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Abstract

Benford’s Law defines a statistical distribution for the first and higher order digits in many

datasets. Under very general condition, numbers are expected to naturally conform to the

theorized digits pattern. On the other side, any deviation from the Benford distribution could

identify an exogenous modification of the expected pattern, due to data manipulation or even

fraud. Many statistical tests are available for assessing the Benford conformity of a sample.

However, in some practical applications, the limited number of data to analyze may raise

questions concerning their reliability. The first aim of this article is then to analyze and com-

pare the behavior of Benford conformity testing procedures applied to very small samples

through an extensive Monte Carlo experiment. Simulations will consider a thorough choice of

compliance tests and a very heterogeneous selection of alternative distributions. Secondly,

we will use the simulation results for defining a new testing procedure, based on the combina-

tion of three tests, that guarantees suitable levels of power in each alternative scenario.

Finally, a practical application is provided, demonstrating how a sounding testing Benford

compliance test for very small samples is important and profitable in anti-fraud investigations.

Introduction

Benford’s Law (BL) defines a probability distribution for patterns of significant digits in numeri-

cal data. Its formulation is grounded on the intriguing observation made first by Newcomb [1],

then by Benford [2], who noticed a non-uniform amounts of wear in the pages of the logarith-

mic tables. In its complete form, the law states that the leading digits of many natural phenom-

ena are not uniformly distributed, as one may expect, but follow a logarithmic distribution:

P½D1ðXÞ ¼ d1; . . . ;DmðXÞ ¼ dm� ¼ log
10

1þ
1

Pm
l¼1

10m� ldl

� �

ð1Þ

whereDj(x) is the j-th significant digit of a positive real number x, d1 2 {1, . . ., 9}, and dj 2
{0, . . ., 9} for j = 2, . . .,m. Focusing only on the first significant digit (FSD), expression (1)

reduces to:

P½D1ðXÞ ¼ k� ¼ pBk ¼ log
10
ð1þ 1=kÞ; for k ¼ 1; 2; . . . ; 9: ð2Þ
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Theoretical studies investigated the properties and provided a limit theorem for the digit distri-

bution. Classical references for this topic are [3–6]. At the same time, empirical applications

have shown that many sets of numerical data are consistent with BL, at least in its simplest form

Eq (2). Some examples in this sense are stock indexes [7], hydrology data [8] and volcanology

data [9]. In addition, thanks to its generality and feasibility in different fields, the Benford distri-

bution has fruitfully supported fraud investigations and the detection of manipulated data, in

particular concerning COVID declared figures [10], scientific studies [11], media and social net-

works data [12] and international trade [13]. The assumption is that clean data (i.e. without any

external manipulation) are distributed according to Eq (1). Generally, this condition is satisfied

whenever numbers are the result of mathematical operations (multiplication, division, raising

to power and so on) on values taken from different random variables, as in the case of account-

ing data [14]. The value of a purchase, for example, is the outcome of the multiplication between

the number of items and their unitary price, which itself comes from the combination of differ-

ent numbers. In such context, a significant departure from the theoretical distribution can point

to data sets that include fabricated numbers.

The identification of non-Benford numbers can rely on a variety of statistical tests. Their

empirical properties may significantly differ, but we expect that their power, ceteris paribus,

increases with the sample dimension. On the contrary, when the number of observations is

very small, “there may be insufficient power to meaningfully detect or confirm conformance

with the law” ([15], page 2793). Nevertheless, in many practical applications, the number of

figures available for each individual sample to test could be quite limited. In this case, the usual

solution for increasing the expected sensitivity is to run the BL compliance tests on several

individual samples merged together. Consider, for example, the investigations aimed to assess

the digit distribution of the numbers published in scientific journals. Their analyses are usually

not performed article by article, but they rather consider groups of articles pulled together (for

example, those published in the same year, as in [16]). This strategy is not feasible however

when the aim is to identify the specific individual sample that may contain irregularities. This

is just the case of anti-fraud, where the target is to identify the economic operators that may

have manipulated their declared numbers. Thus, in such contexts, the only strategy is to maxi-

mize the reliability of the expected outcome, that is to choose the testing procedure that, for a

given significance level, guarantees the largest expected power against a wide range of possible

alternatives.

