
BMC Bioinformatics

Research
Bio-jETI: a framework for semantics-based service composition
Anna-Lena Lamprecht*1, Tiziana Margaria*2 and Bernhard Steffen1

Address: 1Chair for Programming Systems, Dortmund University of Technology, Dortmund, D-44227, Germany and 2Chair for Service and
Software Engineering, Potsdam University, Potsdam, D-14882, Germany

E-mail: Anna-Lena Lamprecht* - anna-lena.lamprecht@cs.tu-dortmund.de; Tiziana Margaria* - margaria@cs.uni-potsdam.de;
Bernhard Steffen - steffen@cs.tu-dortmund.de
*Corresponding author

from Semantic Web Applications and Tools for Life Sciences, 2008
Edinburgh, UK 28 November 2008

Published: 01 October 2009

BMC Bioinformatics 2009, 10(Suppl 10):S8 doi: 10.1186/1471-2105-10-S10-S8

This article is available from: http://www.biomedcentral.com/1471-2105/10/S10/S8

© 2009 Lamprecht et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The development of bioinformatics databases, algorithms, and tools throughout the last
years has lead to a highly distributedworld of bioinformatics services.Without adequatemanagement and
development support, in silico researchers are hardly able to exploit the potential of building complex,
specialized analysis processes from these services. The Semantic Web aims at thoroughly equipping
individual data and services with machine-processable meta-information, while workflow systems
support the construction of service compositions. However, even in this combination, in silico
researchers currently would have to deal manually with the service interfaces, the adequacy of the
semantic annotations, type incompatibilities, and the consistency of service compositions.

Results: In this paper, we demonstrate by means of two examples how Semantic Web technology
together with an adequate domain modelling frees in silico researchers from dealing with interfaces,
types, and inconsistencies. In Bio-jETI, bioinformatics services can be graphically combined to
complex services without worrying about details of their interfaces or about type mismatches of
the composition. These issues are taken care of at the semantic level by Bio-jETI’s model checking
and synthesis features. Whenever possible, they automatically resolve type mismatches in the
considered service setting. Otherwise, they graphically indicate impossible/incorrect service
combinations. In the latter case, the workflow developer may either modify his service composition
using semantically similar services, or ask for help in developing the missing mediator that correctly
bridges the detected type gap. Newly developed mediators should then be adequately annotated
semantically, and added to the service library for later reuse in similar situations.

Conclusion: We show the power of semantic annotations in an adequately modelled and
semantically enabled domain setting. Using model checking and synthesis methods, users may
orchestrate complex processes from a wealth of heterogeneous services without worrying about
interfaces and (type) consistency. The success of this method strongly depends on a careful semantic
annotation of the provided services and on its consequent exploitation for analysis, validation, and
synthesis. We are convinced that these annotations will become standard, as they will become
preconditions for the success and widespread use of (preferred) services in the Semantic Web.
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Background
Research projects in modern molecular biology rely on
increasingly complex combinations of computational
methods to handle the data that is produced in the life
science laboratories. A variety of bioinformatics data-
bases, algorithms and tools is available for specific
analysis tasks. Their combination to solve a specific
biological question defines more or less complex
analysis workflows or processes. Software systems that
facilitate their systematic development and automation
[1-7] have found a great popularity in the community.

More than in other domains the heterogeneous services
world in bioinformatics demands for a methodology to
classify and relate resources in a both human and
machine accessible manner. The Semantic Web [8,9],
which is meant to address exactly this challenge, is
currently one of the most ambitious projects in
computer science. Collective efforts have already lead
to a basis of standards for semantic service descriptions
and meta-information.

Most importantly, the World Wide Web Consortium
(W3C) set up a number of working groups addressing
different technological aspects of the Semantic Web
vision. Among their outcomes are the Semantic Annota-
tions for WSDL (SAWSDL) recommendation [10], the
Resource Description Framework (RDF) specification
[11], and the Web Ontology Language (OWL) [12].
While SAWSDL is designed to equip single entities with
predicates, RDF and the more powerful OWL formally
define relationships between the resources of a domain.

Without a reasonably large set of semantically annotated
(web) services, it is, however, difficult to evaluate the
Semantic Web technologies with significant results and
develop practical software for the client side. On the
other hand, providers are not willing to put effort in
annotating their services as long as they can not be
confident which technologies will finally become estab-
lished. Community initiatives like the Semantic Web
Services (SWS) Challenge [13] or the Semantic Service
Selection Contest (S3C) [14] address this problem. They
provide collections of services, domain information and
concrete scenarios that the different participants, being
developers of methodologies for different Semantic Web
aspects, have to deal with. In the scope of the S3 Contest,
OPOSSum [15,16], an “online portal to collect and share
SWS descriptions” [16], was set up. It aims at collecting,
sharing, editing, and comparing SWS descriptions within
a community infrastructure in order to collaboratively
evaluate and improve SWS formalisms. As of March
2009, however, OPOSSum does not list any bioinfor-
matics services.

An example of a knowledge base particularly capturing
bioinformatics data types and services are the constantly
evolving namespace, object and service ontologies of the
BioMoby service registry [17,18]. BioMoby’s aim is to
“achieve a shared syntax, shared semantic, and discovery
infrastructure suitable for bioinformat-ics” [19] as a part
of the Semantic Web. Originating from the early 2000s,
the 1.0 MOBY-S(ervices) spec-ifications, however, do not
adhere to the Semantic Web standards that have been
developed in the last years. Consequently, the S
(emantic)-MOBY branch of the project came into being
to migrate to common technologies. It has recently been
merged into the SSWAP (Simple Semantic Web Archi-
tecture and Protocol) [20,21] project, which aims at
providing life science knowledge using standard RDF/
OWL technology. SSWAP provides a number of own
ontologies, but also incorporates third-party domain
knowledge like the MOBY-S object and service onto-
logies.

