrifugation
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at 10,000 g and 25◦C for 20 min. The obtained supernatants
were concentrated (to 1/4 of the original volume) using a
rotary evaporator, and then ethanol precipitated (1:3 ratio, v/v)
at room temperature to accumulate the crude polysaccharide.
Subsequently, thermostable α-amylase (3,000 units/ml) was
added to 1% polysaccharide solution, stirred at 70◦C for 2 h,
and then cooled to room temperature. The small molecular
weight contaminants produced by the hydrolysis were removed
by dialysis against deionized water (with 3,500 Da cut-off) for
72 h. The solution was further freeze-dried to obtain a dry
sample of purified polysaccharide (DOP).

Chemical composition analysis

The total sugar content was determined by the phenol-
sulfuric acid method with glucose as the standard (16).
The soluble protein was determined using the Ninhydrin
colorimetry method (Amino acid detection kit, Solarbio) (15).

Molecular modification of Dendrobium
Officinale polysaccharides

The ultrasonic treatment of DOP was performed according
to Striegel et al. with slight modifications (17). About 30 ml DOP
solution (10 mg/ml) was prepared at room temperature under
constant stirring. Ultrasonic treatment was then performed
by an ultrasonic homogenizer (JY92-IIN, Ningbo Scientz
Biotechnology Corporation, China) under controlled conditions
(500 W, 40◦C, on for 2 s, off for 1 s) for 60, 200, and 720 min,
respectively. The samples were then ethanol precipitated (1:3
ratio, v/v) to obtain the modified DOPs, which were termed as
US-60, US-200, and US-720, respectively.

De-acetylation of DOP was carried out according to Tamaki
with slight modifications (18). Briefly, DOP (50 mg) was
completely dissolved in distilled water (20 ml). After adding
an equal volume of 0.2 M Na2CO3 solution, the suspension
was then reacted at 25◦C for 3, 5, and 25 min separately with
continuous mixing. The mixture was quickly adjusted to pH 4.5
with 1 M HCl, dialyzed against distilled water, and then freeze-
dried. These samples obtained were depicted as DA-3, DA-5, and
DA-25, respectively.

Structural characterization

Degree of acetylation
The degree of acetylation (DA)of modified DOPs was

determined by the titration method according to Huang et al.
with slight modifications (19). Twenty milligram of grounded
sample was added to the aqueous solution of sodium hydroxide
(0.01 M, 10 ml) and kept in the water bath (50◦C) for 2 h. The

excess alkali was titrated with 0.01 M hydrochloride acid using
phenolaphtalen as the indicator. The degree of de-acetylation
(DD) was calculated according to the equation as follows (20).

DA (%) = [(V0C0 − V1C1)× 0.043× 100] /M (1)

Where V0 is the volume of NaOH in ml, C0 is the
concentration of NaOH in mol/L, V1 is the volume of HCl in
ml, C1 is the concentration of HCl in mol/L, M is the weight of
the sample (dry) in g.

DD (%) =
A1 − A0

A1
× 100 (2)

A1 is the acetyl group content of DOP in %, A0 is the acetyl
group content of de-acetylated DOP in %.

Methylation analysis
The methylation analysis was performed as described

previously (21). Firstly, 3 mg of sample was fully dissolved
in dimethyl sulfoxide (0.5 ml) and then dried NaOH powder
(20 mg) was added to the solution with stirring for 2 h at
room temperature. Methyl iodide (0.6 ml) was then added
to fully convert all the free hydroxyl groups into methoxy
groups and evaporated by a stream of nitrogen. The dried
methylated polysaccharides were hydrolyzed by TFA (4 M),
reduced using sodium borodeuteride (4 mg) and acetylated with
acetic anhydride (50 µl) to produce the partially methylated
alditol acetates (PMAA). PMAAs were then analyzed using
GC-MS (Agilent 7890, USA) equipped with an HP-5 column
programmed from 160 to 210◦C at 2◦C/min, and then 210 to
240◦C at 5◦C/min.