In this article, we firstly analyze and compare the behavior of several testing procedures

against a huge set of alternative scenarios. Besides considering a thorough choice of Benford

compliance tests and a very heterogeneous selection of alternative distributions, the main nov-

elty with respect to previous works with similar aim (as, for example [17–19]), is that we focus

on samples with very small dimensions (i.e. n = 20). We do not expect to find a testing proce-

dure that strictly dominates the other in all the different scenarios. The target is rather to find

the ones that show the best general behavior independently of the alternative. Secondly, we use

the testing performances obtained in the simulation exercise to derive and propose a combined

test that guarantees suitable levels of power in each alternative scenario. The objective of this

study is then twofold. From one side, we provide a comprehensive analysis of small samples

properties of Benford’s compliance tests that could support the researchers in the selection of

the proper procedure. From the other, we propose an alternative method based on the combi-

nation of different tests that offers desirable performance against a wide range of possible devi-

ations. An empirical application on international trade data shows how the availability of

reliable BL testing procedures for very small samples can remarkably increase the range of

applicability, and provide a valuable support for limiting the number of economic transactions

that deserve further anti-fraud investigations.
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The paper proceeds as follows. In the next section, the set of BL tests compared in the simu-

lation exercise are briefly introduced, properly divided into three families: tests for the FSD,

tests for the complete form of the BL and the summation test. This is followed by a section that

describes the different alternative distributions of values considered in the Monte Carlo experi-

ment. Therefore, the simulation results are presented and discussed. In addition, we used

them to define a combined test with desirable empirical properties. We present an empirical

application of Benford compliance tests on international trade data, stressing the importance

of reliable methods for small samples in such context. The final section concludes.

Testing the BL conformity

Many testing procedures allow to assess the conformity of a set of values to the Benford’s theory.

In the first part of our study, we want to study their behavior in small samples through a huge

simulation exercise. We took into account most of the testing procedures proposed in past inves-

tigations, in order to provide a complete comparison. They can be divided into three families:

tests for the FSD, tests for the complete BL, and the summation tests recently proposed by [20].

Tests for the FSD

Given an n-sample of values {x1, . . ., xn}, we can assess the BL conformity of the FSD through

the null hypothesis:

H0 : pk ¼ log
10
ð1þ 1=kÞ; for k ¼ 1; 2; . . . ; 9 ð3Þ

where pk = nk/n, and nk ¼
Pn

i¼1
IðD1ðxiÞ ¼ kÞ.

The first test is the well known Pearson goodness-of-fit test:

w2 ¼
X9

k¼1

ðnk � npBkÞ
2

npBk
¼ n

X9

k¼1

ðpk � pBkÞ
2

pBk
: ð4Þ

that is asymptotically distributed as a w2
8
. It is surely one of most used statistics in BL compli-

ance experiments, even though its potential low power, especially in small samples, suggests

some cautions [21]. In this simulation exercise, it could be considered as a benchmark for

assessing the gain in power associated with the other testing procedures.

A second category of FSD tests derives from the Cramer-Von-Mises, Watson and Ander-

son-Darling statistics, which are mainly used for testing the goodness-of-fit for continuous dis-

tributions [22, 23]. Let Fk ¼
Pk

j¼1
pk and FBk ¼

Pk
j¼1
pBk denote the cumulative distributions of

respectively the empirical and the expected proportions, whose difference is defined as

Zk ¼ Fk � FBk . Define also the weights wk ¼ ðpBk þ p
B
kþ1
Þ=2 for k = 1, . . ., 8 and

w9 ¼ ðpB9 þ p
B
1
Þ=2, and use them for calculating the weighted mean of the cumulative distribu-

tions distances: �Z ¼
P9

k¼1
wkZk. The three statistics are defined as:

W2 ¼ n
X9

k¼1

Z2

kwk

U2 ¼ n
X9

k¼1

ðZk � �ZÞ2wk

A2 ¼ n
X8

k¼1

Z2
kwk

FBk ð1 � FBk Þ

ð5Þ

Asymptotic critical values are available for the three tests [19].

PLOS ONE Testing for Benford’s Law in very small samples

PLOS ONE | https://doi.org/10.1371/journal.pone.0271969 July 22, 2022 3 / 17

https://doi.org/10.1371/journal.pone.0271969


Then, we will consider two tests based on the Kolmogorov-Smirnov (KS) distance of the

cumulative FSD distributions. In particular, the first is simply the KS deviation:

KSd ¼
ffiffiffi
n
p

sup
1�k�9

jFBk � Fkj: ð6Þ

whereas the second is the Kuiper test [24], defined as:

KUd ¼ sup
1�k�9

ðFBk � FkÞ þ sup
1�k�9

ðFk � F
B
k Þ: ð7Þ

Finally, the last FSD test considered is the Mean Test introduced by [16] and based on the

simple observation that, if the FSD is distributed according to Eq (2), then its expected value is

equal to 3.440 and its variance to 6.057. The Mean Test is defined as:

MT ¼
j
P9

k¼1
pkdk � 3:440j
ffiffiffiffiffiffiffiffiffiffiffi
6:057
p : ð8Þ

Tests for the complete form of the BL

The second family of tests applied in the simulation experiment does not limit the attention to

the FSD, but considers the whole digit distribution (1). Defining the significand of a value y 2
R as SðyÞ ¼ 10log10jyj� blog10jyjc, with byc ¼ maxfm 2 Z : m � yg representing the floor function

[5, 25], proved that:

Y � Benford , SðYÞ � 10U

where U is a Uniform random variable on [0; 1[. Based on this theoretical result and ordering

the observations {x1, . . ., xn} according to the value of the significand {S(x(1))� � � � � S(x(n))},

the BL conformity could be tested through the statistics based on the KS distance applied on

the logarithm of the ordered significands. As before, we considered both the KS test:

KSs ¼ max
i2½1;n�
jlog

10
SðxðiÞÞ � i=nj ð9Þ

and the Kuiper test:

KUs ¼ max
i2½1;n�
½i=n � log

10
SðxðiÞÞ� þ sup

i2½1;n�
½log

10
SðxðiÞÞ � ði � 1Þ=n�: ð10Þ

Recently [26], showed that KSs test for uniformity provides very good results for small,

medium size and even large records.

