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PURPOSE. To determine the effects of airborne particulate matter (PM) <2.5 μm in vitro
and on the normal and Pseudomonas aeruginosa (PA)-infected cornea.

METHODS. An MTT viability assay tested the effects of PM2.5 on mouse corneal epithelial
cells (MCEC) and human corneal epithelial cells (HCET). MCEC were tested for reactive
oxygen species using a 2′,7′-dichlorodihydrofluorescein assay; RT-PCR determined mRNA
levels of inflammatory and oxidative stress markers in MCEC (HMGB1, toll-like receptor
2, IL-1β, CXCL2, GPX1, GPX2, GR1, superoxide dismutase 2, and heme oxygenase 1)
and HCET (high mobility group box 1, CXCL2, and IL-1β). C57BL/6 mice also were
infected and after 6 hours, the PM2.5 was topically applied. Disease was graded by clinical
score and evaluated by histology, plate count, myeloperoxidase assay, RT-PCR, ELISA, and
Western blot.

RESULTS. After PM2.5 (25–200 μg/mL), 80% to 90% of MCEC and HCET were viable and
PM exposure increased reactive oxygen species in MCEC and mRNA expression levels for
inflammatory and oxidative stress markers in mouse and human cells. In vivo, the cornea
of PA+PM2.5 exposed mice exhibited earlier perforation over PA alone (confirmed histo-
logically). In cornea, plate counts were increased after PA+PM2.5, whereas myeloperox-
idase activity was significantly increased after PA+PM2.5 over other groups. The mRNA
levels for several proinflammatory and oxidative stress markers were increased in the
cornea in the PA+PM2.5 over other groups; protein levels were elevated for high mobility
group box 1, but not toll-like receptor 4 or glutathione reductase 1. Uninfected corneas
treated with PM2.5 did not differ from normal.

CONCLUSIONS. PM2.5 triggers reactive oxygen species, upregulates mRNA levels of oxidative
stress, inflammatory markers, and high mobility group box 1 protein, contributing to
perforation in PA-infected corneas.
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Particulate matter (PM) is a general term for small solid
and liquid particles in the atmosphere (a major air

pollutant) that vary in size (e.g., PM2.5–PM10), composi-
tion, and origin.1,2 There are many different sources of
PM, including natural (e.g., forest fires3) and man made
(e.g., diesel engines,4 industry,2 wood burning stoves,5 and
agricultural burning6) types. Exposure to particle pollu-
tion is detrimental to health7 and has economic effects as
well.8 Previous studies have indicated that acute and chronic
exposure to PM has increased the morbidity and mortal-
ity rate worldwide (e.g., the United States,9 Europe,10 and
China11). Specifically, in cities with elevated air pollution
levels compared with those without, the individual mortal-
ity risk is 26% greater.1 PM2.5 is a fine airborne PM with an
aerodynamic diameter of <2.5 μm.12 It is the major outdoor
air pollutant in most urban areas worldwide (e.g., China,13

the United States14) and a major pollutant in indoor air,
especially in households that use biomass fuel for cook-
ing and/or heating.5,15 These particles are produced mainly

from man-made sources and contain molecules composed
of sulfates, nitrates, ammonia, carbon, lead, and organic
compounds.11 PM2.5 is the major and most toxic air pollu-
tant found in environments with heavy traffic and industrial
activity and accounts for 5.5% of deaths and $5.1 billion in
economic loss annually in urban cities such as Detroit, Michi-
gan.16 In addition, recent work has confirmed a correlation
with modest PM2.5 increase and mortality in the Medicare
population.17 Owing to its small size, PM2.5 has an incre-
mental capacity to penetrate different tissues via mucosal
membranes (e.g., lung18). PM2.5 is strongly associated with
the pathogenesis of air pollution-associated diseases includ-
ing cancer,19–21 metabolic,22–24 respiratory,25–27 and cardio-
vascular28,29 diseases, all of which are being investigated. For
example, it has been reported that PM2.5 exposure triggers a
variety of maladaptive signaling pathways in the lung,23,30–32

blood vessels,33 liver,22,23,34 and adipose tissues35 that are
associated with oxidative29,32 and endoplasmic reticulum
stress23,35 and inflammatory responses.31–33 A mucosal site
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that has essentially been overlooked is the eye. Specifi-
cally, the ocular surface (e.g., cornea1 and conjunctiva1)
is continually exposed to air pollutants, including PM2.5,
which may lead to an adverse effect on the homeostasis
of these tissues. However, little attention has been given
to developing models to test the effects of PM2.5 on ocular
disease propensity. Epidemiologic and clinical data suggest
that air pollution in which PM2.5 is a major constituent
can cause transient ocular allergies (redness,1 foreign body
sensation,36 and itching36). It is also reported that in house-
holds that use biomass fuel for cooking and heating, there
is a high risk of blindness (e.g., trachoma,5 cataract37),
especially among young children5 and females.37,38 In addi-
tion, limited in vitro studies using human corneal epithe-
lial cells (HCET), have suggested, but did not provide
mechanisms, by which PM2.5 may promote autophagy,39

damage mitochondrial function,40 decrease cell viability,41

and cause oxidative damage.41 If bacteria are present, expo-
sure of mucosal sites to PM may also enhance bacterial
stress resistance mechanisms,42,43 biofilm formation,42,43 and
enhance colonization.42,43 In this regard, epidemiologic stud-
ies strongly suggest that it is biologically plausible to hypoth-
esize that exposure to PM2.5 is associated with some of
the major blinding and painful eye conditions seen world-
wide, including the development of corneal ulcers result-
ing from delayed wound healing after injury or infection.5