FT-IR analysis
FT-IR spectra of samples were obtained according to the

KBr disk method. Briefly, 1 mg polysaccharide was ground with
150 mg KBr into a fine powder and then pressed into a pellet,
which is measured using the FT-IR spectrometer (Nicolet IS50,
USA) in the frequency range of 4,000–400 cm−1 with 32 scans
at a resolution of 4 cm−1.

Water solubility test

The water solubility was evaluated according to Zhu et al.
with slight modifications (22). Briefly, samples (0.5%, w/v) were
dispersed in distilled water followed by incubation at 25◦C
for 90 min and mixing for 5 s every 30 min. The mixture
was centrifuged (10,000 g and 25◦C for 5 min) to collect the
insoluble sediment, followed by freeze-drying. The solubility
was calculated based on the following equation as follows:

Solubility(%) =
wi−wp

wi
× 100 (3)

Where wi is the initial weight of the complete sample in g,
and wp is the weight of the dried sediment in g.

Frontiers in Nutrition 03 frontiersin.org

https://doi.org/10.3389/fnut.2022.1016961
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1016961 September 24, 2022 Time: 16:2 # 4

Guo et al. 10.3389/fnut.2022.1016961

High performance size-exclusion
chromatography analysis

The chain conformation of samples was analyzed using an
high performance size-exclusion chromatography (HPSEC)
equipped with multi-detectors (multi-angle laser light
scattering, refractive index, ultraviolet detector, and online
viscometer). Samples were eluted at a flow speed of 0.6 ml/min
within Shodex TM OHpak SB-803 HQ (8.0 × 300 mm, 6 µm)
and SB-805 HQ (8.0× 300 mm, 13 µm) columns (Showa Denko
K.K., Tokyo, Japan) in series. The columns and detectors were
maintained at 40◦C. Data was analyzed using the ASTRA 7.1.3
software. A refractive index increment (dn/dc) of 0.146 ml/g
was used in the calculation.

Immunomodulatory assays

Cell culture
RAW264.7 macrophages were cultured in RPMI-1640

medium (Gibco, USA) supplemented with 10% fetal bovine
serum (Gemini, USA) and 1% penicillin-streptomycin
(Hyclone, USA) and incubated at 37◦C with a 5% CO2

humidified atmosphere in a carbon dioxide cell incubator
(Thermo, USA). The cells were stimulated with the control
group (without polysaccharides), positive control group (LPS:
2 µg/mL) and various concentrations of DOP and modified
DOPs (50, 100, 200, 400, and 800 µg/mL) (23).

The proliferation and phagocytosis activity
assays

Cells were adjusted to a concentration of 5 × 104 cells/ml,
loaded onto the 96-well plates (100 µl/well), and continuously
incubated for 12 h. Then, the cells were stimulated with
the blank control group (without polysaccharides), LPS and
polysaccharide samples (50, 100, 200, 400, and 800 µg/ml). After
incubation for 24 h, the proliferation activity was determined
using the CCK-8 method (24). Each concentration was repeated
six times in the well. RAW264.7 cells (5 × 104 cells/ml)
were seeded into a 96-well flat-bottom plate and cultured for
12 h. Then, samples (100 µg/ml: the optimal concentration
screened from proliferation activity) were added, followed by
another 24 h incubation. After that, the phagocytosis activity
was determined by the neutral red staining method (25). Each
concentration was repeated six times in the well.

Quantitative analysis of NO and cytokines
RAW264.7 cells (1× 105 cells/ml) were seeded into a 24-well

flat-bottom plate and cultured for 12 h. Then, control, LPS, and
polysaccharide samples (100 µg/ml) were added to cells. After
incubation for another 24 h, the cultured supernatants were
collected (26). The quantifications of cytokines TNF-α, IL-6, and
IL-10 were measured using commercial ELISA kits. The total

NO content were measured using the Nitric Oxide Assay Kit
according to the manufacturer’s instructions (Nanjing Jiancheng
Institute of Biotechnology, China).