In addition, we also consider the Anderson-Darling test [27], defined as:

AD ¼
Xn

i¼1

2i � 1

n
½lnðlog

10
SðxðiÞÞÞ þ lnð1 � log

10
Sðxðnþ1� iÞÞÞ�: ð11Þ

Summation test. Finally, the last test considered is the summation test Q [20]. Starting

from the definition of the significand previously introduced, we define ZkðxiÞ ¼ SðxiÞ �
IðFSDðxiÞ ¼ kÞ and �Z k ¼ n� 1

Pn
1
ZkðxiÞ. According to these definitions and representing C =

log10 e, the summation test limited to the first-digit case is given by:

Q ¼ nð �Z � mÞ0S� 1ð �Z � mÞ ð12Þ

where �Z ¼ ð �Z 1; . . . ; �Z 9Þ
0
, μ is the nine elements vector μ = (C, . . ., C)0, and S is the (9 × 9)

matrix with elements σkk = C(k + 1/2 − C) and σkj = −C2 whenever k 6¼ j.
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Description of the alternative distributions

The finite sample behavior of the eleven testing procedures introduced in the previous section

are investigated in a simulation study. Table 1 presents all the alternatives distributions consid-

ered in the simulation experiment, together with the corresponding parameter space. In each

simulation s, a sample Xs ¼ fxs
1
; . . . xsng is generated according to one of the pattern listed in

the Table 1. Actually, the first three distributions are alternative patterns only for the FSD of x.

In this case, the remaining digits of each number are simulated according to the Benford prob-

abilities, in order to allow a suitable calculation of the tests for the complete form of the BL and

of the summation test.

The first alternative family for the FSD is the Generalized Benford’s Law (GB, [28, 29]):

P½D1ðXÞ ¼ k� ¼ pGBk ðyÞ ¼

log
10

1þ
1

k

� �

y ¼ 0

ðkþ 1Þ
y
� ky

10y � 1
y 6¼ 0

8
>>>><

>>>>:

ð13Þ

where k 2 {1, 2, . . ., 9} and y 2 R. Therefore, when θ = 0, the GB reduces to the standard Ben-

ford distribution for the FSD (2), whereas for θ = 1, the resulting distribution is uniform. This

last case is quite interesting, since it mimics a manipulation strategy widely used in past appli-

cations [13, 19], based on a naive assignation of the first digit with equal probabilities. Finally,

when θ< 0, more weight is assigned to smaller digits (1 and 2), whereas when θ> 1, more

weight is assigned to bigger digits (from 4 to 9, see panel a of Fig 1).

Then, we considered the FSD patterns proposed by Rodriguez (R, [30]):

P½D1ðXÞ ¼ k� ¼ pRk ðbÞ ¼

1

9
1þ

10

9
ln ð10Þ þ k ln ðkÞ � ðkþ 1Þ ln ðkþ 1Þ

� �

b ¼ 0

log
10

1þ
1

k

� �

b ¼ � 1

bþ 1

9b
�
ðkþ 1Þ

bþ1
� kbþ1

bð10bþ1 � 1Þ
otherwise

8
>>>>>>>><

>>>>>>>>:

ð14Þ

where k 2 {1, 2, . . ., 9} and b 2 R. Again, the standard Benford distribution (2) and the uni-

form distribution of the FSD are two particular cases of this family. The former corresponds to

β = −1, whereas the latter to β = ±1. In general, when β< 0 (β> 0), the digit probabilities are

decreasing according to a convex (concave) pattern (see panel b of Fig 1).

The last FSD distributions considered are the ones proposed by Hürlimann (H, [31]):

P½D1ðXÞ ¼ k� ¼ pHk ðrÞ ¼
1

2
f½log

10
ð1þ kÞ�r � ½log

10
k�r � ½1 � log

10
ð1þ kÞ�r þ ½1 � log

10
k�rg ð15Þ

Table 1. Alternative distributions considered in the simulation experiment.

