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A B S T R A C T

Manual quantification of the hippocampal atrophy state and rate is time consuming and prone to poor re-
producibility, even when performed by neuroanatomical experts. The automation of hippocampal segmentation
has been investigated in normal aging, epilepsy, and in Alzheimer's disease. Our first goal was to compare
manual and automated hippocampal segmentation in ischemic stroke and to, secondly, study the impact of
stroke lesion presence on hippocampal volume estimation. We used eight automated methods to segment T1-
weighted MR images from 105 ischemic stroke patients and 39 age-matched controls sampled from the
Cognition And Neocortical Volume After Stroke (CANVAS) study. The methods were: AdaBoost, Atlas-based
Hippocampal Segmentation (ABHS) from the IDeALab, Computational Anatomy Toolbox (CAT) using 3 atlas
variants (Hammers, LPBA40 and Neuromorphometics), FIRST, FreeSurfer v5.3, and FreeSurfer v6.0-Subfields. A
number of these methods were employed to re-segment the T1 images for the stroke group after the stroke
lesions were masked (i.e., removed). The automated methods were assessed on eight measures: process yield (i.e.
segmentation success rate), correlation (Pearson's R and Shrout's ICC), concordance (Lin's RC and Kandall's W),
slope ‘a’ of best-fit line from correlation plots, percentage of outliers from Bland-Altman plots, and significance of
control−stroke difference. We eliminated the redundant measures after analysing between-measure correlations
using Spearman's rank correlation. We ranked the automated methods based on the sum of the remaining non-
redundant measures where each measure ranged between 0 and 1. Subfields attained an overall score of 96.3%,
followed by AdaBoost (95.0%) and FIRST (94.7%). CAT using the LPBA40 atlas inflated hippocampal volumes
the most, while the Hammers atlas returned the smallest volumes overall. FIRST (p=0.014), FreeSurfer v5.3
(p=0.007), manual tracing (p=0.049), and CAT using the Neuromorphometics atlas (p=0.017) all showed a
significantly reduced hippocampal volume mean for the stroke group compared to control at three months.
Moreover, masking of the stroke lesions prior to segmentation resulted in hippocampal volumes which agreed
less with manual tracing. These findings recommend an automated segmentation without lesion masking as a
more reliable procedure for the estimation of hippocampal volume in ischemic stroke.

1. Introduction

Brain atrophy is associated with both normal aging and with brain
pathology, especially neurodegenerative disorders. At the age of
65 years, a third of men and half of women are at risk of having a stroke
or developing dementia (Hénon et al., 2006). Stroke is one of the major
causes of death and disability worldwide (Aerts et al., 2016; Maier
et al., 2015; Strong et al., 2007) and a third of stroke survivors develop
post-stroke dementia (PSD) months (early-onset) to years (late-onset)

after the initial stroke incident (Mok et al., 2017). Vascular dementia,
including PSD, is the second most common cause of cognitive decline,
with only Alzheimer's disease (AD) being more prevalent (Seshadri and
Wolf, 2007). Yet, the regional atrophy patterns in PSD are not under-
stood.

Quantitative magnetic resonance imaging (MRI) studies have re-
vealed changes in brain structures in normal aging and in neurode-
generative dementias. Accelerated hippocampal volume loss has been
described in many neurological and psychiatric disorders including
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temporal lobe epilepsy, Huntington's disease, AD, mild cognitive im-
pairment, schizophrenia, major depression, post-traumatic stress
disorder, chronic alcoholism and panic disorder (Geuze et al., 2005).
In AD, for instance, hippocampal atrophy is considered a distin-
guishing feature (Scheltens et al., 1992) and a hallmark of this dis-
ease. In conditions such as schizophrenia, post-traumatic stress dis-
order and major depression, several studies have reported smaller
hippocampal volumes (Apfel et al., 2011; Frodl et al., 2006;
Meisenzahl et al., 2009; Woon et al., 2010). Smaller hippocampal
sizes have also been reported in subcortical ischemic vascular de-
mentia (Fein et al., 2000). In major stroke, hippocampal atrophy has
been associated with cognitive decline in survivors (Gemmell et al.,
2012; Kliper et al., 2013).

Manual tracing of the hippocampus is the accepted gold standard
among neuroanatomical experts (Boccardi et al., 2015; Frisoni et al.,
2015). However, manual segmentation is laborious and very time
consuming. An expert rater may need up to two hours to trace the
hippocampus (Morey et al., 2009) and results may be influenced by
rater bias (Colon-Perez et al., 2016). For large sets, manual tracing of
the hippocampus is restricted by time and cost. For this, automated
segmentation was proposed as a reliable alternative to human manual
tracing, and its application is now widely performed in large datasets of
patients with conditions such as AD (Morra et al., 2010) and temporal
lobe epilepsy (Kim et al., 2012; Pardoe et al., 2009). In AD, computa-
tional segmentation techniques have shown good reproducibility and
are comparable in accuracy to manual tracing (Fischl et al., 2002; Fischl
et al., 2004b; Pantel et al., 2000). The high reproducibility of auto-
mated methods reduces bias and facilitates the replication of findings
between studies.

Approaches to computerised segmentation include multi-atlas–-
based registration and propagation (Aljabar et al., 2009; Heckemann
et al., 2006; Klein et al., 2005; Wang et al., 2013) and machine lear-
ning–based clustering (Maglietta et al., 2016; Morra et al., 2010;
Patenaude et al., 2011). For instance, Morra et al. (2010) evaluated
FreeSurfer and three machine learning classifiers (hierarchical Ada-
Boost, support vector machines (SVM) with manual feature selection,
and hierarchical SVM with automated feature selection (Ada-SVM)) for
normal and AD populations. AdaBoost and Ada-SVM compared more
favourably with manual segmentation. Also, a novel strategy for hip-
pocampal segmentation was proposed by Maglietta et al. (2016) using
the RUSBoost classifier, which correlated the most to manual tracing
when compared to random forest and FreeSurfer.