RT-qPCR analysis
RAW264.7 cells (1 × 106 cells/ml) were seeded into a six-

well flat-bottom plate and cultured for 12 h. Then, control
(blank), LPS, and polysaccharide samples (100 µg/ml) were
added to cells. After incubation for another 24 h, the total
RNA of the cultured cells was isolated using kit (OMEGA,
USA), and then cDNA was immediately synthesized using a
reverse transcription kit (Thermo, USA). The specific primers
(Supplementary Table 1) for RT-qPCR were designed to
amplify a portion (nucleotides about 150-bp) of the 3′ end
of the target genes to analyze the mRNA-expression levels
of IL-6, IL-10, and TNF-α in RAW264.7 cells (23). The
amplification conditions were PCR initial activation step (95◦C
for 30 s), and 40 cycles of denaturation (95◦C for 5 s),
annealing (60◦C for 30 s), and extension (72◦C for 60 s) using
the Stratagene Mx3000P thermocycler (Applied Technologies,
USA). Expression of gene was measured in triplicate, and was
analyzed via 2−MMCT method (8).

Statistical analysis

The results were presented as mean ± SD (standard
deviation). In addition, Duncan’s test and one-way analysis of
variance (ANOVA) were used for multiple comparisons by the
SPSS 20.0 software package.

Results and discussion

Structural characterization

Degree of de-acetylation (DD) by the
hydrolysis method

The contents of neutral sugar and protein in DOP were
determined to be 89.21 wt% and 3.12 wt% in dry base,
respectively, indicating DOP has a good purity. In addition,
DOP contained 6.84 wt% acetyl groups, which has been reported
to be vital for the good water solubility of glucomannan (27).
In our study, Na2CO3 treatment significantly decreased the
DA of DOP. The DD value was increased from 39.33 to
86.84% when the Na2CO3 treatment duration was elevated
from 3 to 25 min (Table 1). The addition of alkali plays an
efficient role in facilitating the de-acetylation of the molecular
chain. Similarly, Li et al. (28) reported that alkali concentration
and treating time were both positively related to the DD of
the konjac glucomannan. In contrast to Na2CO3 treatment,
ultrasonic treatment only slightly decreased the DA of DOP.
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TABLE 1 The structural characterization of native and modified DOPs.

DOP US-60 US-200 US-720 DA-3 DA-5 DA-25

DA (%) 6.84± 0.06a 6.01± 0.01b 5.02± 0.03c 4.12± 0.11d 4.15± 0.21d 2.54± 0.06e 0.90± 0.14f

DD (%) 0a 12.13± 0.21b 26.61± 0.41c 39.69± 1.55d 39.33± 3.10d 62.87± 0.83e 86.84± 2.07f

Solubility (%) 57.5± 2.2a 63.6± 1.8b 68.9± 2.7c 78.2± 2.1d 28.7± 1.1e 21.1± 1.9f 3.2± 0.6g

Molecular parameters

Mn (kDa) 47.3 43.7 27.7 23.7 56.5 58.5 19.9

Mp (kDa) 60.2 48.6 32.4 28.7 67.5 70.3 16.5

Mw (kDa) 85.4 58.0 34.2 30.2 95.9 106.7 56.2

PDI = (Mw/Mn) 1.8 1.3 1.2 1.3 1.7 1.8 2.8

Linkage patterns (mol%)

→4)-Manp-(1→ 91.4 91.6 91.5 91.4 92.7 91.6 92.8

→4)-Glcp-(1→ 8.6 8.4 8.5 8.6 7.3 8.4 6.2

Data are mean± SD of three replicates.
Data in the same row with different letters indicated significant differences at p < 0.05.

FIGURE 1

HPSEC elution profiles (A) and Infrared spectra (B) of the native and modified DOPs.