Family Parameter Space

GB θ 2 [−1.5, 1.5]

R β 2 [−14, 10]

H ρ 2 (0, 10]

LN X� Lognormal(μ, σ) with μ 2 {0, 0.5, 1, 1.5, 2}, σ 2 [0.1, 1]

WB X�Weibull(a, b) with a 2 {0.5, 1, 1.5, 2, 2.5}, b 2 [0.5, 5]

https://doi.org/10.1371/journal.pone.0271969.t001
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with k 2 {1, 2, . . ., 9} and ρ> 0. When ρ = 1 or ρ = 2, the distribution of the FSD corresponds

to (2), whereas for other values of the parameter, the resulting distribution has a convex U-

shape (see panel c of Fig 1).

The last two alternative distributions are the Lognormal (LN) and the Weibull (WB), two

continuous random variables that may reasonably arise in many fields. Both of them can

become very close to a Benford random variable for some combination of their parameters.

Actually [4, 32], showed that a LN random variable with a large shape parameter is practically

indistinguishable from a Benford random variable. This is why, in the simulation exercise, we

decided to fix the scale parameter μ to five different values, and to let the shape parameter σ
vary from 0.1 to 1. Similar arguments apply also to the WB random samples. In this case, the

simulated values closely fit the Benford distribution for small values of the shape parameter

[6]. Again, we fixed scale parameter a to five different values, and to let the shape parameter

b vary from 0.5 to 5. Panels d and e of Fig 1 provide a representation of the FSD

probabilities associated to the LN and WB distributions when the shape parameter is respec-

tively 0.5 and 3.

Therefore, the wide range of possible alternative distributions selected for the simulation

exercise produces a heterogeneous set of patterns for the FSD probabilities. This allows an

exhaustive assessment of the performance of the tests described in the previous section under

very general contexts and scenarios.

Fig 1. FSD associated to the alternative distributions.

https://doi.org/10.1371/journal.pone.0271969.g001
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Simulation results

Since the focus of our study is on small samples, for each alternative scenario we consider 4

sample dimensions, i.e. n = 20, 30, 40 and 50. In this section, we present only the results

obtained with n = 20. The simulation outcomes for the other sample dimensions (available

upon request) are numerically different, but confirm the patterns described for the smallest

dimension. Even though the asymptotic critical values for some of the implemented tests are

available, the small dimensions of the simulated samples recommends to use exact critical val-

ues. We then computed the 1% critical value for each test and each different sample size

through one million simulations of Benford distributed values. For each alternative scenario

listed in Table 1, we generate 100,000 simulations and calculate the rejection rates of each test.

The three alternative FSD patterns considered reduces to Eq (2) for particular values of its

parameter. In these cases, rejection rates measure the empirical size of the tests. Table 2 pres-

ents the percentage rejection rates obtained when the FSD patterns corresponds exactly to Eq

(2). The values range from 0.901% to 1.064% and confirm a suitable accuracy of the empirical

size, not significantly different from the nominal value of 1%.

Power against alternative FSD patterns

Table 3 shows the rejection rates of the tests against the three alternative FSD for a subset of

the parameters considered in the Monte Carlo exercise (as before, the full set of results is avail-

able upon request). The panel reserved to GB alternatives highlights that, independently of the

value of θ, A2,W2, AD, KSd andMT seem to offer the best general performances, whereas the

power of KSs is optimal when θ< 0, but deteriorates when θ> 0. All the other tests seem to

offer rejection rates always below average. When the digits are uniformly distributed (i.e. θ =

1), the power ofMT,W2 and U2 is slightly less than 60%, and the one of AD and KSd is close to

50%. All the other tests considered exhibit a power between 30 and 35%.

The central panel of Table 3 presents the rejection rates obtained with FSD simulated

according to Eq (14). A2,W2, AD, KSd andMT show again the best general properties indepen-

dently of the value of the parameter, while the power of the remaining tests results smaller.

The only exception is the case β = 1, where the top performers are U2 and KUd.
Finally, the output against Hürlimann distributed digits is in the bottom panel of Table 3.

In this case, the top performers are U2, KUd and KUs, whereas the power of χ2 and Q, is opti-

mal only when ρ< 1. Instead, the rejection rates ofMT, KSs andW2 are always below average.

Table 2. Rejection rates (×100) when the Benford null (3) is true.

Test GB(0) R(-1) H(1) H(2)

χ2 1.027 0.986 1.034 1.034

W2 0.979 1.001 1.026 0.969

U2 0.999 1.041 1.003 0.990

A2 0.996 0.980 0.998 0.982

KSd 0.995 0.999 1.027 0.989

KUd 0.959 1.010 1.011 0.980

MT 0.922 0.901 0.958 0.907

KSs 0.972 1.064 1.031 0.992

KUs 1.040 1.061 1.034 1.008

AD 0.972 0.973 0.996 0.970

Q 1.001 0.984 1.042 1.045

https://doi.org/10.1371/journal.pone.0271969.t002
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Power against continuous random variables

Table 4 presents the results obtained with data simulated according to a lognormal distribution

with the five selected scale parameters. As expected, the rejection rates are inversely related to

the shape parameter. When σ decreases the rejection rates are close to 1, while when the shape

approaches to 1, the rejection rates approach to the nominal level of the test. Even though

every panel seems to tell a slightly different story, there are some testing procedures that seem

to regularly offer desirable properties. In particular, they are KUs, U2 and KUd. Also KSs and

Table 3. Rejection rates when the FSD is distribuited according to Eqs (13), (14) and (15).