Those studies further suggest that it is difficult to study clin-
ical disease retrospectively and that experimental models
are needed to test mechanistically the relationship between
PM2.5 exposure and ocular disease and infection. Other stud-
ies reveal a link between PM and increased outpatient visits
for several ocular diseases, including allergic conjunctivi-
tis44 and emergency room visits for keratitis.45 In this article,
we report the effects of PM2.5 exposure in mouse corneal
epithelial cells (MCEC) in vitro, providing evidence that
exposure: decreased cell viability and was concentration
dependent, increased production of reactive oxygen species
(ROS)/reactive nitrogen species (RNS), and inflammatory
and oxidative stress associated molecules. A mouse model
shows that PM2.5 exposure together with Pseudomonas
aeruginosa (PA) infection, leads to the upregulation of
inflammatory and oxidative stress–associated molecules, a
significant increase in infiltrating neutrophils, and an accel-
erated rate of corneal perforation compared with infected
controls.We also show that decreased viability and increased
levels of inflammatory molecules after PM2.5 exposure of
three-dimensional (3D) cultured HCET was concentration
dependent.

METHODS

PM2.5 Samples

Real-world PM2.5 particles were collected from June to
August 2008 through Ohio’s Air Pollution Exposure System
for the Interrogation of Systemic Effects system. Samples
were subjected to x-ray fluorescence spectroscopy to analyze
composition. Concentrations of major PM2.5 chemicals are
shown in Table 1.23 For the studies below, PM2.5 was
dissolved in sterile PBS for the concentrations indicated.

Tissue Culture

Cultured C57BL/6 MCEC were grown as described previ-
ously.46 Immortalized HCET cells (10.014 pRSV-T, a gift from

TABLE 1. Composition of PM2.5

Category Chemical Concentration, ng/m3

Alkali metals K 308.3 ± 75.1
Na 375.0 ± 91.7

Alkaline earth metals Mg 50.5 ± 16
Ca 220.1 ± 54.1
Sr 20.3 ± 3.5

Transition metals Fe 385.0 ± 99.1
Zn 115.9 ± 29.5

Poor metals Al 53.0 ± 27.5
Sn 55.0 ± 18.9
Pb 19.9 ± 4.1

Lanthanoids Sm 3.3 ± 1.8
Metals Eu 1.5 ± 0.4
Nonmetals S 9167.5 ± 913.1

Si 833.4 ± 54.1

Dr Gabriel Sosne) were cultured in keratinocyte-serum free
medium (Gibco, Grand Island, NY) with 5 ng/mL human
recombinant epidermal growth factor, 0.05 mg/mL bovine
pituitary extract, 0.005 mg/mL insulin, and 500 ng/mL hydro-
cortisone. HCET cells (1 × 104 cells) were plated on 96-well
plates containing cultures Mimetix (Cambridge, MA) scaf-
fold (PLLA, 4 micron fiber diameter, 50 micron thick; Cata-
log: AMS.TECL-002-1X). The cells were grown on the scaf-
folds to generate 3D cultures for 3 weeks per the manufac-
turer’s instructions. Cells were then treated with PM2.5 (0,
100, 200 and 500 μg/mL for 24 hours) for the MTT assay,
and 100 μg/mL PM2.5 for 24 hours and mRNA analyzed using
RT-PCR.

MTT Assay

The MTT 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide (ThermoFisher Scientific, Grand Island, NY)
assay was used to evaluate the effects of PM on cell viabil-
ity. The assay was performed according to manufacturer’s
protocol. Briefly, 15,000 MCEC were cultured in 96-well
plates overnight and exposed to various concentrations of
PM2.5 (0, 25, 50, 100, 200, 500, 800, and 1200 μg/mL) for
24 hours. At the end of the treatment, 5 mg/mL of MTT
reagent was added to each well. The plate was then incu-
bated at 37°C for 4 hours and the media removed. Dimethyl
sulfoxide was added (50 μL/well) to dissolve the metabolic
product formazan and the plate was placed on a shaker at
150 rpm for 5 minutes. Optical density was read at 540
nm using a SpectraMax M5 microplate reader (Molecular
Devices, Sunnyvale, CA). HCET grown in 3D cultures were
exposed to 100, 200, and 500 μg/mL PM2.5 for 24 hours
before the MTT assay.

Measurement of ROS/RNS Levels

ROS/RNS levels in MCEC were measured using an OxiSelect
in vitro ROS/RNS Assay Kit (Cell Biolabs, Inc., San Diego,
CA) per the manufacturer’s instructions. The assay uses
a proprietary quenched fluorogenic probe, dichlorodihy-
drofluorescin DiOxyQ (DCFH-DiOxyQ), which is a specific
ROS/RNS probe that is based on similar chemistry to
the popular 2′,7′-dichlorodihydrofluorescein diacetate. The
DCFH-DiOxyQ probe is first primed with a quench removal
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reagent, and subsequently stabilized in the highly reactive
DCFH form. In this reactive state, ROS and RNS species can
react with DCFH, which is rapidly oxidized to the highly
fluorescent 2′,7′-dichlorodihydrofluorescein (DCF). The fluo-
rescence intensity of DCF is proportional to total ROS/RNS
levels. Briefly, PM2.5-treated (0, 25, 50, or 100 μg/mL) MCEC
were homogenized in 500 μL of cold PBS and centrifuged
at 10,000g for 5 minutes. A 50-μL aliquot of each super-
natant was added to a 96-well black microtiter plate in dupli-
cate and incubated with 50 μL of catalyst for 5 minutes,
followed by incubation with 100 μL of DCFH for 30 minutes.
DCF fluorescence was measured at 480 nm (excitation) and
530 nm (emission).Total ROS/RNS concentration in MCEC
homogenates was determined by generating a DCF standard
curve. Fluorescence was measured using a SpectraMax M5
spectrophotometer.