Generally, the development of ontologies in the bioin-
formatics community is already very promising. Projects
like the Gene Ontology (GO) [22] and the Open
Biomedical Ontologies (OBO) [23] have already become
widely used and also, for instance, incorporated by the
SSWAP project. The majority of publicly available
ontologies in the bioinformatics domain is, however,
designed for the classification of scientific terms and the
description of actual data sets, and not for (technical)
descriptions of service interfaces and data types.

The lack of properly semantically annotated services has
evidently already been recognized by the community, as
different projects are commencing to address the issue.
For instance, major service providers like the European
Bioinformatics Institute (EBI) plan to extend their service
infrastructure to provide meta-information conforming
to Semantic Web standards. Other initiatives aim at
setting up stand-alone collections of service URIs and
corresponding annotations, without influencing the
service infrastructures as such.

While the provision of semantically annotated services is
mainly the service providers’ task, on the client side
software is needed that fully utilizes the available
semantic information in order to provide helpful tools
to the in silico researcher. The challenge for user-side
software is to abstract from the underlying Semantic Web
technology again and provide the achievements in an
intuitive fashion.

A simple but useful feature building upon semantic
information about services is the categorization of
services according to different criteria. A corresponding
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functionality has already been available in the mean-
while discontinued BioSPICE Dashboard, where it was
possible to arrange services by location, provider,
function, or I/O type (see Figure 1). The BioSPICE
project is a meanwhile abandoned initiative that focused
on the development of computational models for
intracellular processes. Besides the provision of mere
“access to the most current computational tools for
biologists” [24], the work also aimed at integrating the
services into a convenient graphical user environment,
called the BioSPICE Dashboard. Thus, the need of multi-
faceted service classification has been recognized several
years ago, but until present services hardly provide
appropriate meta-information.

More advanced examples of utilizing semantic informa-
tion about services are, for instance, available in the
scope of the SWS Challenge [13]. Among others, projects
like SWE-ET (Semantic Web Engineering Environment
and Tools) [25] and WSMX [26] participate in the
challenge, adressing both discovery and mediation
scenarios for Semantic Web Services. However, these
solutions demand quite some technical understanding
from the user, which hampers the uptake by a larger
biological user community.

As an example from the bioinformatics domain, the
BioMoby project provides a simple composition func-
tionality for its services. [17,18]. With the MOBY-S Web
Service Browser [27] it is, e.g., possible to search for an
appropriate next service, while in addition the sequence
of actually executed tools is recorded and stored as a
Taverna [4] workflow. A substantial drawback of this
approach is, however, its restriction to the services that
are registered in the respective platform.

In this paper, we present our approach to semantics-
based service composition in the Bio-jETI platform
[7,28]. By integration of automatic service composition
functionality into an intuitive, graphical process man-
agement framework, we are able to maintain the
usability of the latter for semantically aware workflow
development. Furthermore, we can integrate services and
domain knowledge from any kind of heterogeneous
resource at any location, and are not restricted to any
semantically annotated services of a particular platform.

This manuscript is structured as follows: In the next
section, Results and Discussion, we discuss two examples
that we developed in Bio-jETI with the help of a
semantics-aware workflow synthesis method and

Figure 1
BioSPICE Dashboard. Graphical user interface of the BioSPICE Dashboard [24]. Services can be arranged according
to the categories location, contributor, function, and I/O type (top left).
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model checking: a simple phylogenetic analysis work-
flow and a more sophisticicated, highly customized
phylogenetic analysis process based on Blast and
ClustalW. Subsequently, the Conclusion deals with
directives for the future development of our approach.
Finally, the Methods section describes the applied
techniques in greater detail.

Results and discussion
The approach to semantics-based service composition
that we present in this paper builds upon the Bio-jETI
[7,28] framework for model-based, graphical design,
execution and management of bioinformatics analysis
processes. It has been used in a number of different
bioinformatics projects [29-32] and is continuously
evolving as new service libraries and service and software
technologies become established. Technically, Bio-jETI
uses the jABC modeling framework [33,34] as an
intuitive, graphical user interface and the jETI electronic
tool integration platform [35,36] for dealing with
remote services. Using the jABC technology, process
models, called Service Logic Graphs (SLGs) are constructed
graphically by placing process building blocks, called
Service Independent Building Blocks (SIBs), on a canvas and
connecting them according to the flow of control.
Figure 2 shows a screenshot of the graphical user interface

of the jABC. SLGs are directly executable by an interpreter
component, and they can be compiled into a variety of
target languages via the GeneSys code generation frame-
work [37]. As Figure 3 (bottom) illustrates, GeneSys
provides the means for transforming SLGs into native,
stand-alone programm code (e.g., Java, C++) as well as
into other workflow languages (e.g., BPEL).

Workflow development in Bio-jETI is already supported
by several plugins of the jABC framework, for instance
providing functionality for component validation or
step-wise execution of the process model for debugging
purposes. Now we are going to exploit further jABC
technology, such as model checking and workflow
synthesis, in order to enable Bio-jETI to support the
development of processes in terms of service semantics.

Model checking [38,39] can be used for reasoning about
properties of process models. This can help to detect
problems like undefined data identifiers, missing com-
putations, or type mismatches. Solving these problems
might require the introduction of further computational
steps, for instance a series of conversion services in case
of a data type mismatch. The approach here is to
automate the creation of such process parts via workflow
synthesis methodology [40-43] that allows for the

Figure 2
Bio-jETI GUI. The jABC framework, which provides the graphical user interface for Bio-jETI, supports the orchestration
of processes from heterogeneous services. Workflow models are constructed graphically by placing process building blocks
from a library (top left) on a canvas (center) and connecting them by labeled branches to define the flow of control.
The models are directly executable by an inbuilt interpreter component (right).

BMC Bioinformatics 2009, 10(Suppl 10):S8 http://www.biomedcentral.com/1471-2105/10/S10/S8

Page 4 of 19
(page number not for citation purposes)



automatic creation of (linear) workflows according to
high-level, logical specifications. Figure 3 (top) illus-
trates the relationship between our specification lan-
guage SLTL (Semantic Linear Time Logic) and the actual
Bio-jETI workflow models, the SLGs: Provided with a
logical specification of the process and semantically
annotated services, the workflow synthesis algorithm
generates linear sequences of services, which can be
further edited and combined into complex process
models on the SLG level.