Available automated methods were not designed to segment MRI
images in stroke populations and very little is known about the influ-
ence of stroke lesions on their performance. The stroke lesions, often
considerably large, appear hypo-intense on T1-weighted images and are
hard to discriminate from the gray matter. In this study, we investigated
the performance of several automated segmentation tools in two po-
pulations: healthy controls and participants with ischemic stroke. We
compared their performance against human manual tracing of the
hippocampus with and without the masking of stroke lesions. We hy-
pothesized, based on findings from prior studies on healthy and other
disease groups, that:

1. Automated methods and manual tracing would return comparable
hippocampal volumes for control and stroke populations on both
group and individual levels; especially for methods using protocols
similar to the EADC-ADNI harmonized protocol (Boccardi et al.,
2015; Frisoni et al., 2015) used here for manual tracing.

2. Automated segmentation methods and manual tracing would com-
parably characterize atrophy states of control and stroke groups
from data acquired at equivalent timepoints.

3. Given that lesions in our stroke population occurred remotely out-
side the hippocampus, their presence would not significantly and
negatively impact on the estimation of hippocampal volume by the
automated methods.

2. Materials and methods

2.1 CANVAS study

It is an observational longitudinal case control study in which 135
ischaemic stroke patients – confirmed clinically and radiologically –
and 40 age-matched healthy controls are followed over five years. The
CANVAS study is described in detail elsewhere (Brodtmann et al.,
2014). Briefly, participants were recruited from three sites in Mel-
bourne (Austin Health, Eastern Health, and Melbourne Health), with all
imaging sessions held at The Florey, Melbourne Brain Centre, Austin
Hospital campus. Ethical approval was granted by each hospital's
human research ethics committee and all participants gave informed
consent. Participants completed an interview, MRI scans and neu-
ropsychological assessments, at five timepoints: baseline (within six
weeks of index stroke), three months, one year, three years, and at five
years. They also provided a blood sample to determine their apolipo-
protein E epsilon-4 status. Patients diagnosed with primary hemor-
rhagic stroke, transient ischemic attack (TIA), venous infarction, or
significant medical comorbidities were excluded from participation.
Age-matched healthy controls with no history of stroke or TIA were
recruited from the local community, from family members of stroke
participants and from volunteers who had previously undertaken MRI
research at the Florey Institute of Neuroscience and Mental Health. All
participants had no pre-existing dementia, neurodegenerative dis-
orders, major psychiatric illnesses or substance abuse problems.

2.1. Participants

We used data from 105 stroke patients (age: 67.4 (mean) ± 11.9
(SD) years, 33 women) and 39 healthy controls (age: 69.1 ± 5.7 years,
15 women) at the 3-month timepoint when most of stroke participants
were recruited to the CANVAS study. Among the stroke patients, 60
(57.1%) had right hemispheric stroke, 42 (40%) had left stroke, and
three (2.9%) had bilateral stroke. Overall, 60 patients had infarcts in
the anterior and middle cerebral artery territories, 17 (16.2%) had
posterior cerebral artery infarcts, 13 (12.4%) had stroke in the brain-
stem, 11 (10.5%) had stroke in the cerebellum, and four (3.8%) had
infarcts in multiple locations and vascular territories.

2.2. MRI acquisition

Whole brain images were acquired on a 3 T Siemens Tim Trio
Scanner with a 32-channel head coil (Siemens, Erlangen, Germany).
The MR images were obtained using a T1-weighted 3D magnetization-
prepared rapid gradient sequence: 160 coronal slices, repetition time
RT=1900ms, echo time TE=2.6ms, inversion time TI= 900ms, flip
angle= 9°, matrix size= 256×256, slice thickness= 1mm, voxel
size= 1×1×1mm3.

A high-resolution, 3D sampling perfection with application-opti-
mized contrasts using different flip angle evolutions (SPACE)-fluid-at-
tenuated inversion recovery (FLAIR) images were also acquired: 160
sagittal slices, 1 mm thick, RT=6000ms, TE=380ms, 120° flip angle,
and 256×256 acquisition matrix. The FLAIR images were used to
manually outline the stroke lesions.

2.3. Hippocampal volumetry

Manual and automated hippocampal volumes for each subject in
this study were averaged across the left and right hippocampi and were
expressed in mm3. The hippocampal volumes estimated by manual
tracing were assumed to be closest to true measures.

2.3.1. Manual tracing
Hippocampi for the 144 participants were manually traced by an

expert rater (MSK) following guidelines described in the EADC-ADNI
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harmonized protocol for manual hippocampal segmentation (Boccardi
et al., 2015; Frisoni et al., 2015). Special attention was paid to the
determination of the most rostral and caudal slices, exclusion of the
choroid plexus, inclusion of the alveus/fimbria, and exclusion of in-
ternal CSF pools within the hippocampus. Coronal slices were used to
trace the hippocampi on 3D Slicer 4.5.0.1 (Fedorov et al., 2012)
available from http://www.slicer.org. Images in sagittal views were
consulted to confirm hippocampal boundaries. A subset made of 101
participants (22 controls and 79 strokes) was separately traced by a
second expert rater (QL). The manual tracing of the hippocampi pro-
gressed blindly based on the subject ID alone.

The intra-class correlation coefficient (ICC) (Shrout and Fleiss,
1979) was used to measure inter-rater reliability for raters MSK and QL.
ICCs were 0.86 for controls, 0.9 for stroke participants and 0.9 for the
two groups together. For comparison with automated methods, manual
tracing by MSK was used. A sample representation of hippocampal
manual tracing of control and stroke participants is shown in Fig. 1.

2.3.2. AdaBoost
AdaBoost is a machine learning based segmentation method. It

produced accurate, high-quality automated segmentations in 400 par-
ticipants from the Alzheimer's Disease Neuroimaging Initiative (Morra
et al., 2008). The AdaBoost-based method classifies voxels as belonging
to the hippocampus based on thousands of features, which are learned
from a training set of manually delineated data. The implementation of
AdaBoost used in the current study, applied by one of the authors (AR)
using the neuGRID platform (Redolfi et al., 2013), was trained on the
EADC-ADNI harmonized protocol for hippocampal segmentation.
Adaboost corrects images through N3 bias field correction algorithm
and then registers brain to the standard ICBM-152 template through
affine registration using FSL FLIRT algorithm.