Mice

Eight-week-old female C57BL/6 mice were purchased from
the Jackson Laboratory (Bar Harbor, ME) and housed in
accordance with the National Institutes of Health guidelines.
They were humanely treated and in compliance with both
the ARVO Statement for the Use of Animals in Ophthalmic
and Vision Research and the Institutional Animal Care and
Use Committee of Wayne State University (IACUC 18-08-
0772).

Bacterial Culture

A previously published protocol was followed to culture
bacteria.47 Briefly, PA cytotoxic strain, 19660 (American Type
Culture Collection Manassas, VA) was grown in peptone
tryptic soy broth medium in a rotary shaker water bath
at 37°C and 150 rpm for 18 hours to an optical density
(measured at 540 nm) between 1.3 and 1.8. Bacterial cultures
were centrifuged at 5500g for 10 minutes; pellets were
washed once with sterile saline, recentrifuged, resuspended,
and diluted in sterile saline.

Bacterial Infection and PM2.5 Exposure

The C57BL/6 mice were anesthetized using anhydrous ethyl
ether mice and placed beneath a stereoscopic microscope
at ×40 magnification. The left cornea was scarified with
three 1-mm incisions using a sterile 255/8-gauge needle. The
wounded corneal surface was then topically treated with
5 μL containing 1 × 106 colony forming units (CFU)/μL PA
19660.47,48 Six hours later and then twice at 1 day post infec-
tion (p.i.), one group was exposed (topical application onto
cornea) to PM2.5 (2 μg/5 μL dose; from a concentration of
400 μg/mL), and the other infected group received PBS simi-
larly. Uninfected, wounded mouse corneas were similarly
exposed to PM2.5 only. Uninfected normal controls were not
wounded or treated with PBS.

Ocular Response to Bacterial Infection and PM2.5

Exposure

An established corneal disease grading scale was used to
assign a clinical score value to each infected eye. 49 Disease
was graded as follows: 0, clear/slight opacity, partially or

fully covering the pupil; +1, slight opacity, covering the ante-
rior segment; +2, dense opacity, partially or fully covering
the pupil; +3, dense opacity, covering the anterior segment;
and +4, corneal perforation. Each mouse was scored in
masked fashion at 1 and 2 days p.i. for statistical comparison
and photographed (2 days p.i.) with a slit lamp to illustrate
disease.

Histopathology

Infected eyes (n = 3/treatment/time) were enucleated from
uninfected and infected mice exposed to PM2.5 or PBS
at 2 days p.i., immersed in PBS, rinsed, and fixed in 1%
osmium tetroxide (Electron Microscopy Sciences, Hatfield,
PA), 2.5% glutaraldehyde (Electron Microscopy Sciences)
and 0.2 M Sorenson’s phosphate buffer (pH 7.4) 1:1:1 at
4°C for 3 hours. Eyes were rinsed with 0.1 M phosphate
buffer, dehydrated in ethanol and propylene oxide (Sigma-
Aldrich, St. Louis, MO), infiltrated and embedded in Epon-
araldite (Electron Microscopy Sciences). Sections (1.5 μm)
were cut, stained with Toluidine blue and photographed
(Leica DM4000B, Leica Microsystems, Inc., Buffalo Grove,
IL), as described previously.50

Quantification of Viable Bacteria

Corneas from each of the three groups (PA+PM2.5 or PBS
and PM2.5 only) were removed at 2 days p.i. Each cornea
was homogenized in 1 mL of sterile saline containing 0.25%
BSA and 100 μL was serially diluted 1:10 in sterile saline
containing 0.25% BSA. Selected dilutions were then plated
in triplicate on Pseudomonas isolation agar plates (Becton-
Dickinson, Franklin Lakes, NJ) and incubated overnight
at 37°C. Bacterial colonies were manually counted and
reported as log10 CFU/plate +SEM.50

Myeloperoxidase (MPO) Assay

This assay was used to enumerate neutrophils in the
cornea of the three groups (described in viable plate
count elsewhere in this article) of mice. A previously
published protocol was used for the assay.50 Briefly, individ-
ual corneas were removed at 2 days p.i. and homogenized
in 1 mL of of 50 mM phosphate buffer (pH 6.0) contain-
ing 0.5% hexadecyltrimethyl-ammonium (Sigma-Aldrich).
Samples were freeze-thawed four times, centrifuged, and
100 μL of the supernatant added to 2.9 mL of 50 mM phos-
phate buffer containing o-dianisidine dihydrochloride (16.7
mg/mL; Sigma-Aldrich) and hydrogen peroxide (0.0005%).
The change in absorbency was monitored at 460 nm for 4
minutes at 30-second intervals. The slope of the line was
determined for each sample and used to calculate units of
MPO/cornea. One unit of MPO activity equals approximately
2 × 105 neutrophils.50