Generalized Benford

θ -1.5 -1 -0.5 0.5 1 1.5

χ2 0.224 0.039 0.004 0.079 0.336 0.713

W2 0.907 0.543 0.115 0.127 0.573 0.924

U2 0.776 0.366 0.066 0.055 0.300 0.707

A2 0.896 0.519 0.103 0.137 0.593 0.931

KSd 0.848 0.463 0.094 0.110 0.498 0.874

KUd 0.690 0.287 0.048 0.072 0.380 0.788

MT 0.826 0.413 0.070 0.145 0.592 0.926

KSs 0.888 0.538 0.131 0.052 0.339 0.761

KUs 0.689 0.304 0.060 0.050 0.283 0.677

AD 0.832 0.430 0.080 0.112 0.534 0.906

Q 0.280 0.069 0.010 0.069 0.301 0.670

Rodriguez

β -15 -11 -5 1 5 9

χ2 0.227 0.197 0.100 0.041 0.155 0.215

W2 0.353 0.286 0.096 0.044 0.281 0.394

U2 0.171 0.140 0.066 0.075 0.219 0.256

A2 0.384 0.321 0.124 0.037 0.259 0.378

KSd 0.325 0.272 0.110 0.045 0.249 0.343

KUd 0.230 0.188 0.077 0.068 0.227 0.287

MT 0.413 0.356 0.152 0.021 0.189 0.322

KSs 0.196 0.156 0.053 0.018 0.140 0.212

KUs 0.169 0.139 0.065 0.054 0.179 0.224

AD 0.346 0.290 0.115 0.021 0.187 0.299

Q 0.203 0.178 0.092 0.035 0.133 0.188

Hürlimann

ρ 0.1 0.3 0.6 4 7 10

χ2 0.966 0.438 0.045 0.069 0.423 0.779

W2 0.387 0.079 0.020 0.038 0.140 0.274

U2 0.977 0.392 0.035 0.125 0.781 0.987

A2 0.863 0.232 0.031 0.054 0.273 0.587

KSd 0.751 0.192 0.024 0.058 0.285 0.508

KUd 0.978 0.379 0.034 0.104 0.692 0.965

MT 0.390 0.149 0.034 0.052 0.166 0.266

KSs 0.455 0.085 0.018 0.043 0.187 0.341

KUs 0.940 0.283 0.026 0.088 0.622 0.936

AD 0.844 0.254 0.032 0.057 0.294 0.579

Q 0.967 0.437 0.045 0.073 0.429 0.774

https://doi.org/10.1371/journal.pone.0271969.t003
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KSd yield adequate results on average. On the other side of the ranking, what stands out are

the poor performances offered byW2 when μ = 0; byMT when μ = 0, 1 and 1.5; by AD when

μ = 1; and by χ2 and Q when μ = 0.5.

Table 5 shows instead the rejection rates obtained with Weibull distributed values for fixed

scale coefficients. As expected, now the rejection rates are directly related to the shape parame-

ter. Thus, when b increases, the power approaches to 1. Again, the outstanding performers are

KUs, U2 and KUd, followed by KSs and KSd that also offer outcomes above the average. Particu-

larly negative results are showed byMT when a = 0.5 and 1.5; and by χ2 and Q when a = 2.

Table 4. Rejection rates for Lognormal distributed values.