For the study that we present in this paper we used a SIB
collection offering various remote and local services.
Examples for contained remote services are the data
retrieval services provided by the EBI (European Bioin-
formatics Institute) [44,45], sequence analysis algo-
rithms offered by BiBiServ (the Bielefeld Bioinformatics
Server) [46], web services hosted by the DDBJ (DNA
Data Bank of Japan) [47], and some tools of the
EMBOSS suite [48]. On the local side, there are
specialized components such as visualizer for phyloge-
netic trees [49] and more generic ones like SIBs that
realize user interaction or functionality for file manage-
ment. Table 1 lists the fragment of the library that is
relevant for our examples.

In the jABC, the SIBs are displayed to the user in a
taxonomic view, classified according to their position in
the file system (by default) or to any other useful
criterion, like the provider or the kind of service. The SIBs
have user-level documentation, explaining what the
underlying tool or algorithm does, that is derived
directly from the provider’s service descriptions. In
addition, the SIBs provide information about their
input and output types via a specific interface. This is
already an integral part of the semantic information that
helps to systematically survey large SIB libraries and it is
used by our process synthesis and model checking
methods. It is, in addition, possible to add arbitrary
annotations to the SIB instances and by doing so
providing further (semantic) information that is taken
into account by our formal methodologies.

Figure 3
Relationship between SLTL and workflow languages.
SLTL is designed to specify linear workflows on an abstract
level. In conjunction with a set of services and adequate
semantic information about the domain, it serves as input for
the synthesis algorithm, which generates linear workflows
according to the SLTL specification. The results are available
as Bio-jETI SLGs, which can be further edited, combined, and
refined. The SLGs can then be compiled into a number of
different target languages by the GeneSys code generation
framework.

Table 1: Exemplary set of services. Fragment of a component
library that we used in the examples. The table lists the names of
the building blocks (SIBs) along with function descriptions and
selected service predicates

SIB Description

Archaeopteryx Displays a phylogenetic tree [49].
type:visualization, location:local, contributor:
forester.org

BLAST BLAST [63] against a DDBJ database.
type:analysis, location:ddbj, contributor:ddbj

ClustalW Runs ClustalW [64].
type:analysis, location:ddbj, contributor:ddbj

Emma EMBOSS [48] interface to ClustalW.
type:analysis, location:ebi, contributor:emboss

ExtractPattern Extracts all parts of a string that match a regular
expression.
type:stringprocessing, location:local, contributor:jabc

GetDDBJEntry Fetches an entry in at file format from a DDBJ
database [51].
type:dataretrieval, location:ddbj, contributor:ddbj

GetFASTA_
DDBJEntry

Fetches an entry in FASTA format from a DDBJ
database [51].
type:dataretrieval, location:ddbj, contributor:ddbj

List2String Concatenates all entries of a list.
type:stringprocessing, location:local, contributor:jabc

MatchString Tries to match a string against a regular expression
pattern.
type:condition, location:local, contributor:jabc

PutExpression Stores a user-supplied context expression or its
value into the execution context.
type:definition, location:local, contributor:jabc

PutInteger Provides an integer value.
type:definition, location:local, contributor:jabc

RepeatLoop Realizes a counting loop.
type:loop, location:local, contributor:jabc

ReplaceString Replaces substrings of a string with another
character sequence.
type:stringprocessing, location:local, contributor:jabc

ShowInputDialog Input dialog, provides a string.
type:definition, location:local, contributor:jabc

WSDBFetch Gets sequences from an EBI database [44,45].
type:dataretrieval, location:ebi, contributor:ebi
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The knowledge base that is needed for the process
synthesis consists, furthermore, of service and type
taxonomies that classify the services and types, respec-
tively. Taxonomies are simple ontologies that relate
entities in terms of is-a and has-a relations. These
classifications provide sufficient information for our
synthesis methodologies.

We assume simple taxonomies for our examples, which
have the generic OWL type Thing at the root. Going
downwards, classifications are introduced, for instance
refining the generic type into integers and strings,
whereas the latter is further distinguished into align-
ments, trees, sequences, tool outputs, and so on. Figure 4
shows the service taxonomy for the services that we
use in our examples, edited in the OntEd ontology editor
plugin of the jABC. The corresponding type taxonomy
classifying the involved data types is given in Figure 5.

The basic input and output information for the services
is defined in terms of the data types contained in the
type taxonomy. Table 2 lists the set of data types that is
relevant for our examples. The services are characterized
by input-output-pairs of types, where the input or
output may well be empty (as it is the case, e.g., for
ShowInputDialog and Archaeopteryx), respectively.

Services may also provide multiple possible transforma-
tions and thus achieve polymorphism. For instance,
BiBiServ’s ClustalW can process sequences in FASTA or in
SequenceML format, and produces a FASTA or Align-
mentML output, accordingly.

Example 1: a simple phylogenetic analysis workflow
When developing bioinformatics analysis workflows,
users often have a clear idea about the inputs and final
results, while their conception of the process that
actually produces the desired outputs is only vague.
Figure 5 (upper left) shows a stub for a workflow: the
start SIB (left) is an input dialog for a nucleic or amino
acid sequence, which is followed by a SIB running a
BLAST query with the sequence having been input in
order to find homologous sequences. The workflow
ends by invoking Archaeopteryx to display a phyloge-
netic tree (right). The configuration of the SIBs is sound
at the component level, as the Local Checker plugin
(producing the small overlay icons top left) confirms.
However, there are errors regarding the correct config-
uration of the model as a whole, as the required input
type for Archaeopteryx, some phylogenetic tree format,
is not produced previously in the process. This is
detected by our model checker GEAR (indicated by a

Figure 4
Service taxonomy. Service taxonomy for the services that we use in our examples, edited in OntEd, the ontology editing
plugin of the jABC.
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red overlay icon with a white cross in the top right
corner of the SIBs), that checks a temporal formula
covering the following constraint (please refer to the
Methods section for details on the model checking
procedure):

If a SIB uses an input of type tree this input must have             , bbeen defined before   . (*)

An experienced bioinformatician might be aware of the
problem immediately, due to his familiarity with the
involved tools. This is, however, only a small workflow.
An automatic, semantically supported detection of
misconfigurations and modeling errors unfolds its full
potential when processes become more complex, and it
is not feasible for the in silico researcher to dive into the

documentations of all services or to explore their
behaviour by trial-and-error executions.