RT-PCR

For in vitro assays, MCEC (50,000 cells/well) were grown in
24-well plates and exposed to 0, 25, or 100 μg/mL PM2.5

for 24 hours at 37°C. For 3D HCET cultures, cells were
grown in 96-well plates for 3 weeks and exposed to 100
μg/mL PM2.5 for 24 hours at 37°C. For in vivo experiments,
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TABLE 2. Nucleotide Sequence of the Specific Primers Used for PCR Amplification (Human)

Gene Nucleotide Sequence Primer GenBank

GAPDH 5′-GGA GCG AGA TCC CTC CAA AAT-3′ F NM_002046.7
5′- GGC TGT TGT CAT ACT TCT CAT GG-3′ R

HMGB1 5′- TGG CCA AGG AAT CCA GCA GTT-3′ F NM_001313893.1
5′- CTC CTC CCG ACA AGT TTG CAC-3′ R

IL-1β 5′- TTC GAG GCA CAA GGC ACA AC-3′ F NM_000576.2
5′- TTC ACT GGC GAG CTC AGG TA-3′ R

CXCL2 5′-AGC TTG TCT CAA CCC CGC ATC-3′ F NM_002089.4
5′-TTA GGC GCA ATC CAG GTG GC-3′ R

F, forward; R, reverse.

TABLE 3. Nucleotide Sequence of the Specific Primers Used for PCR Amplification (Mouse)

Gene Nucleotide Sequence Primer GenBank

β-actin 5′- GAT TAC TGC TCT GGC TCC TAG C-3′ F NM_007393.3
5′- GAC TCA TCG TAC TCC TGC TTG C-3′ R

Hmgb1 5′- TGG CAA AGG CTG ACA AGG CTC-3′ F NM_010439.3
5′- GGA TGC TCG CCT TTG ATT TTG G-3′ R

Tlr2 5′- CTC CTG AAG CTG TTG CGT TAC -3′ F NM_011905.3
5′- TAC TTT ACC CAG CTC GCT CAC TAC-3′ R

Tlr4 5′- CCT GAC ACC AGG AAG CTT GAA-3′ F NM_021297.2
5′- TCT GAT CCA TGC ATT GGT AGG T-3′ R

Il-1β 5′-TGT CCT CAT CCT GGA AGG TCC ACG-3′ F NM_008361.3
5′-TGT CCT CAT CCT GGA AGG TCC ACG-3′ R

Cxcl2 (Mip2) 5′-TGT CAA TGC CTG AAG ACC CTG CC-3′ F NM_009140.2
5′-AAC TTT TTG ACC GCC CTT GAG AGT GG -3′ R

Gpx1 5′-CTC ACC CGC TCT TTA CCTTCC T-3′ F NM_008160.6
5′-ACA CCG GAG ACC AAA TGA TGT ACT-3′ R

Gpx2 5′-GTG GCG TCA CTC TGA GGA ACA-3′ F NM_030667
5′-CAG TTC TCC TGA TGT CCG AAC TG-3′ R

Gr1 5′-CCA CGG CTA TGC AAC ATT CG-3′ F NM_010344.4
5′-GAT CTG GCT CTC GTG AGG AA-3′ R

Sod2 5′-GCG GTC GTGTAA ACC TCA AT-3′ F NM_013671
5′-CCA GAG CCT CGT GGT ACT TC-3′ R

Ho1 5′-CAC GCA TAT ACC CGC TAC CT-3′ F NM_010442
5′-CCA GAG TGT TCA TTC GAG C-3′ R

F, forward; R, reverse.

normal (uninfected) and/or exposed to PM2.5 (2 μg/5 μL
dose) and infected (PA 19660) corneas exposed to PBS or
PM2.5 were harvested at 2 days p.i. from C57BL/6 mice. For
both in vitro and in vivo assays, total RNA was isolated
(RNA STAT-60; Tel-Test, Friendswood, TX) per the manu-
facturer’s instructions, as reported previously.50 One micro-
gram of each RNA sample was reverse transcribed using
Moloney-murine leukemia virus reverse transcriptase (Invit-
rogen, Carlsbad, CA) to produce a cDNA template PCR.
The cDNA products were diluted 1:20 with DEPC-treated
water and a 2-μL aliquot of diluted cDNA was used for the
RT-PCR reaction. SYBR green/fluorescein PCR master mix
(Bio-Rad Laboratories, Richmond, CA) and primer concen-
trations of 10 μM were used in a total 10 μL volume. After
a preprogrammed hot start cycle (3 minutes at 95°C), the
parameters used for PCR amplification were: 15 seconds
at 95°C and 60 seconds at 60°C with the cycles repeated
45 times. Levels of high mobility group box 1 (HMGB1),
toll-like receptor (TLR) 2, TLR4, IL-1β, chemokine (C-X-
C) ligand 2 (CXCL2), glutathione peroxidase (GPX) 1 ,
GPX2, glutathione reductase 1 (GR1), superoxide dismu-
tase 2 (SOD2), and heme oxygenase 1 (HO1) were tested

by real-time RT-PCR (CFX Connect real-time PCR detection
system; Bio-Rad Laboratories). The fold differences in gene
expression were calculated relative to housekeeping genes
β-actin (mouse) and GAPDH (human) and expressed as the
relative mRNA concentration ± SEM. Primer pair sequences
used are shown in Tables 2 and 3. Data are shown as
mean ± SEM.