2.3.3. Atlas-based Hippocampal Segmentation (ABHS)
We obtained hippocampal masks and volumes using an adaptation

of a multi-atlas based segmentation technique (Aljabar et al., 2009)
specifically for the hippocampus. We created 100 atlas brains with
carefully hand-segmented hippocampal masks according to the EADC-

ADNI harmonization protocol (Frisoni and Jack 2011; Frisoni et al.,
2015). To segment the hippocampi of an individual brain, each of the
atlas brains is non-linearly registered to the target image. Then we use a
“voting” protocol, in which the cross-correlation match score of each
deformed atlas to the target weights the vote of each atlas brain. The
voting takes account of the deformed locations of the atlas masks and a
priori tissue segmentation of the target image to arrive at a final de-
termination of voxel locations in the native hippocampus. Finally, we
use human visual inspection (and clean-up as necessary) for quality
control. ABHS is available from ‘http: //idealab.ucdavis.edu’.

2.3.4. Computational Anatomy Toolbox (CAT)
CAT (Gaser and Dahnke, 2016), available from ‘http://dbm.neur-

o.uni-jena.de/cat12’, is an extension toolbox to SPM12 (www.fil.ion.
ucl.ac.uk/spm/software/spm12) that provides easy-to-use tools that
cover diverse morphometric methods, such as voxel-based morpho-
metry (VBM), surface-based morphometry (SBM), deformation-based
morphometry (DBM), and region or label-based morphometry (RBM).

The T1 images were normalized to the standard ICBM template
space and segmented into gray matter, white matter and cerebrospinal
fluid. By default, the SPM12 tissue probability maps (TPMs) were used
for the affine spatial registration. The segmentation approach in CAT is
based on an Adaptive Maximum a Posterior (AMAP) technique without
the need for a priori information about tissue probabilities. Tissue
probability maps are not used constantly in the sense of the classical
unified segmentation approach (Ashburner and Friston, 2005), but only
for spatial normalization and for initial skull-stripping. AMAP is adap-
tive in the sense that local variations (in mean and variance) are
modelled as slowly varying spatial functions (Rajapakse et al., 1997).
This not only accounts for intensity inhomogeneities, but also for other
local variations of intensity. Additionally, the segmentation approach
uses a Partial Volume Estimation (PVE) with a simplified mixed model
of a maximum of two tissue types (Tohka et al., 2004). Segmentation
starts initially with three pure classes (gray matter, white matter, and
cerebrospinal fluid) and is followed by a PVE of two additional mixed
classes: gray-white matter and gray- cerebrospinal fluid. This results in
an estimation of the amount of each pure tissue type present in every

Fig. 1. Sample representation of hippocampal manual tracing of a control (left) and a stroke participant (right).
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voxel. CAT estimates of hippocampal volume were based on the Ham-
mers (Gousias et al., 2008), LPBA40 (LONI Probabilistic Brain Atlas)
(Shattuck et al., 2008) and Neuromorphometics (Caviness Jr et al.,
1999) brain atlases. Here, we refer to the CAT methods by their re-
spective atlas names: Hammers, LPBA40 and Neuro (short for Neuro-
morphometics).

2.3.5. FIRST-FSL
FIRST, part of the FSL 5.0.8 analysis library (https://fsl.fmrib.ox.ac.

uk/fsl/fslwiki), is a model-based segmentation tool (Patenaude et al.,
2011). The shape and appearance models used in FIRST are constructed
from manually segmented images provided by the Center for Morpho-
metric Analysis, Boston MA, United States. The manual labels are
parameterized as surface meshes and modelled as a point distribution
model. Deformable surfaces are used to automatically parameterize the
volumetric labels in terms of meshes. The deformable surfaces are
constrained to preserve vertex correspondence across the training data.
Furthermore, normalized intensities along the surface normals are
sampled and modelled. The shape and appearance model is based on
multivariate Gaussian assumptions. FIRST searches through linear
combinations of shape modes of variation for the most probable shape
instance given the observed intensities in a T1-weighted image.

The T1-weighted volumes were RAS-oriented and centred using the
alignment script “acpcdetect_v2.0” (https://www.nitrc.org/frs/?group_
id=90&release_id=3772). Centring was based on a midpoint between
anterior and posterior commissures. Then, the images were registered
using “first_flirt”. This script runs two-stage affine registration to
MNI152 space at 1mm resolution. The first stage is a standard 12 de-
grees of freedom registration to the template. The second stage applies
12 degrees of freedom registration using an MNI152 sub-cortical mask
to exclude voxels outside the sub-cortical regions.

2.3.6. FreeSurfer v5.3
Referred to here as just ‘FreeSurfer’, this method used the cross-

sectional pipeline (recon-all) in FreeSurfer v5.3, which is freely avail-
able from ‘http://surfer.nmr.mgh.harvard.edu/’. Briefly, FreeSurfer
segmentation includes 1) motion correction and averaging (Reuter
et al., 2010) of multiple images when available, 2) removal of non-brain
tissue (Segonne et al., 2004), 3) Talairach transformation (affine
transform from the original volume to the MNI305 atlas), 4) segmen-
tation of subcortical white matter and deep gray matter structures in-
cluding hippocampus, amygdala, caudate, putamen, ventricles (Fischl
et al., 2002; Fischl et al., 2004a), 5) intensity normalization (Sled et al.,
1998), 6) tessellation of the gray matter-white matter boundary, 7)
topology correction (Fischl et al., 2001; Segonne et al., 2007), and 8)
surface deformation following intensity gradients (Dale et al., 1999;
Fischl and Dale, 2000). FreeSurfer morphometric procedures show
good test-retest reliability across scanner manufacturers and field
strengths (Reuter et al., 2012; Han et al., 2006).

2.3.7. FreeSurfer v6.0 − Subfields
Referred to here as ‘Subfields’, this algorithm (recon-all -hippo-

campal-subfields-T1) generates an automated segmentation of the hip-
pocampal subfields based on a statistical atlas built primarily upon
ultra-high resolution (~0.1mm isotropic) ex vivo MRI data (Iglesias
et al., 2015). In this study, we used the sum of all subfield volumes to
represent whole hippocampal volume with this segmentation method,
which solves a number of limitations of the in vivo atlas that was dis-
tributed with FreeSurfer v5.3. Namely, these limitations were: a) lower
resolution of the training images forcing the human labellers to heavily
rely on geometric criteria to trace boundaries; b) the delineation pro-
tocol did not include the “molecular layer” which corresponds to the
stratum radiatum, lacunosum moleculare, hippocampal sulcus and
molecular layer of the dentate gyrus; and c) the delineation protocol of
the in vivo atlas was designed for the hippocampal body and did not
translate well to the hippocampal head or tail.