Once detected, there are different ways to fix the
problem. One can look for replacements for one of the
involved SIBs that essentially compute the same results,
but provide them in a data format that fits in the
surrounding process. Another approach, assuming that
the user has chosen these services for good reason, is to
search for a sequence of additional services that resolve
the mismatch and insert them into the process. Such data
mediation sub-workflows are usually linear. They can
consist of type conversions that simply adapt the
involved data, or also of real computational services
when the match can not be realized so easily.

As a means for resolving the violation of property *, the
example process model stub implies a process specifica-
tion adequate as input for our workflow synthesis
algorithm (please refer to the Methods section for
details). In a high-level formulation, it reads:

How can a phylogenetic tree be derived from a BLAST result          ??

Utilizing the semantically annotated SIB collection and
domain information from above, and computing the
shortest service combination that satisfies the specifica-
tion, our synthesis algorithm proposes the following
simple four-step workflow for the above query (bottom
left in Figure 6):

1. Extract the IDs of the hits from the BLAST result
(using a regular expression).
2. Turn the matches into a comma-separated list.
3. Call DBFetch (fetching the corresponding
sequences from a database).
4. Run emma (computing a multiple sequence
alignment and phylogenetic tree).

The generated sequence of SIBs can now be inserted into
the process stub and all parameters configured appro-
priately. As Figure 6 (right) shows, neither the local nor
the model checking does reveal errors any more. The
process is now ready for execution. Figure 7 illustrates
the corresponding runtime behaviour: the workflow
starts by asking the user for a query sequence, then
performs a similarity search, data retrieval and sequence
analysis before it finally displays the resulting phyloge-
netic tree.

Example 2: Blast-ClustalW workflow
A simple phylogenetic analysis like in the previous
example is an often recurring element of complex in silico
experiments. In many cases, however, a customized,

Table 2: Exemplary set of types. The set of data types that was
used in the example processes

Type Description

Accession Single accession number.
AccessionList Iteratable (java.util.)list of accession

numbers.
Accessions Concatenation of accession numbers,

separated by some character.
Alignment Multiple sequence alignment.
BlastResult Tool output of BLAST.
ClustalWResult Tool output of ClustalW.
Counter Counter, i.e. positive integer value.
DDBJEntry DDBJ entry in flat file format.
Limit Limit, i.e. positive integer value.
Sequence Single or multiple nucleic or amino

acid sequences.
Tree Phylogenetic tree.

Figure 5
Type taxonomy. Type taxonomy classifying the data types
involved in our examples.

BMC Bioinformatics 2009, 10(Suppl 10):S8 http://www.biomedcentral.com/1471-2105/10/S10/S8

Page 7 of 19
(page number not for citation purposes)



Figure 6
Example 1. A simple phylogenetic analysis process. The upper left shows an erroneous stub for a simple phylogenetic analysis
process, it lacks a sequence of services leading from a BLAST result to a phylogenetic tree. Below is the appropriate sequence
of services that is proposed by our synthesis algorithm. The complete and correct analysis process is shown on the right.

Figure 7
Execution of example 1. Execution of the simple phylogenetic analysis process. The execution begins with an interactive
step, where a dialog is displayed in which the query sequence is entered (top). After some non-interactive steps, the finally
available phylogenetic tree is displayed using Archaeopteryx (bottom).
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more specific processing of intermediate results is
required, like in the Blast-ClustalW workflow [50] that
is one of the DDBJ’s sample workflows for the Web API
for bioinformatics [51]. It is the archetype for our second
example.

The Blast-ClustalW workflow [50] has the same inputs
and outputs as the simple phylogenetic workflow from
example 1: It finds homologuous sequences for an input
DNA sequence via BLAST and computes a hypothesis
about the phylogenetic relationship of the obtained
sequences (using ClustalW). The proposed analysis
procedure consists of four major computation steps
(the blue rectangles in Figure 8, whereby steps 2 and 3
have to be repeated for each Blast hit that is taken into
account (not evident from the figure):

1. Call the Blast web service to search the DDBJ
database for homologues of a nucleic acid sequence.
The input is a 16S RNA sequence in FASTA format,
the output lists the database IDs of the similar
sequences and basic information about the local
alignment, e.g. its range within the sequences.
2. Call the GetEntry web service with a database ID
from the Blast output to retrieve the corresponding
database entry.
3. Extract accession number, organism name and
sequence from the database entry. Trim the sequence
to the relevant region using the start and end
positions of the local alignment that are available
from the BLAST result.
4. Call the ClustalW web service to compute a global
alignment and a phylogenetic tree for the prepared
sequences.

Due to the loop that is required for repeating steps 2 and
3 a certain number of times, this process can not be
created completely by our current synthesis algorithm,
which is restricted to produce linear sequences of
services. It is, however, possible to predefine a sparse
process model in which the looping behaviour and other
crucial parts are manually predefined, and to subse-
quently fill in linear parts of the process automatically.