ELISA and Western Blotting

Corneas were harvested (2 days p.i.) from normal mice, mice
that were uninfected and exposed to PM2.5, and PA-infected
mouse corneas exposed to PBS or PM2.5. Pooled samples
were suspended in PBS containing protease and phos-
phatase inhibitors (ThermoFisher, Rockford, IL), sonicated,
and centrifuged at 12,000g for 20 minutes. Total protein was
determined (Micro BCA protein kit; ThermoFisher). TLR4
was detected by Western blot. A previously published proto-
col was used for Western blot.51 Briefly, samples (30 μg)
were run on sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis in Tris-glycine-SDS buffer and electro-blotted
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onto nitrocellulose membranes. After blocking for 1 hour
in 5% Tris buffer saline containing 0.05% Tween 20 (TBST)
and 5% nonfat milk (MTBST), membranes were probed
with primary antibodies: rabbit anti-mouse TLR4 (1:1000;
Abcam Cambridge, MA) in 3% BSA TBST overnight at 4°C.
After 3 washes with TBST, membranes were incubated with
horseradish peroxidase-conjugated anti-rabbit secondary
antibody (1:2000; Cell Signaling Technology, Danvers, MA)
diluted in 5% MTBST at room temperature for 2 hours.
Bands were developed with Supersignal West Femto Chemi-
luminescent Substrate (ThermoFisher), visualized using an
iBright Imaging System (ThermoFisher), normalized to β-
actin and intensity quantified using AlphaView software.

Individual corneas from normal, uninfected mice, unin-
fected mice exposed to PM2.5, and PA-infected mice exposed
to PBS or PM2.5 were harvested in 500 μL of PBS contain-
ing 0.1% Tween 20 and protease inhibitors. HMGB1 (Chon-
drex, Inc., Redmond, WA) and GR1 (MyBiosource, San
Diego, CA) were detected by ELISA per the manufacturers’
protocol.

Statistical Analysis

A Student’s t-test was used to determine the significance of
RT-PCR (3D HCET), ELISA, and Western blot data. An in vivo
comparison of clinical scores between two groups at each
time was tested by the Mann-Whitney U test. A one-way
ANOVA followed by the Bonferroni’s multiple comparison
test was used for MTT (MCEC, 3D HCET), DCF, plate counts,
MPO, and RT-PCR (MCEC, cornea). Data were considered
significant at a P value of <0.05. All experiments were
repeated at least once to ensure reproducibility and data are
shown as mean ± SEM.

RESULTS

PM2.5 Exposure Affects Cell Viability and
Increases ROS/ RNS Levels

In vitro, MCEC cells exposed to PM2.5 for 24 hours showed
a concentration-dependent decrease (P < 0.001) in live cells
(Fig. 1A). At concentrations of 25 to 200 μg/mL, 80% to 90%
of the cells were viable compared with controls. Even at
1200 μg/mL, the highest concentration tested, 60% remained
viable. Figure 1B shows a concentration-dependent signifi-
cant (P< 0.05, P< 0.01 and P< 0.001, respectively) increase
in detectable ROS/RNS levels in MCEC exposed for 24 hours
to lower concentrations of PM2.5 (0, 25, 50, and 100 μg/mL)
compared with controls (media exposed).

PM2.5 Increases Levels of Proinflammatory and
Oxidative Stress Markers In Vitro

RT-PCR tested if PM2.5 (25 and 100 μg/mL for 24 hours)
enhanced proinflammatory and oxidative stress molecules in
MCEC (Figs. 2A–I). Except for CXCL2 and HO1 (Figs. 2D,E),
mRNA levels of HMGB1 (P < 0.05), TLR2 (P < 0.05), IL-1β
(P < 0.05), GR1 (P < 0.05), GPX1 (P < 0.001), GPX2 (P <

0.001), and SOD2 (P < 0.05) were significantly increased at
25 μg/mL PM2.5. All molecules (Figs. 2A–I) also were signifi-
cantly increased at 100 μg/mL PM2.5 (P< 0.001 except GPX2,
P < 0.01) when compared with media controls.

FIGURE 1. Effects of PM2.5 exposure on cell viability and ROS
production in MCEC in vitro. (A) Cells were exposed to 0, 25, 50,100,
200, 500, 800, and 1200 μg/mL concentrations of PM2.5 for 24 hours.
There is a significant decrease in cell viability when PM2.5 concentra-
tion is increased. (B) Effects of PM2.5 exposure on ROS formation in
MCEC. Total ROS production in MCEC was measured 24 hours after
treatment with 0, 25, 50, and 100 μg/mL PM2.5 using DCF. Increas-
ing the concentration of PM2.5 significantly increased ROS levels.
Data were analyzed using one-way ANOVA followed by Bonfer-
roni’s multiple comparison test and expressed as DCF concentration
(normalized to control) ± SEM of triplicate experiments.*P < 0.05,
**P < 0.01, ***P < 0.001.