The DD value followed the sequence of US-60 (12.13%) < US-
200 (26.61%) < US-720 (39.69%), suggesting that ultrasound
favored chain degradation over the cleavage of the acetyl groups.

Mw analysis
The molecular weights of DOP before and after modification

were obtained from multi-detector HPSEC analysis. As shown
in Table 1 and Figure 1A, except for DA-25, all the other
modified DOPs showed a relatively low Mw distribution
after treatment as indicated by the low polydispersity index
(PDI = Mw/Mn) value. Samples derived from the ultrasonic
treatment decreased in the Mw order of DOP (85.4 kDa) > US-
60 (58.0 kDa) > US-200 (34.2 kDa) > US-720 (30.2 kDa). The
Mw of DOP reduced by 32.1, 60.0, and 64.6% after treatment

for 60, 200, and 720 min, respectively. The results indicated that
ultrasonic treatment could effectively degrade DOP, and higher
treating time led to the lower Mw until a plateau was reached.
Similar results have also been reported for schizophyllan (29),
dextran (30), apple pectin (31), and polysaccharides from the
seeds of Plantago asiatica L. (32). The influence of ultrasound
on the degradation of the polysaccharides ascribes to the
cavitation action, which involves two mechanisms: mechanical
degradation of the polysaccharide from collapsed cavitation
bubble and chemical degradation because of the chemical
reaction between the polysaccharide and high-energy molecules,
e.g., the hydroxyl radicals produced during cavitation (33). In
our study, the Mw of Na2CO3 treated samples increased slightly
compared to the natural DOP, which was likely caused by the
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conformational change induced by de-acetylation treatment as
well as the formation of aggregation. This was consistent with
the Mw data reported by Salah et al. (34).

Glycosidic linkage patterns
The linkage patterns of DOP before and after modification,

derived from the methylation analysis, are compared in Table 1.
According to the methylation analysis result of DOP, there
were two main glycosidic linkage patterns, (1→4)-D-Manp
and (1→4)-D-Glcp with a molar ratio of nearly 10.6:1.0.
Ultrasonic and mild base treatments did not change the overall
monosaccharide composition and linkage patterns. This finding
indicated that ultrasonic and de-acetylation treatments had no
major impact on the monosaccharide composition and linkage
patterns of polysaccharides, which confirmed the previous
findings by Dou et al. (35) and Wang et al. (36).

FT-IR analysis
The structural changes of DOP before and after modification

are compared using FT-IR (Figure 1B). The intensified and
broad absorbance bands at around 3,416, 2,920, 1,378 cm−1

were attributed to O–H hydroxyl stretching vibration, C–H
stretching vibration of the methyl group, the symmetric C–H
bending vibration of the methyl group, respectively (6). The
band at approximately 1,735 cm−1 was assigned to the valence
vibration of C=O (37), and the strong peak at 1,250 cm−1

indicates the presence of C–O vibration of O-acetyl groups,
confirming the presence of acetyl groups (4). The two specific
bands at 811 and 874 cm−1 confirmed the existence of mannan
in DOP, as expected (38). For the modified samples, these
characteristic peaks were preserved after ultrasonic treatment,
suggesting ultrasound treatment had no clear alteration in
the functional group of DOP. However, Na2CO3 treatment
weakened the two absorption bands at 1,735 and 1,250 cm−1.
The disappearance of the signal peak at 1,735 cm−1 in
the de-acetylated polysaccharide samples (DA-3, DA-5, DA-
25) indicated the mild base treatment disrupted the C=O
double bond of the acetyl group. Meanwhile, the relative peak
intensity of 1,250 cm−1 (C–O vibration of O-acetyl groups)
signal decreased with increasing DD, double confirming this
deduction.

It can be herein concluded ultrasonic treatment significantly
decreased the Mw of DOP while mildly affecting DA. The DA
of DOP reduced significantly after mild base treatment for 3
(DA: 4.15%, DD: 39.33%), 5 (DA: 2.54%, DD: 62.87%), and
25 min (DA: 0.90%, DD: 86.84%). Both treatments did not
affect the overall monosaccharide composition and glycosidic
linkages of DOP.