Figure 9 (top) shows an advanced, but still incomplete
model of the Blast-ClustalW workflow. Like in example
1, the process begins with displaying a dialog for
entering the query sequence (start SIB top left). The
result of the subsequent Blast web service invocation is
split into the separate results (SIB get blast hits). Before
the loop is entered, a maximum is set for number of hits
that is to be considered in the analysis. For this defined
maximum number of hits, the loop’s body is executed.
The current hit is split into its seperate elements, e.g.
accession number, score, and the start and end position
of the local alignment that produced by BLAST within
the whole sequence. The accession number is used to
check whether the sequence corresponding to the current
hit has already been added to the analysis in order to
avoid duplicate sequences. If a duplicate is detected, the
maximimum number of hits is incremented, so that
another hit can be taken into account. Otherwise, the
corresponding entry is fetched from the database using
the DDBJ’s GetEntry web service (SIB getFASTA_DDB-
JEntry). The SIBs extract organism and extract sequence
are then applied to extract the corresponding informa-
tion from the DDBJ entry by means of a regular
expression. The sequence is formatted, i.e. whitespaces
removed, and the start and end positions that are known
from the BLAST result are used to cut the subsequence
that actually contributed to the local alignment during
the BLAST search. The prepared sequence is then added
to the analysis (SIB append sequence). Note that in
contrast to the original representation of Figure 8, we see
here the structure and the data-driven loops of the actual
workflow. Finally, the resulting phylogenetic tree is
displayed by Archaeopteryx.

At this state of the process, the local checking of the
components detects no errors, but themodel checker reveals
problems (overlay icons top right): As in the previous
example, the SIB Archaeopteryx uses a variable tree, which is
not defined before. Moreover, the SIBs extract organism and
extract sequence use a variable ddbjentry, which is defined
with an incompatible type. Details on the model checking
procedure can be found in the Methods section.

To resolve the first problem, we proceed similar as in
example 1, by providing the synthesis algorithm with a
temporal formula that asks for a sequence of services that
takes a set of sequences as input (which is the last
intermediate result that is computed previous to
Archaeopteryx in the process) and produces a phyloge-
netic tree (the input that Archaeopteryx expects). As
Figure 9 (center) shows, a single call to emma is one of
the (shortest) sequences that fulfils this request.

The second problem is the presence of a type ddbjfasta
where the type ddbjentry is expected. To solve this

Figure 8
Blast-ClustalW workflow. Blast-ClustalW workflow as
sketched by the DDBJ (following [50]).
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Figure 9
Example 2. The more complex Blast-ClustalW workflow. The model checking detects three errors for the original process (top).
To bridge the gap between the available sequences and the required tree, the emma web service can be inserted, computing a multiple
alignment and providing the corresponding phylogenetic tree. No mediating sequence can be found that converts DDBJ entry into
FASTA format, but it is possible to get this format when the also available DDBJ accession number is used as input (center). The
complete process (bottom) has an additional SIB emma and has substituted getFASTA_DDBJEntry by getDDBJEntry.
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mismatch, we ask our synthesis algorithm for a way to
derive the latter from the former. It returns with an
empty result (see Figure 9, center), which means that our
SIB collection can not provide an appropriate sequence
of services. We exclude the type ddbjfasta and the SIB
getFASTA_DDBJEntry, by which is it produced, and try
our luck with the type ddbjaccession, which has been
defined last, as starting point for the synthesis. The
answer is a service sequence consisting of the SIB
getDDBJEntry (center), by which we can now substitute
the improper data retrieval SIB from above.

The bottom of Figure 9 shows the completely assembled
process. We omit to demonstrate its execution beha-
viour, as it is very similar to that of example 1.

Discussion and perspectives
By means of two examples, the previous sections
demonstrated the local checking, model checking and
workflow synthesis methodology that is currently avail-
able in the jABC framework and thus part of Bio-jETI.
The Local Checker plugin provides domain-independent
functionality and is already conveniently integrated in
the framework. We are now working on a user-friendly
integration of the domain-specific model checking and
synthesis techniques, especially with regard to the
bioinformatics application domain. This ongoing work
spans three dimensions, which are discussed in the
following sections: domain modeling, model checking,
and model synthesis.

Domain modeling
This dimension is the heart of making information
technology available to biologists, as it enables them to
express their problems in their own language terms – on
the basis of adequately designed ontologies. It raises the
issue where the domain knowledge ideally comes from.
It is, of course, possible for each user to define custom
service and type taxonomies, allowing for exactly the
generalization and refinement that is required for the
special case. However, as the tools and algorithms that
are used are mostly third-party services, it is desirable to
automatically retrieve domain information from a public
knowledge repository as well. Therefore we plan to
incorporate knowledge from different publicly available
ontologies, like BioMoby [17,18] and SSWAP [20,21],
and to integrate it into the service and type taxonomies
for use by our synthesis methodology.

It is, of course, also necessary that the services themselves
are equipped with meta-information in terms of these
ontologies. Again, we are looking at BioMoby with
interest: numerous institutions have registered their web
services at Moby Central, describing functionality and

data types in pre-defined structures using a common
terminology. Although BioMoby does not yet use
standardized description formalisms like SAWSDL, it is
already clear that there is semantic information available
that we can use as predicates for automatic service
classification.

Furthermore it will be interesting to consider the
incorporation of more content-oriented ontologies like
the Gene Ontology [22] or the OBO (Open Biomedical
Ontologies) [23] into our process development frame-
work. This would allow the software to not only support
the process development on a technical level, but also in
terms of the underlying biological and experimental
questions. Additional sources of information, like the
provenance ontologies of [52] could be also easily
exploited by our synthesis and verification methods.

Model checking
This dimension is meant to systematically and auto-
matically provide biologists with the required IT knowl-
edge in a seamless way, similar to a spell checker which
hints at orthographical mistakes – perhaps already
indicating a proposal for correction. Immediate concrete
examples of detectable issues are (cf. the examples
presented earlier):

• Missing resources: a process step is missing, so that
a required resource is not fetched/produced.
• Mismatching data types: a certain service is not able
to work on the data format provided by its predecessor.