PM2.5 Exposure In Vivo Affects Ocular Response
After PA Infection

Figure 3A–F shows data after topical PM2.5 (2 μg/5 μL
dose) exposure of PA-infected corneas. Clinical disease
scores (Fig. 3A) showed significantly enhanced disease
in both PBS and/or PM2.5 exposed infected eyes when
compared with PM2.5 exposed uninfected eyes at 1 day p.i.
(P < 0.001 for each). At 2 days p.i., significant differences
were seen between the two infected groups (P < 0.001) in
that the infected eyes exposed to PM2.5 had more severe
disease, including early perforation and reflected in wors-
ened clinical scores. Photos taken with a slit lamp of typical
eyes from infected, PBS (Fig. 3C), or PM2.5 exposed (Fig. 3D)
mice at 2 days p.i. showed central corneal thinning only in
the infected PM2.5 exposed eye. Exposure to the particulate
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FIGURE 2. Effects of PM2.5 exposure on proinflammatory and oxidative stress molecules in MCEC. RT-PCR shows significantly increased
mRNA expression only for HMGB1 (A), TLR2 (B), IL-1β (C), GR1 (F), GPX1 (G), GPX2 (H), and SOD2 (I) at 25 μg/mL PM2.5. All molecules
(A–I) were significantly increased at 100 μg/mL PM2.5 when compared with media controls. Data were analyzed using one-way ANOVA
followed by Bonferroni’s multiple comparison test and expressed as the mean± SEM of triplicate experiments. *P < 0.05, **P < 0.01, ***P <

0.001.

alone did not cause observable corneal disease (Fig. 3B). A
viable plate count (Fig. 3E) showed no significant difference
in CFU per plate (actual counts) between infected groups,
but there were more bacteria in the PM2.5 exposed infected
eye. An MPO assay (Fig. 3F) detected more PMN in the
infected PM2.5 versus PBS (P < 0.001) exposed corneas at
2 days p.i. Significant differences also were seen after infec-
tion and either PBS (P < 0.001) or PM2.5 (P < 0.001) versus
no infection and PM2.5 exposure.

Histopathology

Figures 4A–F illustrates histopathology at 2 days p.i. in eyes
exposed to PM2.5 (Figs. 4A, D), to PBS+PA (Figs. 4B, E), and
to PM2.5+PA (Figs. 4C, F). Unexposed eyes (data not shown)
were similar to the particulate exposed eyes (Figs. 4A, D).
Eyes seemed to be normal; no infiltrate or particulate was
visible in the cornea or the anterior chamber (Figs. 4A, D).
In contrast, the cornea of PA exposed eyes showed modest
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FIGURE 3. Disease response: Clinical scores, slit lamp photos, plate counts, and MPO assay after PA infection and PM2.5. Topical exposure
with PM2.5 began at 6 hours p.i. Clinical scores, recorded 1 and 2 days p.i., showed significantly increased disease at 1 day p.i. comparing
either infected eye with particulate alone. At 2 days p.i., disease was significantly worse in PM2.5+PA versus PBS+PA or PM2.5 alone (A).
Horizontal lines indicate median values. Photographs taken with a slit lamp of eyes of C57BL/6 mice at 2 days p.i. from PM2.5 no PA (B),
PBS+PA (C), and PM2.5+PA (D) illustrate the disease response. Viable bacterial plate count (E) and levels of MPO (F) were increased at 2
days p.i. (significant only for MPO) in the PBS+PA and PM2.5+PA groups. Data was tested by the Mann-Whitney U test (clinical scores) and
by one-way ANOVA followed by Bonferroni’s multiple comparison test for plate count and MPO and expressed as the mean ± SEM (n = 5
per group at a time). **P < 0.01, ***P < 0.001.

swelling and a cellular infiltrate in the cornea and ante-
rior chamber (Figs. 4B, E). In PA and particulate exposed
eyes corneal thinning, a heavy cellular infiltrate, particularly
in the peripheral cornea, extensive stromal swelling, and
destruction was observed (Figs. 4C, F). The inset in Figure 4C
shows a higher magnification of the epithelium containing
particulates and an inflammatory cell in close association
with the epithelial surface.

PM2.5 Effects on Proinflammatory and Oxidative
Stress Molecules in the Mouse Cornea

The mRNA levels were also measured after in vivo expo-
sure of infected mice to PM2.5 (Figs. 5A–I). When compar-
ing infected PBS versus PM2.5 exposed eyes, significantly
elevated mRNA levels were seen for TLR2 (P < 0.001), TLR4

(P < 0.001), IL-1β (P < 0.05), CXCL2 (P < 0.01), HO1 (P
< 0.001), GR1 (P < 0.01), and SOD2 (P < 0.05). After
PM2.5 exposure, HMGB1 levels were decreased (P < 0.01)
compared with normal (uninfected, unexposed) levels, but
there was no difference between the two infected groups.
In contrast, when comparing PM2.5 exposed with normal
corneas, TLR4 levels were increased (P < 0.001). No differ-
ences were seen between normal (uninfected, unexposed)
and PM2.5 exposed corneas when comparing all of the other
molecules tested.

Protein Levels

ELISA was used to determine the relative corneal protein
expression of HMGB1 (Fig. 6A) and GR1 (Fig. 6D), and
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FIGURE 4. Histopathology (A–F). Extreme corneal thinning and a heavy cellular infiltrate in the stroma and anterior chamber was most
pronounced in the eyes of PM2.5+PA versus PBS+PA eyes at 2 days p.i. (B, E compared with C, F). The inset shows particulates in the
corneal epithelium and an inflammatory cell (inset, C). The eyes exposed only to PM2.5 (A, D) showed no infiltrated cells into cornea and
anterior chamber, and less edema, at 2 days p.i. (n = 3 per time). Magnification: A–C, scale bar: 500 μm; D–F = 100 μm; inset = 2 μm.