2.3.8. Lesion masking
To assess the influence of stroke lesions on the automated seg-

mentation of the hippocampus, modified T1 images were created then
re-segmented. The stroke lesions were initially identified by stroke
neurologist (AB) and subsequently traced by MSK using the FLAIR
images to create the lesion masks. The T1 images were first registered to
the FLAIR images using FLIRT (Jenkinson et al., 2002; Jenkinson and
Smith, 2001) then the created lesion masks were projected onto the
registered T1 images. Finally, the intensities of all voxels on T1 images
corresponding to the projected masks were zeroed to create the mod-
ified T1 versions.

2.3.9. Quality control
The registered images were visually checked to confirm that the

orientation and size of the subject brain corresponded with that of the
template and to verify that the subcortical structures were appro-
priately situated. The segmented images were inspected to verify that
the segmentation of the hippocampus didn't overlap with that of an-
other adjacent structure such as the amygdala and that no part of the
hippocampus was left out during segmentation.

2.4. Performance measures

We utilized eight measures to quantify the performance of the au-
tomated segmentation methods described in the previous section. The
methods ranked differently depending on which measure was used.
Since different measures portrait different aspects of performance (e.g.,
reliability, agreement, efficacy), we ranked the methods according to
the sum (overall score) of the non-redundant (non-correlated), equally
weighted, measures. Next, we briefly describe these measures.

2.4.1. Process yield: segmentation success rate
Process yield was measured as the percentage of T1-weighted scans

that successfully completed segmentation and where both left and right
hippocampal volumes could be estimated.

2.4.2. Measures of concordance
We used two measures to quantify concordance between hippo-

campal volumes obtained through manual tracing and each of the au-
tomated segmentation methods. These were Lin's concordance corre-
lation coefficient (RC) (Lin, 1989) and Kendall's coefficient of
concordance (W) (Kendall and Smith, 1939).

Lin's RC is the concordance between a new measurement and an
existing “gold standard” measurement. This statistic quantifies the
agreement between two measures on the same observation. RC ranges
from −1 to 1 with perfect agreement at 1. RC is a measure of absolute
agreement in the ratings and can be legitimately calculated on as few as
10 observations.

Kendall's coefficient of concordance (also known as Kendall's W) is a
non-parametric statistic. It is a normalization of the statistic of the
Friedman test, and can be used for assessing agreement among raters.
Kendall's W ranges from 0 for no agreement to 1 for complete agree-
ment.

2.4.3. Measures of correlation
For correlation between manual and automated hippocampal vo-

lumes, we computed Pearson's correlation coefficient (R) and Shrout's
intra-class correlation coefficient (ICC) (Shrout and Fleiss, 1979).

Pearson's correlation measured the degree by which the automated
and manual hippocampal volumes were associated. High correlation
does not automatically imply that there is good agreement between
compared sets as correlation evaluates only the linear association of
observations in these sets (Morey et al., 2009).

In the computation of ICC, no generalization to a larger population
of raters was assumed. Since we were interested in comparing specific
segmentations at hand, the methods were assumed fixed. When we
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assumed them to be random, we found ICC to be remarkably similar to
Lin's RC.

2.4.4. Bland-Altman plots
Bland–Altman (BA) plots (Bland and Altman, 1999) offer another

approach to assessing agreement between two quantitative measure-
ments. Bland–Altman analyses are of value in clinical settings: they
provide information about interchangeability of two measures without
assuming that either is the gold standard (Morey et al., 2009). Agree-
ment between measures is quantified by constructing limits of agree-
ment (LOA). We calculated these statistical limits using the mean (d)
and the standard deviation (s) of the percent difference between
manual hippocampal volumes and volumes estimated by each of the
automated segmentation methods. The percent volume difference was
computed by dividing the difference between two compared volumes
by their average and then plotted against this average. We used the
average of the two compared volumes in the calculation of percent
volume difference since true volumes were unknown and the average
was the best estimate there was (Giavarina, 2015).

Distributions of percent volume differences were checked for nor-
mality using the one-sample Kolmogorov-Smirnov test (Massey, 1951).
The 95% confidence intervals (CI) of the mean volume difference (d)
and of the limits of agreements (LOA= d ± 1.96s) were then com-
puted as follows:

= ±CI d d ts N95% ( ) 1/

= ± ±CI LOA d s ts N95% ( ) 1.96 3/

where N is the number of participants and t is the value of the t-dis-
tribution with N-1 degrees of freedom. Participants whose percent vo-
lume differences were outside the 95% CIs of the LOAs were defined as
outliers.

2.4.5. Statistical analysis: control vs. stroke
We analyzed the difference in hippocampal volumes between the

healthy control and stroke groups for each of the tracing methods using
multi-way analysis of variance (ANOVAN, Statistics Toolbox, MATLAB
Release 2015a, https://au.mathworks.com/help/stats/anovan.html
Dunn and Clark). Covariates included age, body mass index (BMI),
years of education, total intracranial volume (TIV) and sex. There were
no significant interactions between group and any of the covariates or
between the covariates themselves. Thus, the regression model included
only linear terms. The MATLAB Tukey-Kramer default setting was used
for multiple comparison correction and significance was tested at
α= 0.05. A similar analysis was carried for comparison between the
various methods, but this was done separately for each study group
(control and stroke). The TIV estimated by FreeSurfer was used with the
rest of the methods including manual tracing.

2.4.6. Methods ranking
This was based on the sum of performance measures. Since we

found the ranking of the methods based on ICC, R, RC and W were
nearly the same for both control and stroke groups, we combined the
control and stroke measures for each method. The other measures were:
process yield, a measure (=1− |1− a|) based on best-fit line slope ‘a’,
a function f(p)= 1 if p < 0.05,= 0.95 otherwise; based on ‘p’ values
from ANOVAN analysis of control vs. stroke, and a measure (=1− n1/
N) where n1 is the count of outliers from the BA plot for each method
and N is the number of participants.