However, this is only a first step. Based on adequate
domain modeling, made explicit via ontologies/taxo-
nomies, model checking can capture semantic properties
to guarantee not only the executability of the biological
analysis process but also a good deal of its purpose, and
rules of best practice, like:

• All experimental data will eventually be stored in
the project repository.
• Unexpected analysis results will always lead to an
alert.
• Chargeable services will not be called before
permission is given by the user.

On a more technical side, model checking allows us also
to apply the mature process analysis methodology that
has been established in programming language compi-
lers in the last decades [53] and has shown to be
realizable via model checking [54,55]. By providing a
predefined set of desirable process properties to the
model checker we plan to achieve a thorough monitor-
ing of safety and liveness properties within the

BMC Bioinformatics 2009, 10(Suppl 10):S8 http://www.biomedcentral.com/1471-2105/10/S10/S8

Page 11 of 19
(page number not for citation purposes)



framework. Similar to the built-in code checks that most
Integrated (Software) Development Environments pro-
vide, this would help Bio-jETI users to avoid the most
common mistakes at process design time. In addition,
the list of verified properties is extendable by the user,
and can thus be easily adapted to specific requirements
of the application domain.

Model synthesis
This dimension can be seen as a step beyond model
checking: The biologist does not have to care about data
types at all – the synthesis automatically makes the
match by inserting required transformation programs.
This is similar to a spell checker which automatically
corrects the text, thus freeing the writer from dealing with
orthography at all. (In our model-based framework,
things are well-founded, without the uncertainties of
natural language. Please do not be put off by this
example because of annoying experiences with spell
checkers!)

The potential of this technology goes even further:
ultimately, biologists will be able to specify their
requests in a very sparse way, e.g. by just giving the
essential corner stones, and the synthesis will complete
this request to a running process. In our text writing
analogy, this might look like a mechanism that
automatically generates syntactically and intentionally
correct text from text fragments according to predefined
rules that capture syntax and intention. For instance, the
fragments “ten cars”, “1000 Euro for shipping”, “19%
value added tax”, “four days” and “Mercedes”, may be
sufficient to synthesize a letter in which a logistics
company offers its services to Mercedes according to a
specific request.

Back to biology, the fragments “DNA sequences”,
“phylogenetic tree”, and “visualization”, may automati-
cally lead to a process that fetches EBI sequence data,
sends them in adequate form to a tool that is able to
produce a phylogenetic tree, and then transfers the result
to an adequate viewer. Typically there are many
processes that solve such a request. Thus our synthesis
algorithm provides the choice of producing a default
solution according to a predefined heuristics, or to
propose sets of alternative solutions for the biologist to
select.

Conclusion
We demonstrated by means of two examples how
Semantic Web technology together with an adequate
domain modelling frees in silico researchers from dealing
with interfaces, types, and inconsistencies. In Bio-jETI,
bioinformatics services can be graphically combined to

complex services without worrying about details of their
interfaces or about type mismatches of the composition.
These issues are taken care of at the semantic level by
Bio-jETI’s model checking and synthesis features. When-
ever possible, they automatically resolve type mis-
matches in the considered service setting. Otherwise,
they graphically indicate impossible/incorrect service
combinations. In the latter case, the workflow developer
may either modify his service composition using
semantically similar services, or ask for help in develop-
ing the missing mediator that correctly bridges the
detected type gap. Newly developed mediators should
then be adequately annotated semantically, and added
to the service library for later reuse in similar situations.

In the first example we developed a simple phylogenetic
analysis workflow. The model checker detected a SIB
trying to access a data item that has not been defined
previously in the workflow, which indicates that
necessary computation steps are missing. We used the
synthesis algorithm to generate the sequence of these
missing steps.

The second example dealt with a more complex
phylogenetic analysis workflow, involving several local
steps processing intermediate data. Here, the model
checker did not only detect missing computations, but
also a type mismatch that lead to an incorrect process
model. Again, the synthesis algorithm was used to find
an appropriate intermediate sequence of services and an
alternative to the erroneous part of the workflow,
respectively.

We believe that our model checking and synthesis
technologies have great potential with respect to making
highly heterogeneous services accessible to in silico
researchers that need to design and manage complex
bioinformatics analysis processes. Our approach aims at
lowering the required technical knowledge according to
the "easy for the many, difficult for the few” paradigm [56].
After an adequate domain modeling, including the
definition of the semantic rules to be checked by the
model checker or to be exploited during model synth-
esis, biologists should ultimately be able to profitably
and efficiently work with a world-wide distributed
collection of tools and data, using their own domain
language. This goal differentiates us from other workflow
development frameworks like Kepler [3] or Triana [5],
which can be seen as middleware systems that facilitate
the development of grid applications in a workflow-
oriented fashion. They require quite some technical
knowledge. In Kepler, for instance, the workflow design
involves choosing an appropriate Director for the
execution, depending on, e.g., whether the workflow
depends on time, requires multiple threads or
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distributed execution, or performs simple transforma-
tions. These aspects have to be taken into account for
efficient execution of complex computiations, but not
necessarily when dealing with the actual composition of
services. This way, these frameworks address a bioinfor-
matics user, and not the biologists themselves.

We believe that Bio-jETI’s control flow-oriented
approach is suitable for adressing non-IT personnel: it
allows them to continue to think in “Dos” and “Dont’s”,
and steps and sequences of action in their own terms at
their level of domain knowledge. In contrast, dataflow-
oriented tools like Kepler [3], Taverna [4], or Triana [5]
require their users to change the perspective to a resource
point of view, which, in fact, requires implicit (technical)
knowlegde to profitably use them.

The challenge for us is now to integrate the available
semantic information and the semantically aware tech-
nologies into our process development framework in the
most user-convenient way. One central issue is to find an
appropriate level of abstraction from the underlying
technology: we would like to provide a set of general,
pre-defined analyses and synthesis patterns, but at the
same time give experienced users a way to add
specialized specifications. Another issue is how to
integrate semantic information about the application
domain and its services into this (partly) automated
workflow development process, since such knowledge is
essential to achieve adequate results.