μ 0 0 0 0.5 0.5 0.5

σ 0.3 0.5 0.7 0.3 0.5 0.7

χ2 0.669 0.112 0.024 0.468 0.021 0.007

W2 0.219 0.057 0.019 0.985 0.337 0.044

U2 0.984 0.271 0.031 0.991 0.313 0.037

A2 0.428 0.078 0.023 0.976 0.296 0.037

KSd 0.439 0.101 0.023 0.991 0.356 0.044

KUd 0.957 0.216 0.028 0.986 0.278 0.031

MT 0.207 0.067 0.023 0.855 0.172 0.022

KSs 0.502 0.107 0.025 0.996 0.434 0.064

KUs 0.993 0.309 0.035 0.992 0.312 0.036

AD 0.858 0.150 0.030 0.964 0.256 0.034

Q 0.801 0.125 0.024 0.547 0.039 0.009

μ 1 1 1 1.5 1.5 1.5

σ 0.3 0.5 0.7 0.3 0.5 0.7

χ2 0.623 0.048 0.007 0.859 0.142 0.026

W2 0.355 0.025 0.009 0.918 0.176 0.023

U2 0.940 0.212 0.027 0.998 0.397 0.045

A2 0.342 0.020 0.008 0.889 0.141 0.020

KSd 0.415 0.049 0.012 0.889 0.195 0.025

KUd 0.910 0.201 0.025 0.987 0.314 0.041

MT 0.054 0.025 0.008 0.015 0.033 0.014

KSs 0.654 0.089 0.018 0.855 0.109 0.010

KUs 0.993 0.314 0.035 0.992 0.309 0.035

AD 0.064 0.005 0.005 0.658 0.074 0.013

Q 0.645 0.052 0.008 0.836 0.129 0.023

μ 2 2 2

σ 0.3 0.5 0.7

χ2 0.852 0.180 0.035

W2 0.904 0.225 0.035

U2 0.936 0.182 0.023

A2 0.909 0.235 0.039

KSd 0.944 0.260 0.039

KUd 0.921 0.215 0.031

MT 0.909 0.256 0.045

KSs 0.901 0.172 0.021

KUs 0.992 0.308 0.036

AD 0.942 0.231 0.036

Q 0.870 0.176 0.033

https://doi.org/10.1371/journal.pone.0271969.t004
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General comments

The comparison of different BL compliance tests in a simulated environment provided several

important conclusions. First of all, it is not necessarily true that in very small samples there is

insufficient power to meaningfully detect or confirm conformance with the BL. Simulations

showed that a careful choice of the testing procedure allows to significantly increase the

expected power. Consider, for example, the case of the uniform alternative. As previously

stressed, this is the FSD distribution that we should expect when numbers are falsified by a

Table 5. Rejection rates for Weibull distributed values.

a 0.5 0.5 0.5 1 1 1

b 2 3 4 2 3 4

χ2 0.111 0.507 0.891 0.085 0.329 0.615

W2 0.149 0.488 0.834 0.050 0.183 0.356

U2 0.279 0.881 0.995 0.141 0.533 0.864

A2 0.121 0.429 0.804 0.068 0.267 0.514

KSd 0.154 0.484 0.798 0.078 0.294 0.533

KUd 0.233 0.821 0.991 0.118 0.425 0.749

MT 0.038 0.012 0.002 0.075 0.274 0.471

KSs 0.082 0.345 0.687 0.072 0.269 0.531

KUs 0.214 0.821 0.992 0.213 0.822 0.993

AD 0.068 0.230 0.577 0.115 0.534 0.912

Q 0.103 0.481 0.876 0.093 0.441 0.826

a 1.5 1.5 1.5 2 2 2

b 2 3 4 2 3 4

χ2 0.028 0.296 0.789 0.014 0.113 0.372

W2 0.176 0.634 0.936 0.191 0.703 0.948

U2 0.263 0.870 0.997 0.153 0.714 0.969

A2 0.155 0.610 0.934 0.161 0.640 0.921

KSd 0.183 0.649 0.949 0.239 0.841 0.992

KUd 0.205 0.788 0.989 0.147 0.738 0.981

MT 0.052 0.179 0.412 0.115 0.469 0.783

KSs 0.261 0.780 0.976 0.295 0.872 0.995

KUs 0.213 0.821 0.993 0.212 0.821 0.992

AD 0.156 0.604 0.920 0.117 0.548 0.887

Q 0.040 0.332 0.803 0.024 0.182 0.477

a 2.5 2.5 2.5

b 2 3 4

χ2 0.024 0.214 0.596

W2 0.084 0.492 0.869

U2 0.117 0.606 0.937

A2 0.068 0.412 0.801

KSd 0.122 0.675 0.957

KUd 0.106 0.557 0.915

MT 0.075 0.377 0.663

KSs 0.179 0.785 0.986

KUs 0.211 0.821 0.992

AD 0.035 0.236 0.618

Q 0.030 0.244 0.649

https://doi.org/10.1371/journal.pone.0271969.t005
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manipulator that believes that the proportion of ones, twos,. . ., nines in the first digit should

be equal. By choosing the usual χ2 test, as most of the analysts do in practice, we can expect a

power of 33.5%. But if we consider A2 orMT the expected power almost doubles.

Also in other scenarios, simulation results confirmed that the power of χ2 is usually domi-

nated by the one offered by alternative testing procedures. Thus, despite its popularity, the use

of this test should be avoided, at least in very small samples. The other testing procedures con-

sidered in the simulation exercise showed very different characteristics, and there is not one

that strictly dominates the others. It is also interesting to note that the statistics aimed to test

the simplest null (2) work properly also when the deviation affects all the digits, and are not

necessary dominated by their counterparts that consider the complete joint digits distribution.

This is, for example, the case of U2, which is optimal not only when the FSD follows a Hürli-

mann distribution, but also when the simulated values are Weibull distributed with scale

parameter equal to 0.5. However, it performs poorly when the FSD is simulated according to

a Generalized Benford distribution with θ> 0 and to a Rodriguez distribution with β< −1.