To avoid any bias in the ranking of methods, we analyzed correla-
tions between the comparison measures and removed measures that
were redundant. If a measure significantly correlated to multiple
measures, that measure was removed first. If a measure significantly
correlated to only one other measure, we eliminated the one which
correlated higher to the other non-redundant measures. We used
Spearman's rank correlation to eliminate redundant measures given

there was an outlier in the W measure and f(p) values could only be
discrete. In addition, all scores were not normally distributed. The
overall score for each method was then computed as the sum of the non-
redundant measures. Scores were also computed as percentages of the
maximum score that could be achieved (equal to the count of non-re-
dundant measures).

3. Results

Hippocampal volumes for 39 healthy and 105 stroke participants
were estimated using manual tracing and eight publicly available seg-
mentation tools including AdaBoost, ABHS, Hammers, LPBA40, Neuro,
FIRST, FreeSurfer (cross-sectional algorithm) and FreeSurfer ‘Subfields’.

Hippocampal asymmetry has been reported in normal cohorts
(Lucarelli et al., 2013; Middlebrooks et al., 2017) with the right hip-
pocampus shown to be larger than the left. In this study, we also report
a larger right hippocampus with a hippocampal asymmetry ranging
between 1.2% and 10.6% depending on the segmentation method used
(see Table 1). Except for FIRST, all methods showed that this hippo-
campal asymmetry is significant.

It is imperative that an automated segmentation method would be
comparable to manual tracing in estimating the hippocampal volume
irrespective of group or hemisphere. We have found that this compar-
ison was similar for both left and right hippocampi irrespective of
method used (e.g., see correlation plots in Supplemental Fig. 1). Hence,
we present our findings below based on hippocampal volumes averaged
across hemispheres.

3.1. Process yield

Segmentation process yields were quite high. In the case where
stroke lesions were not masked, all methods except for AdaBoost and
FreeSurfer successfully segmented hippocampi for all 144 participants.
AdaBoost could not obtain volumes for two participants resulting in a
slightly lower yield at 98.6% and FreeSurfer yield was at 99.3% after
missing out on one participant. In the case where the stroke lesions
were masked, FreeSurfer lost 1.4% in yield after missing on the seg-
mentation of two participants who had large stroke lesions across a
multitude of image slices. Yields for FIRST, Hammers, LPBA40 and
Neuro were not affected by stroke lesion masking.

3.2. Impact of stroke lesion on hippocampal volume estimation

We evaluated the impact of lesion removal on the estimation of
hippocampal volumes. Fig. 2 shows a comparison of group mean vo-
lumes for masked and unmasked lesion segmentations. Except for
LPBA40 (p=0.01), there was no significant difference in mean vo-
lumes for FIRST (p=0.4), FreeSurfer (p=1), Hammers (p=1) or
Neuro (p=0.96). More importantly, the hippocampal volumes from
the unmasked lesion segmentations agreed more, and correlated better,

Table 1
Left (LV) and right (RV) hippocampal volumes per segmentation method:
Hippocampal asymmetry was computed as the difference in right and left vo-
lumes (RV-LV) normalized by their average.

Method LV RV 2*(RV-LV)/(RV+ LV) P

ABHS 3416 3514 2.8% < 0.001
AdaBoost 3839 4007 4.3% < 0.001
FreeSurfer 3973 4115 3.5% < 0.001
FIRST 3746 3792 1.2% 0.17
Hammers 2266 2449 7.8% < 0.001
LPBA40 4253 4338 2.0% 0.002
Manual 3506 3713 5.7% < 0.001
Neuro 3054 3397 10.6% < 0.001
Subfields 3513 3646 3.7% < 0.001
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with manually traced volumes (see Table 2). Correlation and con-
cordance measures (Pearson's R, Lin's RC, Shrout's ICC, and Kendall's
W) for the automated methods were higher (by 0–0.27) in the case of
unmasked lesion segmentation, except for Lin's coefficient of con-
cordance RC, which was higher for masked lesion segmentation with
LPBA40. This was driven by a significantly lower mean volume which
became closer to mean volume estimated by manual tracing. For the
remainder of this analysis, we compare manual hippocampal tracing to
automated segmentation without stroke lesion masking.

3.3. Hippocampal volume distributions

After the elimination of participants (3 strokes and 1 control) that
failed segmentation or were poorly segmented by any of the methods, a
common set of 140 participants (38 controls and 102 strokes) was used
for comparison between the methods. The distributions of raw (not
corrected) hippocampal volumes for both controls and stroke partici-
pants are shown in Supplemental Fig. 2. In general, the figure shows
close distributions among methods except for Hammers segmentation
showing distinctively lower hippocampal volumes. The mean volumes
for both control and stroke groups from the Hammers segmentation
were shown to be significantly lower compared to all other methods,
including manual tracing. For the stroke group, the LPBA40 and Neuro
methods were also shown to have significantly different mean volumes
compared to the other methods (see Table 3).

For the control group, there was no difference in mean hippocampal
volume for ABHS−Manual (p=0.36), ABHS−Neuro (p=0.21),
ABHS−Subfields (p=0.51), AdaBoost−FIRST (p=0.77),
AdaBoost−FreeSurfer (p=0.26), FIRST−Manual (p=0.17), FIRST−
Subfields (p=0.10), FreeSurfer−LPBA40 (p=0.10) and Manual−
Subfields (p=1). For the stroke group, there was no difference in mean
volume for ABHS−Manual (p=0.48), ABHS−Subfields (p=0.83),
AdaBoost−FIRST (p=0.20), AdaBoost−FreeSurfer (p=0.85),
FIRST−Manual (p=0.37), FIRST−Subfields (p=0.11), and
Manual−Subfields (p=1).

3.4. Correlation and concordance of estimated volumes

The measures of agreement are summarized in Table 4. For both
control and stroke groups, ABHS and ‘Subfields’ correlated the most to
manual tracing, RABHS(Control, Stroke) = (0.89, 0.92) and RSubfields(Control,

Stroke) = (0.88, 0.92). FIRST correlated the least with manual tracing; R
(Control, Stroke) = (0.62, 0.83). AdaBoost and the CAT methods generally
correlated higher than FreeSurfer for both study groups. Hammers had
the highest Pearson's correlation coefficients R (Control, Stroke) = (0.85,
0.89) among the CAT methods, but also underestimated hippocampal
volumes the most; while LPBA40 overestimated them (see Fig. 3).
FreeSurfer and AdaBoost also returned higher hippocampal volumes;
shown mostly above the dotted ‘perfect-fit’ line in Fig. 3.