On the one hand, this requires predicates characterizing
the single services, i.e. their function and their input/
output behaviour. On the other hand, taxonomies or
ontologies are required which provide the domain
knowledge against which the services (their predicates)
are classified. The majority of this information has to be
delivered by the tool and database providers, covering
semantics of services as well as semantics of data. The
convenience on the client side will increase as the
Semantic Web spreads and new standards become
established.

Methods
This section describes the methodologies for process
model verification and synthesis that we used for
developing the presented examples.

Process model verification via model checking
Model checking provides a powerful mechanism to
analyze and verify static aspects of (arbitrary) models.

Generally speaking, it can be used to check whether a
model M satisfies a property j, usually written as

M |= f

where j is expressed in terms of a modal or temporal logic.
Applying model checking to process models can help to
detect problems in the design phase. It is in particular useful
to analyze aspects of the whole model, where syntax or type
checking at the component level is not sufficient. Examples
for errors whose detection requires awareness of the whole
model are manifold, ranging from undefined variables or
simple type mismatches to computational gaps and incom-
plete processes. The list of properties againstwhich themodel
is evaluated is easily extendable, since including a new
constraint in the verificationonly requires towrite amodal or
temporal formula expressing the property of interest.

The model checker GEAR [39] allows to evaluate static
properties of models within the jABC, basically using the
Computation Tree Logic (CTL) [57] to formulate appropriate
constraints. CTL is a temporal, branching time logic designed
to reason about models represented as directed graphs, and
whose syntax can be described by the following BNF:

f f f f f f f f f f f f:: | | | ( ) | ( ) | ( ) | ( ) | ( , ) | ( , )= ¬ ∨p AF EF AG EG AU EU

Thus, in addition to the operations and operands known
from propositional logic, it comprises the modalities AF,
EF, AG, EG, AU, and EU. The As and Es are path-
quantifiers, providing a universal (A) or existential (E)
quantification over the paths beginning at a state. F, G,
and U express linear-time modalities for the path,
specifying that j must hold finally (F), generally (G),
or that j1 has to be valid until j2 finally holds (U). For
example, the CTL formula

AF( )Rome

expresses that on all paths through the model that begin
at the considered state, finally Rome is reached. As
another example from routing, the formula

EG( )free

states that there is a path that is completely (globally)
free of charge. That all routes should be toll-free until a
particular place, say Rome, is reached, can expressed
using the Until operator:

AU( , ).free Rome

GEAR extends this variant of CTL further and includes
additional overlined modalities representing a backward
view, i.e. considering the paths that end at a given state.
We apply it to our (bioinformatics) process models, the
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Service Logic Graphs (SLGs), where the entire processes
are the models, the individual activities (the services, in
the form of SIBs) are the nodes, and the edges express the
conditional flow of control. As both nodes and edges are
labeled, these models are formally so-called Kripke
Transition Systems.

Basis for the analysis of processes are the atomic
propositions, simple properties that hold for single
nodes of the process model. For instance, we can add
an atomic proposition use(x) to a SIB to express that a
data item x is used by the service, or def(x) to state that it
is produced (defined). Furthermore we can assume to
have information about the types of the input and
output data, and denote that a used or defined item x is
of type y by type(use(x)) = y and type(def(x)) = y,
respectively. Figure 10 shows the atomic propositions of
the SIBs in example 1.

As we have seen in the examples, a model property of
interest for processes orchestrated from remote services
could be

if a service uses an input it must have been defined be            ×, ffore.

The dependence between the two parts of this require-
ment is a usual Boolean implication, the temporal
constraint in the second part is expressed by the
backward CTL modality AF :

use def( ) ( ( )).× ⇒ ×AF

While this is sufficient to ensure that the variable x has
been defined at all, it does not say anything about type
correctness. Since the name x, however, could be used to
refer to different data throughout the process, it is
reasonable to extend the above constraint and to include
the type of the used variable. In example 1, we
considered, for instance, a variable of tree of type Tree:

If a service uses a data item treeof type tree, treemust have
been defined before with precisely this type, without having
been overwritten since.

If a service uses a data item tree of type tree tree must            ,          have been defined before with precisely this type

withou

,

tt having been overwritten since    .

The corresponding CTL formula is:

( ( ) ( ( )) ) ( ( ), ( )use tree type use tree tree def tree def tree t∧ = ⇒ ¬ ∧AU yype def tree tree( ( )) )=

The model checking reveals a property violation, as can
be seen in Figures 6 (top left) and 10 (top): the
rightmost SIB is marked by a red overlay icon in the
upper right corner, indicating that the property is
violated at that node. The reason is that the process
does not provide the appropriate input type for the tree
visualizer. The same formula can be applied analogously
to other variables with other types, as we did, for
instance, in our second example.

Process synthesis
By process synthesis we refer to techniques that construct
workflows from sets of services according to logical

Figure 10
Atomic propositions of the SIBs in example 1. Atomic propositions of the process stub and complete process
model of example 1. The propositions describe basic data flow properties, like defined and used variables and their types
in terms of the data types of the taxonomy.
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specifications [58]. The algorithm that we use for our
approach is based on a modal logic that combines
relative time with descriptions and taxonomic classifica-
tions of types and services [40]. It was implemented for
the ABC and ETI platforms [43,59], and lately also used
within the jABC framework. We applied it, for instance,
in the SWS Challenge [13] to synthesize a mediator
process converting between different message formats
that were used by the web service providers in the
scenario of [60,61].

In the following we describe how to apply our synthesis
method, i.e. 1) how the domain knowledge forms a
configuration universe, 2) how a modal logic can be
used for workflow specification, and 3) what the
algorithm can finally derive from this information.
Note that we focus on usage here, details on the
underlying logics and algorithms can be found in
[40,59].