Water solubility

Using the centrifugation method, the water solubility of
native DOP at room temperature was 57.5% (Table 1), which

respectively increased to 63.6, 68.9, and 78.2% under 60,
200, and 720 min of ultrasonic treatment. This result was in
accordance with our previous study on arabinoxylan (12), which
implied that the decrease in molecular size due to the breakage of
glycosidic bonds and chain scission during ultrasound treatment
improved the water solubility of polysaccharide molecules (33).

In contrast, increasing Na2CO3 treating times in de-
acetylation reaction conferred a negative effect on the water
solubility. As shown in Table 1, upon Na2CO3 concentration
of 0.2 M and hydrolysis time of 25 min, the insoluble fractions
significantly increased, resulting in the solubility of the DA-25
being only 3.2%. The decrease in solubility could be due to the
loss of acetyl groups, which decreased the intermolecular steric
hindrance, thereby increasing the intermolecular interaction
through hydrogen bonding and decreasing the solubility (27).
Our results are well matched with the report from Chokboribal
et al. (39) who found that de-acetylation of acemannan from
Aloe vera decreased water solubility. They articulated that de-
acetylation reduced the steric hindrance of molecular chain and
increased crystalline structure which had lower solubility.

Conformational characterization

The conformation of polysaccharide molecules dictates
their three-dimensional shape in solid-state or in solutions,
such as spherical, random coil, double-helix, triple-helix,
worm-like, rod-like. In this study, the chain conformation
of native and modified DOPs was studied to understand the
influences of structural modifications on their conformational
properties. The parameters Rhz (z-average hydrodynamic
radius), Rgz (z-average radius of gyration), and [η]w (weight-
average intrinsic viscosity) obtained from multi-detector
HPSEC are presented in Table 2. The values of Rhz, Rgz
and [η]w for DOP were determined to be 21.4 nm, 32.4 nm,
and 264.2 mL/g, respectively. However, these molecular
parameters decreased after ultrasonic treatment, implying that
ultrasonication disrupted the polymer aggregates and cleaved
the polymer chains in solution (40). For the mild base treatment,
their parameters Rhz, Rgz, and [η]w were increased, which were
likely attributed to the removal of the acetyl group.

The characteristic parameter ρ (Rg/Rh) has been previously
used to reflect the conformational properties of polysaccharides
(Table 2). The different ρ values reflect various molecular
conformations, ρ ≥ 2.00 for rigid chains (cylinders), 1.50–1.80
for random coils in a good solvent while 1.30 in a θ solvent, 1.00–
1.11 for loosely hyper-branched chains and 0.78 for compact
spheres (41). Our study calculated the characteristic parameter
ρ of DOP as 1.514, indicating that DOP was a random coil
conformation. After ultrasonic treatment, the ρ value was in
the range of 1.5–1.8, which can be assigned to flexible coil
conformations. In addition, an increasing chain rigidity was
noticed for ultrasonication treated samples with increasing
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TABLE 2 Conformational characterizations of native and modified DOPs.

DOP US-60 US-200 US-720 DA-3 DA-5 DA-25

[η]w(ml/g) 264.2 199.5 127.5 115.6 287.8 299.7 101.0

Rhz (nm) 21.4 13.8 10 9.2 22.1 28 13.2

Rgz (nm) 32.4 24 17.7 16.8 33.0 32.8 27.9

ρ( = Rgz/Rhz) 1.51 1.74 1.77 1.83 1.49 1.17 2.11

Mark-Houwink-Sakurada equation: [η] = Kη Mα

α 0.64 0.86 0.86 0.90 0.80; 0.35 0.80; 0.26 –

logKη –0.70 –1.77 –1.79 –1.97 –1.50; 0.93 –1.44; 1.38 –

Conformational power-law equation: Rg = KgMv

v 0.57 0.63 0.65 0.69 0.52; –0.10 0.51; –0.12 –

logKg –1.45 –1.70 –1.75 –1.92 –1.16; 2.27 –1.10; 2.32 –

duration (DOP < US-60 < US-200 < US-720), showing the
lower the Mw of fractions, the more rigid the molecular chain
for DOP. For mild base treatment (de-acetylation treatment),
the ρ value gradually decreased with decreasing DA, implying
that the chain conformation turned more compact from DA-3
to DA-5.