This sub-optimal behavior is common also to other testing procedures. Therefore, it is not

possible to identify a test that is able to offer suitable expected performances independently

of the alternative scenario. One alternative option could be to define a combined test that

merges together the positive features offered by the single tests, as described in the following

section.

Combining tests for improving the general performance

The simulation results provided an exhaustive of the small sample behavior of different BL

conformity tests. In particular, two of them offered the best general results across the different

alternative scenarios: KUs and U2. The idea is then to combine the p-values of these tests in

order to derive a procedure that offers a desirable level of power in all the alternative scenarios

proposed. However, both offered poor performances when the FSD was distributed according

to the Generalized Benford and the Rodriguez distribution. Therefore, in the definition of the

combined test, we decided to consider also the A2 test, whose performances under the Gener-

alized Benford and the Rodriguez alternatives are optimal. Among the possible choices for

combining the p-values, we chose the minimum function (see [33] for more details on this

issue). Thus, the statistics is given by:

GfKUs;U2 ;A2g ¼ 1 � minfpðKUsÞ; pðU2Þ; pðA2Þg ð16Þ

where π(�) is the p-value function, defined as 1 − F(�). As usual, the p-values of the single tests

and the 1% critical values of the combined test Γ will be calculated through the one million

simulations of Benford distributed numbers. Our expectation is that the performances of Γ
represent a favorable compromise of the ones of KUs, U2 and A2.

Figs 2–4 provide an immediate assessment of the behavior of Γ with respect to the three sin-

gle tests. In addition, they allow a direct comparison with the maximum and the minimum

rejection rates obtained with all the tests considered in the simulation exercise. The first thing

to notice is that the combined test is always the second best choice, independently of which of

the three single tests was the best choice. Secondly, the power of Γ is always closer to the best

among KUs, U2 and A2, than to the worst. These two features allow the combined test to offer

convincing outcomes even when one or two single tests perform below the average, Consider,

for example, the case represented in PowerCombinedGB for θ> 0: the power of KUs, U2 is

very close to the absolute minimum, whereas the rejection rate of Γ is very close to the one of

A2, which is the absolute maximum. In conclusion, test Γ provides a convenient trade-off of

the behaviors of the three single tests in all the scenarios considered.
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Empirical application on international trade data

In this section, we provide some examples of the application of the BL compliance tests on

Customs data. The contrast of fraud in this context is crucial. The protection of the financial

interests is indeed a fundamental task of the European Union (EU) administration, and the

Fig 3. Rejection rates of the combined test for lognormal distributed values. The gray region represents the area

between the maximum and the minimum value of the power obtained in the simulations.

https://doi.org/10.1371/journal.pone.0271969.g003

Fig 2. Rejection rates of the combined test for alternative FSD. The gray region represents the area between the

maximum and the minimum value of the power obtained in the simulations.

https://doi.org/10.1371/journal.pone.0271969.g002
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collection of customs duties on imports represents the principal source of traditional own

resources of the EU budget [34]. In 2017, the EU’s revenue from customs duties was more

than 20 million, representing almost 15% of EU total revenue (source: https://ec.europa.eu/

budget/library/biblio/publications/2018/financial-report_en.pdf). Under-reporting the value

of the imports is usually the main strategy pursued to pay less duties or excises, or to evade

import restrictions and certain anti-dumping measures [35]. Proper statistical analyses provide

support for the identification of anomalous trades that may result from unfair commercial

strategies [36, 37]. Several studies have shown that statistical methods based also on the Ben-

ford Law can be profitably used in this field, aiming to spot traders with more than 50 transac-

tions that are suspected of data manipulation [13, 20, 38]. The possibility to extend the focus

also to economic operators with less imports can significantly increase the feasibility of the

anti-fraud analysis, especially when the investigations are limited to particular periods, or to

particular groups of products. Just to have an idea, Table 6 shows the distribution of traders

according to the number of declared imports during the whole 2014 in a single Member State

of the European Union (not revealed for confidentiality issues). Considering that one year is

the usual period length of Customs audit, it is evident how extending the focus also to less

active importers allows to almost double the number of economic operators we can monitor.

In addition, a reliable and accurate testing procedure for small samples allows to tighten the

number of suspicious imports to investigate, reducing the costs of the demanding and time

consuming controls necessary to prove the eventual fraud.

Consider, for instance, the two examples of the application of the BL compliance tests rep-

resented in Table 7. Data were collected in the context of a specific operation by a Member

State of the EU and, for confidentiality reasons, the two traders will be labeled simply as Trader

1 and Trader 2. Trader 1 collected 58 imports during three years. The p-values of the tests a

Fig 4. Rejection rates of the combined test for Weibull distributed values. The gray region represents the area

between the maximum and the minimum value of the power obtained in the simulations.

https://doi.org/10.1371/journal.pone.0271969.g004
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suggest a potential departure of the values declared from the theoretical distribution. Most of

the p-values are indeed very close or even smaller than 1%, with only one of them larger than

5%. A year-by-year analysis reveals that the 21 import values declared in 2015 yield the smallest

p-value, and should therefore be the first to investigate in the search for frauds. Actually, one

of those 21 imports was checked by Custom authority, and the corresponding import resulted

to be under-valuated. The analysis of Trader 2 provides another interesting pattern. Also in

this case, the 94 imports were traded in a three years period, and the p-values of all the tests

Table 6. Number of imports per trader in 2014 for an EU member state.