The configuration universe
The domain knowledge that has to be provided for our
synthesis algorithm comprises basically three sets: types,
services, and transitions. The set of types that is available
in the domain form the static aspects, i.e. type
constraints that are used as atomic propositions by the
underlying logic. The set of services represents the
dynamic aspects of the domain, which can be used as
actions by the logic. According to the observation that
tools and algorithms can simply be seen as transforma-
tions that take an input and produce a corresponding
output [59], the set of transitions is given in triples of the
form (input, service, output). Together, types, services, and
transitions form the configuration universe, in which
each (finite) path represents a possible workflow. Figure
illustrates a configuration universe that is implied by the
SIBs and data types of our examples. The synthesis
algorithm searches the configuration universe for a path
satisfying a particular specification.

Figure 11
Fragment of the configuration universe. Fragment of the configuration universe based on the services and types
from Tables 1 and 2. Paths through the configuration universe represent possible sequences of services. Note that the
configuration universe is able to express service polymorphisms: the service ExtractPattern, for instance, can be applied
to different inputs, and produces different outputs, accordingly.
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In addition, the domain knowledge can be extended
further by hierarchically organizing types and services in
taxonomies, i.e. simple ontologies that relate entities in
terms of is-a and has-a relations. The types and service
taxonomies for our examples are given in Figures 4
and 5. The taxonomies are considered by the synthesis
algorithm when evaluating type or service constraints.

The specification language
Our workflow specification language, which we call SLTL
(for Semantic Linear Time Logic), can be seen as a linear-
time variant of CTL (see previous section) or interpreted
version of the Propositional Linear Time Logic. SLTL is
described by the following BNF:

f f f f f f f f:: | | | | | |= ¬ ∧ 〈 〉true t s G Uc c

where tc and sc express type and service constraints,
respectively.

Thus, SLTL combines static, dynamic, and temporal
constraints. The static constraints are the taxonomic
expressions (boolean connectives) over the types or
classes of the type taxonomy. Analogously, the dynamic
constraints are the taxonomic expressions over the
services or classes of the service taxonomy. The temporal
constraints are covered by the modal structure of the
logic, suitable to express the order in which services can
be combined.

A formal definition of the semantics of SLTL can be
found in [40]. Intuitively, true is satisfied by every
sequence of services, and tc by every sequence whose first
component has an input interface satisfying tc. Negation
and disjunction are interpreted in the usual fashion. The
construct 〈sc〉j is satisfied if the first component satisfies
sc, and the continuation of the service sequence satsifies
j. A formula of the form Gj requires that j is satisfied
Generally, and jUψ expresses that the property j holds
for all services of the sequence, Until a position is
reached whare the corresponding continuation satisfies
the property j.

It is convenient to derive further operators from these
basic constructs. The boolean disjunction

f y f y∨ = ¬ ¬ ∧ ¬def ( )

and the Eventually operator

F Udeff f= true 

are two common examples.

Coming to concrete examples of workflow specifications,
the synthesis algorithm can be used to generate linear
workflows just on the basis of an intial type (e.g.
BlastResult) and a final type (e.g. Tree) via the following
SLTL formula:

BlastResult Tree∧ F( )

As we have seen in the workflow examples, already this
simple query has a real practical impact, as it allows to
autmatically resolve type mismachtes.

As another example, it is possible to query for an explicit
sequence of services, let’s say an input dialog asking for
an accession number followed by the retrieval of the
corresponding sequence from a database and a BLAST
query:

f = 〈 〉〈 〉〈 〉InputDialog DBFetch BLAST true

Note that the service constraints in the formula are not
concrete service names, but terms from the service
taxonomy that define higher-order service categories.
The synthesis algorithm takes care of instantiating the
result with concrete services.

The synthesis algorithm
The synthesis algorithm interprets SLTL formulas over
paths of the configuration universe, i.e. provided with a
specification, it searches the configuration universe for
(finite) corresponding paths. The algorithm is based on a
tableau method, of which a detailed description is given
in [40]. It automatically generates all, all minimal, or all
shortest service compositions that satisfy a specification,
according to the selected synthesis mode. The algo-
rithm’s output is the basis for the final assembly of the
corresponding SLG.

The presently available implementation of the algorithm
had been developed for use within the ABC, the jABC’s
predecessor that has been written in C++. In order to
make it accessible from within the Java-based jABC
framework, we integrated it using the jETI technology.
The complete synthesis process is then defined by an
SLG, as shown in Figure 12: The main process (top)
triggers the execution of the synthesis and displays the
solution that is returned. Then, it assembles the SLG
corresponding to this solution and displays it on a
canvas, where it can be used for further process
development. The actual synthesis is carried out by the
sub-process (bottom): It captures the available domain
knowledge by collecting information about the available
services (SIB CollectModules) and types (LoadSymbo-
licTypes) while evaluating the workflow specification
(GenerateQuery). The collected information is stored in
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a specific database file (GenerateLola) and sent to the
synthesis algorithm, which computes one shortes solu-
tion (SynthOneShort). The generated sequence of
services is then converted into the jABC’s graph format
(PL2jABC) in order to allow further processing within
the framework.

We are currently re-implemening the algorithm in Java,
making it suitable for seamless integration into the jABC
framework. Also, we will add functionality for facilitat-
ing the synthesis procedure for the user, for instance by
providing a graphical interface supporting the domain
modeling and formula patterns for the specification of
workflows. Furthermore, we plan to incorporate alter-
native methods for the composition of services, such as
an algorithm based on MoSeL [62] or different tools that
are available in the Plan-jETI collection of planning
algorithms.
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Figure 12
Synthesis SLG. Complete synthesis process, realized as jABC SLG. The main process (top) triggers the execution of the
synthesis and displays the solution that is returned. Then, it assembles the SLG corresponding to this solution and displays it on
a canvas, where it can be used for further process development. The actual synthesis is carried out by the sub-process
(bottom): It captures the available domain knowledge and evaluates the workflow specification. The collected information is
stored in a specific database file and sent to the synthesis algorithm, which computes one shortest solution (SynthOneShort).
The generated sequence of services is then converted into the jABC's graph format in order to allow further processing within
the framework.
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