Furthermore, the relationships of Mw with cumulative
weight fraction, [η] (Supplementary Figure 1), and Rg
(Supplementary Figure 2) were established. The double
logarithmic plot of the [η]-Mw and Rg-Mw have been
well described using the Mark-Houwink ([η] = kηMα),
conformational power-law equation (Rg = kgMv), respectively
(40, 42). For the native DOP, a good linear regression
(R2 = 0.9818) was found between [η] and Mw in the log Mw
range of 4.4–6.3, the slope α was obtained as 0.6389 (Figure 2A),
indicating that DOP was flexible random coil conformation.
As expected, the chain conformation became gradually rigid
while increasing ultrasound time and decreasing molecular
weight or molecular size (Figure 2B). In terms of the mild
base (de-acetylation) treatment, it is worth noting the curves
in Figure 2B were not completely linear, i.e., a decreased slope
was observed in DA-3 or DA-5 with increasing Mw. Hence,
two linear regressions were used to fit the curve. The slope (α)
had no clear change in the log Mw range of 4.4–5.3, suggesting
the destruction of acetyl groups may not mainly occur on
low molecular weight polysaccharides. However, in the high
logMw range of 5.3–6.0, with the decrease of DA value, α

value gradually decreases, indicating that DA-3 (0.3463) / DA-5
(0.2630) exhibited more compact chain conformation in the
high Mw range, likely as the result of the reduction in steric
effects from the acetyl groups. Among the α values of these
modified samples, DA-25 did not show a good linear regression
due to the poor solubility.

The value of v for DOP was 0.5686 in the logMw range
of 4.4–5.8, confirming that the native DOP had a random
coil conformation in an aqueous solution. After ultrasound
treatment (Figure 2C), the chain conformations for US-60
(0.6306), US-200 (0.6454), US-720 (0.6859) became more rigid

with increased treating time, in accordance with the results
of Mark-Houwink equation. After de-acetylation treatment
(Figure 2D), the changes of v values showed a similar trend to
that of α, which double confirmed the previous deduction.

Based on the above conformational analysis, native DOP
demonstrated a typical flexible random coil chain conformation
in solution. The coil conformation became rigid when
decreasing the Mw, while with the decrease of DA value,
the molecular chain turned more compact coil conformation,
especially for high Mw fractions.

Immunomodulatory activities

The proliferation and phagocytosis activities
Macrophages, the primary effector cells of innate immune,

play a critical role in immediate response against pathogens.
In this study, RAW264.7 macrophages were applied to
investigate the direct effect of molecular modification on
immunomodulatory activities.

Cell viability was first examined to ensure that the sample
dosages used were not toxic to cells, and the results are presented
in Figure 3A. Compared to the control, samples showed
positive effects on proliferation activity in 50–400 µg/ml, but
the cell viability was suppressed at 800 µg/ml. In addition,
the cell viability of polysaccharide samples reached the highest
at 100 µg/ml compared to other concentrations. Therefore,
100 µg/ml was selected as the optimum dosage for other
immunological tests.