The large proportional bias in hippocampal volumes by Hammers
have caused this method to score poorly on Lin's concordance measure,
with RC < 0.4 for both control and stroke groups as shown in Table 4.
LPBA40, which had a positive bias in the mean, also scored poorly with
the control group (RC=0.29), but higher with the stroke group
(RC=0.45). Due to their relatively lower bias in the mean, FreeSurfer
and Neuro scored fairly with the control (RC=0.42 and 0.48) and
stroke groups (RC=0.63). The Lin's scores for ABHS and ‘Subfields’,
with volume means being the closest to that of manual tracing, were
higher for both study groups compared to other methods. RC scores for
FIRST and AdaBoost were relatively similar with control, but FIRST
(RC=0.79) scored higher with the stroke group than did AdaBoost
(RC=0.71). In terms of Shrout's ICC measure, FIRST scored the lowest

Table 3
Multiple comparison test (Tukey-Kramer correction): p-values above and below diagonal are for control and stroke respectively.

Method ABHS AdaBoost FIRST FreeSurfer Hammers LPBA40 Manual Neuro Subfields

ABHS 0.00 0.00 0.00 0.00 0.00 0.36 0.21 0.51
AdaBoost 0.00 0.77 0.26 0.00 0.00 0.00 0.00 0.00
FIRST 0.00 0.20 0.00 0.00 0.00 0.17 0.00 0.10
FreeSurfer 0.00 0.85 0.00 0.00 0.10 0.00 0.00 0.00
Hammers 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LPBA40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Manual 0.48 0.00 0.37 0.00 0.00 0.00 0.00 1.00
Neuro 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Subfields 0.83 0.00 0.11 0.00 0.00 0.00 1.00 0.00

Fig. 2. Distribution of hippocampal volumes from automated segmentation of
the stroke population with lesions masked (left for each pair) and unmasked.
Except for LPBA40, volume estimation was not significantly affected by lesion
masking. On each filled box, the central mark (dot inside circle) indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The whiskers extend to the most extreme data points
not considered outliers (± 3 standard deviations). Two medians are different,
with 95% confidence, if their box notches (range between arrows) do not
overlap.

Table 2
Correlation and concordance coefficients between manual tracing and auto-
mated methods: Comparison between segmentation with and without lesion
masking.

Method Lesion Pearson's R Lin's RC Shrout's ICC Kendall's W

FIRST Masked 0.58 0.56 0.56 0.87
Unmasked 0.83 0.79 0.83 0.90

FreeSurfer Masked 0.82 0.60 0.81 0.90
Unmasked 0.86 0.63 0.85 0.92

Hammers Masked 0.89 0.12 0.80 0.94
Unmasked 0.89 0.13 0.81 0.95

LPBA40 Masked 0.83 0.60 0.82 0.90
Unmasked 0.86 0.45 0.85 0.93

Neuro Masked 0.86 0.54 0.85 0.92
Unmasked 0.88 0.63 0.87 0.93
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with the control group (ICC=0.62) and Hammers scored the lowest
with the stroke group (ICC=0.81). ICC scores for the rest of the
methods ranged between 0.75 and 0.88 for control and between 0.83
and 0.92 for stroke. Finally, the Kendall's test indicated a significant
agreement for all methods and for both groups (W > 0.7) (Schleder
et al., 2013).

The automated methods correlated to manual tracing similarly for
both groups: similar slopes for best-fit lines as shown in Fig. 3. For
easier visualization, best-fit lines were computed for control and stroke
data combined, then they were normalized by mean hippocampal vo-
lume from manual tracing (see Fig. 4). AdaBoost, FIRST, and ‘Subfields’
had slopes being the closest to 1 (slope of ‘perfect-fit’ line). FreeSurfer
(a= 1.18) and Hammers (a= 0.63) showed respectively the highest
and lowest sensitivity to hippocampal volume variation compared to
the rest of the methods.

3.5. Bland-Altman plots

The BA plots are shown in Fig. 5. They confirm that FreeSurfer and
LPBA40 systematically generated larger volumes compared to manual
tracing while ABHS, Hammers and Neuro generated smaller volumes.
But for ‘Subfields’, the BA plots suggest that this method is inter-
changeable with manual tracing; given that the line of equality (volume
difference of zero) lies within the 95% CI of mean volume difference
(d). Other than ‘Subfields’, ABHS and FIRST had mean volume differ-
ence (d) being the closest to the line of equality.

The 95% CIs for mean (d) and for the LOAs are determined by
variability (s) in the distribution of volume differences and by sample
size (N). The larger the sample size and the smaller the volume dif-
ferences between the methods, the narrower are the confidence inter-
vals. Given a wider distribution of volume differences, FIRST had the
widest CIs for both (d) and LOAs.

We examined the outliers in each BA plot. Across all plots in Fig. 5,
there were 32 data points showing extreme overestimation or under-
estimation. The distribution of outliers between methods is presented in
supplemental Table 1, showing FIRST with highest outliers' percentage.
Furthermore, we evaluated the correlation between the outliers' vo-
lumes, corrected by TIV, and the count (n) of segmentation methods
affected. Supplemental Fig. 3 shows a significant correlation between
these two variables suggesting that participants with smaller hippo-
campal volumes – perhaps compromised by degeneration – were esti-
mated with less accuracy.

3.6. Control vs. stroke at three months

Between the two groups, there was no significant difference in age
(p=0.39), nor in sex (p=0.43), but there was a significant difference
in the number of years of education (p < 0.001). The mean for years of
education was 12.7∓ 3.6 years for stroke patients and 15.5∓ 4.5 years
for controls.

Mean hippocampal volumes − corrected for age, BMI, years of
education, sex and TIV− are presented in Table 5. None of the methods
showed a significant interaction between the covariates. All methods
systematically showed a lower mean hippocampal volume for the
stroke group (see Fig. 6). FIRST (p=0.014), FreeSurfer (p=0.007),
manual (p=0.049), and Neuro p=0.017 showed that the hippo-
campal volume difference between the two groups was significant. On
the other hand, ABHS (p=0.061), Hammers (p=0.058), and LPBA40
(p=0.054) showed that this difference approached but did not reach
significance.