Western blot analysis was used to determine TLR4 expres-
sion (Figs. 6B, C). At 2 days p.i., HMGB1 protein levels were
increased after infection in PM2.5 and PBS exposed groups.
However, HMGB1 protein levels were significantly higher
(P < 0.05) in PM2.5+PA over PBS+PA (Fig. 6A) corneas.
After infection, TLR4 protein levels were elevated but did not
differ between the two groups (Figs. 6B, C). At 2 days p.i.
GR1 protein levels remained unchanged in all four groups
(Fig. 6D). HO1 levels also were tested using ELISA, but were
undetectable (data not shown) at 2 days p.i.

Effects of PM2.5 on The Viability of HCETs

To test the applicability of the in vivo mouse data to human
corneal epithelium, we used 3D HCET cultures to test the
effects of PM2.5 exposure (0, 100, 200, and 500 μg/mL) for
24 hours. Compared with media controls, cells remained 80%
viable at the lower concentrations (P < 0.001); at the highest
concentration tested, approximately 60% remained viable (P
< 0.001) (Fig. 7).

Effects of PM2.5 on Proinflammatory Modulators
in HCET Grown in 3D Cultures

The 3D HCET cultures were exposed to 100 μg/mL of PM2.5

for 24 hours and mRNA levels of HMGB1, IL-1β, and CXCL2
were measured. The mRNA levels were significantly upreg-
ulated for all (P < 0.01, P < 0.05, P < 0.05, respectively)
(Figs. 8A–C).

DISCUSSION

PM exposure has been linked to multiple systemic diseases,
including pulmonary,33 cardiovascular,28,29 and cerebrovas-
cular,52 where numerous studies are ongoing. Less well-
studied, exposure also has been linked to eye itching,53,54

tears, burning,53,54 conjunctival congestion,53,54 augmented
mucus secretion,53,54 conjunctival keratoconus,53,54 swelling
of the eyelids,53,54 and conjunctival edema.53,54 In this
regard, epidemiologic evidence suggests that airborne
and household pollutants exacerbate blinding and painful
eye conditions observed worldwide.5 These studies also
suggested the need for laboratory studies to test this hypoth-
esis.5 Most important, more recent work reported in a
clinical study in a population exposed to high levels of
PM10 (PM < 10 μm,45 which includes PM2.5) revealed a
link between PM and increased outpatient visits for several
ocular diseases, including keratitis. Furthermore, it has
been suggested that, at various air quality tested sites, the
absorbance of PM2.5 captures nearly all measurable particle
absorbance,55 yet many studies focus only on PM10 effects.45

Additionally, PM2.5 is the major and most toxic air pollutant
found in urban environments.16 Thus, we tested exposure to
PM2.5 on MCEC and HCETs in vitro. We also modified an in
vivo mouse model to test the effects of the particulate on PA-
induced keratitis. First, we evaluated the effects of PM2.5 in
vitro using MCEC. The data showed that increasing concen-
trations of PM2.5 led to increased loss in cell viability, as
well as increased ROS production (Fig 1A, B). Similar results
have been observed in primary cultures of HCETs, exposed
to indoor dust,56,57 as well as RAW264.7 (macrophages) in
vitro,58,59 where oxidative stress was found to play a role in
cytotoxicity. Next, using MCEC, we examined the effects of
PM2.5 on molecules important in the innate immune and/or
oxidative stress response. We observed that PM2.5 exposure
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FIGURE 5. Effects of PM2.5 and PA infection on inflammation and oxidative stress markers in vivo. RT-PCR showed significantly reduced
mRNA expression for HMGB1 in PA infected versus uninfected groups (A). Increased mRNA levels for TLR2 (B), TLR4 (C), IL-1β (D), CXCL2
(E), HO1 (F), GPX2 (G), GR1 (H), and SOD2 (I) were observed in PA infected groups. In addition, PM2.5 elevated mRNA levels of TLR4
(C) in uninfected eyes. Data were analyzed using one-way ANOVA followed by Bonferroni’s multiple comparison test and expressed as the
mean ± SEM. (n = 5 per group at a time). *P < 0.05, **P < 0.01, ***P < 0.001.

increased mRNA levels of HMGB1, TLR2, IL-1β, CXCL2, HO1,
GR1, GPX1, GPX2, and SOD2. These data in corneal epithe-
lial cells are consistent with a study in mouse lung (alve-
olar) macrophages, providing evidence that PM2.5 induced
increases in mRNA levels of molecules also associated with
innate immunity, such as TLR4, IL-1β and TNF-α.60 The data
also are consistent with studies using human airway epithe-
lial cells, which showed that HMGB1 mRNA levels were
elevated61 and other work that provided evidence that SOD
and GPX1 levels in plasma62 were significantly increased
after particulate exposure.