The cell proliferation rate and phagocytosis activities of
native and modified DOPs are presented in Figures 3B,C.
Under polysaccharide stimulation, proliferation and
phagocytosis activities were significantly increased in
RAW264.7 macrophages. US-200 demonstrated significantly
higher proliferation and phagocytosis activities than DOP,
US-60, and US-720, indicating DOP with a specific molecular
size (weight) range can exert better activity. However, the
immunomodulatory effect of glucomannan was compromised
when the Mw was too low. In terms of the mild base treated
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FIGURE 2

Logarithmic plot of the molecular weight vs intrinsic viscosity, radius of gyration of native and modified DOPs in aqueous solution. The
Mark-Houwink plots of ultrasound (A) and de-acetylated (B) samples. The Rg power-law plots of ultrasonic (C) and de-acetylated (D) samples.

samples (de-acetylation), the proliferation and phagocytosis

activities were significantly decreased compared with the native

DOP. It was concluded that DOP with a DA of 6.84% exerted

better activity, indicating the acetyl group is one of the key

factors in the cell activities. Simões et al. demonstrated that

acemannan with a higher degree of acetylation had better

biological activity, and this activity decreased with decrease

degree of acetylation (43). Moreover, Chokboribal et al. (39)

indicated that the bioactivity of acemannan was reduced after

de-acetylation. These data well matched with our finding that

glucomannan with a higher degree of acetylation had increased
biological activity.

Effects on cytokine production
Macrophage activation by immunomodulators induces

several signaling pathways to produce various immune factors,
triggering related immune responses. The effects of native and
modified DOPs on macrophage NO, TNF-α, IL-6, and IL-10
production were analyzed in this study. As shown in Figure 4,
compared to the blank control, incubating RAW264.7 cells
with LPS and various DOP fractions significantly increased the
secretions of TNF-α, IL-6, IL-10, and NO.
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FIGURE 3

Polysaccharide induced proliferation and phagocytosis of macrophages. (A) Determination of optimal concentration (50, 100, 200, 400,
800 µg/ml). The proliferation and phagocytosis activities of ultrasonic (B) and de-acetylated (C) samples (100 µg/ml). All data are representative
of at least three independent experiments. ∗p < 0.05 vs. control.

For the ultrasonication treated DOP, US-200 showed
the highest NO concentration (16.59 µmol/ml), which was
increased by 30% compared to DOP (Figure 4A). Similarly, US-
200 showed the highest positive effects on IL-6 (Figure 4B),
IL-10 (Figure 4C), and TNF-α (Figure 4D) production,
possibly attributed to the appropriate molecular size and DA
value. ELISA analysis showed that the cellular release of NO
(Figure 4E), IL-6 (Figure 4F), IL-10 (Figure 4G), and TNF-α
(Figure 4H) were reduced after mild base treatment, indicating
the loss of acetyl group compromised the related immune
effects. Therefore, the presence of acetyl groups in DOP could
directly affect and regulate their bioactive properties. Similar

results have also been reported for acemannan from Aloe
vera (34).

Effects on mRNA expression
Stimulation of immunomodulators leads to the initiation

of intracellular signaling pathways and eventually induces
transcriptional activation and expression of cytokines. The
expression of cytokines, including TNF-α, IL-10, and IL-6 is
essential for host survival from infection. In addition, they
are recognized as important host defense molecules that affect
tumor cells. To determine whether the increases in IL-10, and
IL-6, and TNF-α secretion are attributable to the facilitated gene
expression of IL-10, and IL-6, and TNF-α. Cells were treated
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FIGURE 4

Polysaccharides induced production of immune factors NO (A,E), IL-6 (B,F), IL-10 (C,G), TNF-α (D,H) productions (24 h) by macrophages
RAW264.7 exposed to ultrasonic and de-acetylated samples (100 µg/ml) were assessed by ELISA. All data are representative of at least triplicate
culture.