3.7. Overall score

Calculated probability values (p-values) for Spearman's rank corre-
lations between measures used for comparing hippocampal segmenta-
tion methods are shown in Table 6. The first redundant measures to be
dropped were Pearson's R and Kendall's W, because each significantly
correlated to two measures. Then, we had to decide between Lin's RC
and the measure ‘1-|1-a|’ which were significantly correlated
(p=0.029). Since the correlation between Lin's RC and Shrout's ICC
(p=0.066) approached significance, while the correlation between ‘1-
|1-a|’ and ICC did not approach significance (p=0.35), we eliminated
the RC measure. Furthermore, RC correlated higher to the sum of the
remaining non-redundant measures compared to the measure ‘1-|1-a|’.
This finding also supported the elimination of RC.

The remaining non-correlated measures were used to compute the
overall scores for the automated segmentation methods, which ranged
between 87.3% and 96.3% (see Table 7). Subfields and Hammers
scored highest and lowest, respectively. For the most frequently used
methods, FIRST scored better than FreeSurfer v5.3.

4. Discussion

In this study, we estimated the hippocampal volumes for healthy
and ischemic stroke participants using several automatic segmentation
methods and compared them to volumes obtained through manual
tracing based on the EADC-ADNI harmonized protocol for hippocampal
segmentation.

Subfields performed best for hippocampal volume estimation; clo-
sely trailed by Adaboost and FIRST. Other studies using, mostly, older
version of FreeSurfer (Cover et al., 2016; Maglietta et al., 2016; Morey
et al., 2009; Mulder et al., 2014; Rana et al., 2017) have proposed this
tool as a viable alternative to manual tracing for quantifying hippo-
campal volume in AD. We also found a substantial agreement between
the newer version 5.3 of FreeSurfer and manual tracing for the esti-
mation of hippocampal volume in healthy controls and ischemic stroke
patients. Furthermore, our findings suggest that Subfields (in FreeSurfer
version 6.0), AdaBoost and FIRST are better alternatives than the
standard pipeline of FreeSurfer. This is based on the overall ranking of
methods based on a multitude of measures. In addition to estimating

Table 4
Agreement measures between manual tracing and automated segmentation methods.

Method → Measure ↓ ABHS AdaBoost FIRST FreeSurfer Hammers LPBA40 Neuro Subfields

Control (N=38)
Pearson's R 0.89 0.81 0.62 0.83 0.85 0.85 0.82 0.88
Lin's RC 0.77 0.57 0.54 0.42 0.07 0.29 0.48 0.87
Shrout's ICC 0.88 0.81 0.62 0.83 0.75 0.85 0.79 0.88
Kendall's W 0.96 0.92 0.76 0.91 0.94 0.94 0.92 0.96

Stroke (N=102)
Pearson's R 0.92 0.87 0.83 0.84 0.89 0.86 0.88 0.92
Lin's RC 0.88 0.71 0.79 0.63 0.13 0.45 0.63 0.92
Shrout's ICC 0.92 0.87 0.83 0.85 0.81 0.85 0.87 0.92
Kendall's W 0.96 0.94 0.90 0.92 0.95 0.93 0.93 0.96
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overall hippocampal volume, Subfields allows for the quantification of
volumes for various parts of the hippocampus. This allows one to
characterize atrophy in hippocampal sub-regions, potentially providing
more sensitivity in differentiating between study groups.

We note that our findings were based on method comparison re-
lative to data acquired at the three-month timepoint. This is still re-
levant if one is interested in absolute hippocampal volumes at any
single timepoint. For quantifying relative hippocampal volume change

Fig. 3. Correlation of average hippocampal volumes from automated segmentation to manual tracing.
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over time, the ranking of evaluated methods may change. For instance,
we used the cross-sectional segmentation pipeline of FreeSurfer in this
study in line with the rest of the methods, but for a longitudinal study,
the longitudinal processing stream of FreeSurfer (Reuter et al., 2012) is
preferred.

Referring to Fig. 3, the bias in hippocampal volumes shown by the
various segmentation methods may be attributed to differences in da-
tasets used for training and fine-tuning, as well as the segmentation
approaches taken by these methods (atlas-based vs. model-based). In a
longitudinal study, this bias can be tolerated so long it is fixed (i.e., not
proportional to hippocampal size). The behaviour of the best-fit line
(slope ‘a’ in Fig. 4) could predict the accuracy of the compared methods
in assessing the amount of hippocampal volume change over time.
Methods with slopes a > 1 will tend to overestimate hippocampal
volume change over time. On the contrary, methods with slopes a < 1
will tend to underestimate volume change. AdaBoost, FIRST, and Sub-
fields are posed to estimate a hippocampal volume change being the
closest to manual estimation.

The ischemic infarcts for all stroke participants occurred away from
the hippocampus except for one stroke participant who had a prior
infarct involving the right hippocampus. The automated methods did
not have difficulty segmenting this case, and similar to manual tracing,
they all estimated a relatively smaller volume for this hippocampus.
However, lesion masking was found to negatively impact on agreement
measures of methods tested. The masking of the lesions could have
negatively affected the quality of image registration and modified the
image intensity distribution such that less accurate volumes were pro-
duced. The results here suggest that, at least for the estimation of
hippocampal volume, it is more effective not to mask the stroke lesions.
This recommendation may or may not apply to volumetric estimations
of other structures. There are indications, though, that lesion masking
may not be needed even for the estimation of brain structures other
than the hippocampus. In (Werden et al., 2017), the stroke lesions were
not masked, yet most FreeSurfer-reconstructed images did not require
manual corrections. Additionally, the effect of lesions in multiple
sclerosis was recently evaluated in (Gonzalez-Villa et al., 2017). There,
it was concluded that the presence of lesions did not affect the seg-
mentation systematically. The lesions either made the segmentation
underperform or ‘surprisingly augmented’ its accuracy (Gonzalez-Villa
et al., 2017).

The different comparison measures adopted in this study helped to
uncover weaknesses and strengths of the evaluated methods. This was
not going to be otherwise achieved if only one or two measures were
used. Other than Subfields, which was shown to be interchangeable
with manual tracing, the use of BA plots interestingly revealed that
FIRST was the closest to be interchangeable with manual tracing de-
spite lower scores achieved on other measures. Also, the use of BA plots
helped us examine the nature of outliers. The 32 outliers examined

represented data from various participants (15 strokes and 2 controls)
and by different methods. None of the participants was considered an
outlier for all segmentation methods at once. This confirms that none of
the images had an anatomical abnormality or quality issue to the extent
that it could have systematically influenced the outcome for all
methods.