Number of imports per year Number of traders

less than 20 imports 210,521

between 20 and 29 imports 6,627

between 30 and 39 imports 3,962

between 40 and 49 imports 2,714

50 or more imports 14,459

https://doi.org/10.1371/journal.pone.0271969.t006

Table 7. P-values of Benford tests applied on the import values declared by two traders.

Trader 1

Period 2013–2015 2013 2014 2015

n 58 18 19 21

χ2 0.010 0.025 0.144 0.018

W2 0.020 0.065 0.697 0.034

U2 0.000 0.009 0.516 0.003

A2 0.020 0.079 0.558 0.037

KSd 0.031 0.088 0.406 0.050

KUd 0.001 0.006 0.279 0.007

MT 0.619 0.481 0.546 0.454

KSs 0.019 0.092 0.281 0.061

KUs 0.000 0.006 0.420 0.002

AD 0.041 0.135 0.732 0.119

Q 0.014 0.023 0.176 0.023

GfKUs ;U2 ;A2g 0.000 0.013 0.585 0.004

Trader 2

Period 2012–2014 2012 2013 2014

n 94 31 26 37

χ2 0.735 0.412 0.870 0.013

W2 0.155 0.125 0.774 0.000

U2 0.536 0.233 0.894 0.002

A2 0.145 0.147 0.784 0.000

KSd 0.322 0.241 0.745 0.001

KUd 0.574 0.350 0.935 0.002

MT 0.111 0.177 0.455 0.002

KSs 0.225 0.273 0.484 0.001

KUs 0.617 0.398 0.780 0.011

AD 0.231 0.164 0.878 0.001

Q 0.758 0.457 0.925 0.018

GfKUs ;U2 ;A2g 0.247 0.248 0.898 0.001

https://doi.org/10.1371/journal.pone.0271969.t007
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suggest BL compliance of the declared values. However, the year-by-year analysis identifies a

significant deviation from the Benford distribution for the 37 values declared in 2014. Actually,

6 of them were checked by Custom authority, and the corresponding imports resulted to be

under-valuated.

In conclusion, the availability of suitable and powerful procedures for testing BL compli-

ance in small samples can efficiently support the Custom anti-fraud activities. It allows not

only to extend the range of applicability through the possibility of use them for traders with

few operations, but also to identify small subsets of imports that deserve further investigations.

Conclusion

The popularity of the BL is remarkably increasing in these last years. Since a set of numbers is

expected to be Benford compliant under very general conditions, it can be used in many appli-

cations where the target is to identify potentially manipulated figures, as, for example, anti-

fraud investigations. The automatic assessment of BL conformity through statistical methods

requires testing procedures with desirable statistical properties. Especially in audit where

many samples are tested, we aim for a statistical test which controls the number of false alarms

and guarantees at the same time a suitable level of power. The choice of the Benford compli-

ance test is even more important when the number of observations in the sample is small,

given that suitable level of powers are very difficult to achieve.

The aim of this article was first of all to provide an extensive analysis of the performances of

several BL compliance tests in very small samples. Simulation results proved that small sample

properties can significantly vary, depending on the alternative scenario. In general, every test

alternates good and average results across all the alternatives and there is no a procedure that

strictly dominates the others. However, the following regularities emerged from the simulation

exercise:

• despite its popularity, the power of Pearson’s χ2 test was often below average;

• KUs and U2 achieved outstanding results in most of the alternative scenarios considered, but

not when the FSD is uniformly distributed.

The need of a procedure with optimal results independently of the alternative digits pattern

encouraged us to define a new test. The main idea was to merge the positive small sample

properties offered by some of the tests in the simulation experiment. Therefore we proposed to

combines the p-values of KUs, U2 and A2 through themin function. The resulting test achieved

always desirable levels of powers in all alternative designs, even when one or two single tests

performed below the average.

Finally, an empirical application presented a practical case where the availability of a reli-

able testing procedure for small samples allows (i) to increase the number of samples under

investigation; and (ii) a more accurate selection of the cases that are suspected of data manipu-

lation. This second issue is particularly relevant in anti-fraud audits. Non-conformity to the

BL does not necessarily mean that the corresponding economic operator is a fraudster. Fur-

ther, sometimes expensive, investigations are required to prove the irregularities. Therefore,

having the possibility to focus the attention on a restricted number of suspect cases together

with a reliable control over the number of false alarms are two essential requirements for an

affordable anti-fraud analysis.
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