FIGURE 5

Polysaccharides induced gene expression of cytokine IL-6 (A,D), IL-10 (B,E), TNF-α (C,F) productions (24 h) by macrophages RAW264.7 exposed
to ultrasonic and de-acetylated samples (100 µg/ml) were assessed by RT-qPCR. Data are expressed as means plus SD of triplicate culture
(different letters indicated significant differences at p < 0.05).
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FIGURE 6

Schematic diagram of structural-conformational-immunomodulatory relationships of DOP The major structure of DOP adapted from Xing
et al. (7).

with 100 µg/ml samples for 24 h, then cytokine mRNA levels
were measured by RT-qPCR. The results showed that cytokines
mRNAs were barely detectable in unstimulated RAW cells. After
co-cultured with native and modified DOPs, the mRNA levels
for all these immune factors increased significantly. Moreover,
the expression of IL-6 (Figure 5A), IL-10 (Figure 5B), and
TNF-α (Figure 5C) treated by US-200 was highest among all
samples. By contrast, the de-acetylated fractions (DA-3, DA-
5, and DA-25) significantly reduced the mRNA expression of
cytokines, confirming the O-acetylation level is one of the
critical determinants of immunomodulatory (Figures 5D–F).

It was well known that TNF-α and IL-6 are pro-
inflammatory cytokines and IL-10 was an anti-inflammatory
cytokine. Therefore, the present data indicated that DOP
exhibited both pro-inflammatory and anti-inflammatory
activity. This dual-direction regulation was reported for
other polysaccharides (44, 45), which indicated that the
immunomodulatory activity of polysaccharides was a
complicated process and needed to be further studied.

We confirmed the acetyl group was one of the critical
determinants of immunomodulatory to modulate the immune
system. As demonstrated by Scully et al. (46), O-acetylation
is necessary to induce effective opsonophagocytic killing
responses. Similarly, Kumar et al. (47) reported that the

activation effect of native or over-acetylated or de-acetylated
acemannan on macrophages, the results showed that removal
of O-acetyl groups resulted in a lower immunomodulatory,
while the over-acetylated polysaccharide has stronger effects
on immunomodulation. It has also been demonstrated
that ultrasound decreased the Mw and improved the
immunomodulatory activity of DOP. Many studies also
proved that ultrasonic degradation is an effective way to
improve various bioactivities of natural polysaccharides (32, 33,
35). However, the immunomodulatory effect of glucomannan
was compromised when the Mw was too low, suggesting the
immune cells can only be activated if the Mw or molecular
size of DOP was large enough. It is worth pointing out
that low degree of acetylation and low Mw can confer good
solubility property and induce compact coil conformation of
glucomannan. Some specific physicochemical parameters, such
as degree of acetylation of glucomannan, proper ranges of Mw,
water solubility and molecular conformation, all shed lights on
the immunomodulatory effects (Figure 6). The effects may be
correlated with a receptor-ligand binding in macrophages, given
that glucomannan has been reported to trigger the activation of
immune cell through the interactions with TLR4 receptor (8),
TLR2 receptor (48), TLR22 receptor (49), or mannose receptor
(50, 51).
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Conclusion

Based on our study results, ultrasound is conducive to chain
degradation rather than acetyl cracking, and the acetylation level
of sonicated samples only changed slightly. Na2CO3 treatment
is conducive to de-acetylation rather than chain degradation,
the Mw of Na2CO3 treated samples changed slightly. Thus,
samples with different molecular weights and degrees of
acetylation were obtained by ultrasound and alkali treatments
to establish the structural-immunomodulatory relationships.
As a result, DOP with a higher degree of acetylation had
increased biological activity, and this activity reduced with
decreasing DA, indicating the O-acetylation level was one of
the critical determinants of immunomodulatory to modulate
the immune system. In addition, slightly reduced the Mw
of DOP (US-200, Mw of 34.2 kDa) significantly increased
immune-regulation effects of DOP. However, the results also
showed that the immunomodulatory effect of glucomannan was
compromised when the Mw was too low. Acetyls and low Mw
confer the solubility property and compact coil conformation
of glucomannan. The specific physicochemical parameters, such
as degree of acetylation of glucomannan, proper ranges of
Mw, water solubility and molecular conformation, all make
contribution to their immunomodulatory effects.
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