The evaluated methods achieved excellent overall scores (between
87.3% and 96.3%) and thus choosing one method over the other for
hippocampal segmentation may prove difficult; given the tight dis-
tribution of these overall scores and the trade-offs between measures for
some of the methods. The study questions and the comparison outcome
objectives may eventually dictate the kind of segmentation preferred. In
this study, we did not have a priori preference to what method we
ought to use, but rather we wanted a method that can replicate findings
from manual tracing as close as possible. Our ranking of the automated
segmentation methods using an overall score based on non-redundant
measures was an attempt in that direction. However, there were lim-
itations to the design of overall ranking score. Firstly, the list of mea-
sures included in the overall score was by no means exhaustive. This list
only included measures we deemed appropriate and necessary for our
study objectives and did not include for instance processing times
which were quantitively different between methods. Secondly, the list
included a measure (RC) which seeks absolute agreement and does not
tolerate bias in the data; even when this bias is not proportional. And
thirdly, there were influential factors that could not be objectively
quantified nor included in the overall score such as ease of im-
plementation and amount and/or type of segmentation output data.

Despite being located remotely, stroke injuries seem to have influ-
enced hippocampal volumes even at this early stage, as indicated by
most methods (see Table 5). There are indications, though, that hip-
pocampal volume differences between healthy participants and stroke
patients early after stroke onset may be the result of an ongoing vas-
cular burden (Werden et al., 2017). The two effects may prove chal-
lenging to untangle.

All methods showed that, at three months, the average hippocampal
volume for control was larger than that in stroke; with manual showing
a borderline significance (p=0.049). The ratio V/VManual in Table 5
specifically shows the amount by which each method over or under-
estimated hippocampal volume for each group. The differentiation
between the two groups depended on the way the methods modulated
hippocampal volume (over or underestimation in same or opposite di-
rections). For most methods, there was only about 1% difference in the
amount of modulation of control volumes as opposed to stroke volumes.
Consequently, the p-values for these methods were “practically” similar
to that of manual. On the other hand, AdaBoost and FreeSurfer re-
spectively overestimated control volumes by about 2% lower and
higher than their overestimates of stroke volumes. Consequently,
AdaBoost (p=0.28) and FreeSurfer (p=0.007) seem to have respec-
tively underestimated and overestimate the difference between the two
study groups.

Finally, the accurate delimitation of the hippocampus from sur-
rounding structures proves to be particularly challenging (Maglietta
et al., 2016) and is influenced by many factors, including the choice of
MR scanner, image acquisition protocol, post-processing of images, the
number, thickness and orientation of slices, segmentation approach,
atlases, and the defined anatomical boundaries of the hippocampus it-
self. Even though the automated segmentation methods were assessed
on the same dataset, their performance as compared to manual tracing
remains relative to the aforementioned factors, especially to the con-
trast and resolution of the MRI dataset which were bounded by the
acquisition hardware. We also remind the reader that the comparison
we made between the automated segmentation methods and manual
tracing was based solely on hippocampal volumes. We did not compare
the anatomical maps produced by the automated segmentation
methods in order to quantify their accuracy against manual hippo-
campal maps.

Fig. 4. Slopes ‘a’ of best-fit lines for automatically estimated volumes plotted as
function of manual volumes after removing fixed bias from all methods.
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5. Conclusion

The Subfields algorithm was found superior for segmenting and
quantifying absolute hippocampal volume after objectively ranking eight
methods based on a number of non-correlated measures. Moreover,

masking of the stroke lesion negatively affected the automatic segmen-
tation of the hippocampus, and thus, is not recommended. Manual tra-
cing, and a number of the automated methods, revealed a significantly
compromised hippocampal state for the stroke group compared to the
age-matched healthy cohort three months after stroke onset.

Fig. 5. Bland–Altman plots for percent volume differences between manual and automated segmentation methods. 95% confidence intervals for mean volume
difference (d) and for limits of agreements are shown (gray bands).
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Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.10.019.
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Table 5
Mean hippocampal volumes, V (mm3): FIRST, FreeSurfer, manual tracing, and
Neuro showed significant difference between control and stroke groups.

Method Control Stroke P

Mean SD V/VManual Mean SD V/VManual

Manual 3734 464 3578 607 0.049
ABHS 3560 382 0.95 3438 499 0.96 0.061
AdaBoost 4044 519 1.08 3948 678 1.10 0.275
FIRST 3934 527 1.05 3711 688 1.04 0.014
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LPBA40 4408 505 1.18 4241 659 1.19 0.054
Neuro 3346 363 0.90 3197 475 0.89 0.017
Subfields 3694 436 0.99 3573 570 1.00 0.104

Fig. 6. Mean hippocampal volumes at 3months: Control vs. stroke (p < .05 *,
p < .01 **).

Table 6
Probability values (p-values) of Spearman's rank correlations.

Measure Yield R RC ICC W f(p) 1 - |1-a|

R 0.21
RC 0.43 0.21
ICC 0.43 0.023 0.066
W 0.32 0.001 0.23 0.042
f(p) 0.89 0.96 0.61 0.88 1.00
1 - |1-a| 0.57 0.69 0.029 0.35 0.69 0.39
1 - n1/N 0.46 0.15 0.77 0.30 0.064 1.00 0.93

Table 7
Overall score for the automated segmentation methods (percentage was com-
puted based on maximum achievable score of 5).

Method Yield ICC f(p) 1 - |1-a| 1 - n1/N Score (%)

Subfields 1.00 0.91 0.95 0.97 0.98 4.82 (96.3)
AdaBoost 0.99 0.86 0.95 0.98 0.97 4.75 (95.0)
FIRST 1.00 0.79 1.00 0.98 0.96 4.73 (94.7)
Neuro 1.00 0.86 1.00 0.88 0.96 4.71 (94.2)
ABHS 1.00 0.91 0.95 0.86 0.97 4.69 (93.9)
FreeSurfer 0.99 0.83 1.00 0.82 0.97 4.61 (92.2)
LPBA40 1.00 0.85 0.95 0.83 0.98 4.61 (92.1)
Hammers 1.00 0.80 0.95 0.63 0.98 4.36 (87.3)
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