To further determine the effects of PM2.5 on keratitis, we
also developed/modified an in vivo mouse model that uses
C57BL/6 mice for PA studies.63,64 After 6 hours p.i., PM2.5

(2 μg/5 μL dose; made from a concentration of 400 μg/mL)
was topically applied. This dose was selected based on work
by Wang and colleagues,65 who tested intratracheal installa-
tion of low (0.2 mg), medium (0.8 mg), and high (3.2 mg)
PM2.5 per animal. We also considered both annual (chronic)
PM2.5 levels in countries such as China66 and India,67 which

range from 100 to 200 μg/m3 and that in China, hourly
PM2.5 acute exposure levels as high as 1000 μg/m3 have
been reported.68 In addition, most studies have used either
inhalation or instillation as a method to deliver PM2.5.65 In
our study, PM2.5 was administered topically onto the ocular
surface. Owing to blinking of the eyelids, the amount of
particulate retained is difficult to assess and was compen-
sated for by using the concentration selected. Nonetheless,
it is worth noting that the dosage we used did not achieve
levels used to induce dry eye, which is reported to occur at
a dose of 5000 μg/mL.53

Because the MCEC in vitro work suggested that there is an
increase in proinflammatory and oxidative stress molecules
after PM2.5 exposure, we used the mouse model (whose
corneal epithelium is stratified) described in brief elsewhere
in this article, to test the effect of PM2.5 exposure on keratitis.
We found that the particulate exposed infected eye perfo-
rated at 2 days p.i. when compared with the infected PBS
exposed eyes. This finding was accompanied by an increase
in viable bacterial plate count (Fig. 3E, not significant) and
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FIGURE 6. Protein levels of proinflammatory markers—HMGB1
(A) and TLR4 (B, C)—and oxidative stress marker—GR1 (D) in
vivo. ELISA showed significantly Increased HMGB1 levels (A) in
PM2.5+PA versus PBS+PA. No difference was seen in uninfected
normal (N) versus PM2.5 exposed corneas. Western blot analysis
shows increased TLR4 levels (not significantly different) in PBS+PA
and PM2.5+PA exposed groups. ELISA showed protein levels of GR1
(D) were unchanged across groups. Data was analyzed using the
Student’s t-test and expressed as the mean± SEM (n= 5 per time).
*P < 0.05, **P < 0.01, ***P < 0.001.

FIGURE 7. Effects of PM2.5 on viability of 3D HCET cultures. Cells
were exposed to 0,100, 200, and 500 μg/mL concentrations of PM2.5
for 24 hours. Cell viability decrease was concentration dependent.
Data were analyzed using one-way ANOVA followed by Bonferroni’s
multiple comparison test and expressed as the mean± SEM of trip-
licate experiments. ***P < 0.001.

a significant increase in the number of PMN in the cornea
(Fig. 3F). The evaluation of mRNA levels of proinflamma-
tory and oxidative stress markers also showed that infected
eyes exposed to PM2.5 had increased TLR2, TLR4, IL-1β,
CXCL2, HO1, GR1, GPX2, and SOD2 levels. The mRNA levels
for HMGB1, an alarmin that amplifies inflammation,69,70

decreased in all groups after exposure (Fig. 5). However,
at the protein level, HMGB1, was significantly elevated (we
propose through mRNA translation) only in the infected
PM2.5 compared with PBS exposed eyes. The mRNA levels of
oxidative stress markers also were increased, but we did not
observe any changes at the protein level for GR1 (Fig. 6D);
HO1 also was tested, but protein was undetectable (data not
shown) at 2 days p.i. However, oxidative stress is believed to
regulate the translocation, release, and activity of HMGB1.70

Taking this into consideration, we hypothesize that oxida-
tive stress may be an early response to PM2.5 exposure
(after infection), which may be transient and quickly lead
to HMGB1 release. This hypothesis requires further test-
ing; however, we have clearly provided evidence that down-
stream activation of HMGB1 occurs after infection and PM2.5

exposure at 2 days p.i. Future studies will be focused to
determine precisely the role of ROS in release of HMGB1
and its kinetics.

Because data that are generated in a mouse system often
do not translate to human applicability, we next developed
a 3D culture system (that structurally mimics the strati-
fied nature of the corneal epithelium) using immortalized
HCET. After PM2.5 exposure (Fig. 7), we found cells remained
approximately 80% viable at the lower concentrations tested
(e.g., 100 μg/mL) and that, at that concentration, the mRNA
levels of key proinflammatory mediators HMGB1, IL-1β, and
CXCL2 (Figs. 8A–C) were increased. At the highest concen-
tration tested (500 μg/mL), only 60% of cells remained
viable. These data are consistent with previous studies in
primary two-dimensional HCET cultures, which also have
shown that PM2.5 treatment affected/decreased cell viability
and increased levels of IL-1β.40,41
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FIGURE 8. Effects of PM2.5 on inflammatory molecules in 3D HCET
cultures. RT-PCR shows significant change in mRNA expression
for HMGB1 (A), IL-1β (B), and CXCL2 (C) after PM2.5 exposure.
Data were analyzed using the Student’s t-test and expressed as the
mean± SEM of triplicate experiments. *P < 0.05, **P < 0.01.

In conclusion, to determine the effects of PM2.5 on the
cornea, we tested MCEC for feasibility of response to partic-
ulates, developed/modified an in vivo mouse model and
tested a 3D human culture system, bridging the murine to
human response. Data show that adding PM2.5 to MCEC
decreases viability and affects innate immune and oxida-
tive stress molecules. In vivo, adding the particulate to the
PA infected cornea exacerbates keratitis and leads to rapid
corneal perforation.
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