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Abstract: Plasma galectin-3 (Gal-3) is associated with organ fibrosis, but whether urinary Gal-3 is
a potential biomarker of kidney disease progression has never been explored. Between 2018 and
2021, we prospectively enrolled 280 patients who underwent renal biopsy and were divided into
three groups based on their urinary Gal-3 levels (<354.6, 354.6–510.7, and ≥510.8 pg/mL) to assess
kidney disease progression (defined as ≥40% decline in the estimated glomerular filtration rate or
end-stage renal disease) and renal histology findings. Patients in the highest urinary Gal-3 tertile had
the lowest eGFRs and highest proteinuria levels. In multivariate Cox regression models, patients
in the highest tertile had the highest risk of kidney disease progression (adjusted hazard ratio, 4.60;
95% confidence interval, 2.85–7.71) compared to those in the lowest tertile. Higher urinary Gal-3
levels were associated with more severe renal fibrosis. Intrarenal mRNA expression of LGALS3
(Gal-3-encoded gene) was most correlated with the renal stress biomarkers (IGFBP7 and TIMB2),
renal function biomarkers (PTGDS) and fibrosis-associated genes (TGFB1). The urinary Gal-3 level
may be useful for the identification of patients at high risk of kidney disease progression and renal
fibrosis, and for the early initiation of treatments for these patients.

Keywords: galectin-3; kidney disease progression; renal biopsy; renal fibrosis; urinary biomarkers

1. Introduction

Chronic kidney disease (CKD) constitutes a global health burden with a rising inci-
dence and prevalence [1]. It may cause renal function decline that progresses to end-stage
renal disease (ESRD) [2]. The early identification of patients at greater risk of such decline
would allow the prompt initiation of interventions or treatment [3]. As it can be collected
non-invasively and is easily accessible, urine has become an important and useful source of
disease biomarkers, especially for early-stage disease [4,5]. Proteinuria is the most reported
urinary biomarker of renal function decline, but it may not be ideal for the early detection of
this condition because it is accompanied by evident renal damage and lacks sensitivity [6].
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Galectin-3 (Gal-3) binds to β-galactoside sugars in its carbohydrate recognition domain
to exert diverse properties, including cell adhesion and proliferation via several glycosy-
lated matrix proteins (i.e., laminin, fibronectin, and integrins) [7,8]. Gal-3 also contributes
to pathological processes such as inflammation, angiogenesis, and organ fibrogenesis in
the presence of tissue injury [8–10]. The depletion of Gal-3 was found to reduce collagen
matrix accumulation and the severity of fibrosis [11,12]. Previous epidemiological studies
have shown that higher plasma or serum Gal-3 levels were associated with increased risks
of incident CKD and rapid renal function decline, even with accounting for known clinical
CKD predictors [13–15]. In another study, higher plasma Gal-3 levels were found to be
associated with more severe renal fibrosis in the findings of kidney biopsy [16].

Research on Gal-3 levels, however, has been conducted with blood, rather than urine.
The aim of this study was to examine whether the urinary Gal-3 level is also a useful
biomarker enabling the accurate prediction of the risk of kidney disease progression, which
could help clinicians to early initiate renoprotective strategies to slow such progression. In
addition, we examined correlations between the urinary Gal-3 level and histopathological
findings of kidney biopsy. Finally, we explored associations of intrarenal mRNA expression
of Gal-3-encoded gene LGALS3 with the gene expressions of known CKD biomarkers and
fibrosis-associated genes in kidney biopsy specimens.

2. Materials and Methods
2.1. Study Design and Populations

We prospectively enrolled patients at Taipei Veterans General Hospital, a tertiary
medical center, who underwent renal biopsies between 2018 and 2021. Exclusion criteria
were age < 20 years, lack of urinary Gal-3 measurement, and unwillingness to participate
in the study or provide written informed consent.

2.2. Clinical Variables

Our analyses involved the following clinical variables: age, sex, estimated glomerular
filtration rate (eGFR), spot urinary protein-to-creatinine ratio (UPCR), uric acid, albumin,
alanine transaminase, hypertension, dyslipidemia, diabetes mellitus, systemic lupus ery-
thematosus, coronary artery disease, congestive heart failure, stroke, chronic obstructive
pulmonary disease, peptic ulcer disease, and malignancy. The eGFR was calculated using
the Chronic Kidney Disease Epidemiology Collaboration equation [17]. Kidney disease
progression was defined as ≥40% decline in the eGFR from baseline or ESRD (i.e., the
initiation of hemodialysis or peritoneal dialysis, the receipt of a kidney transplant or
eGFR < 15 mL/min/1.73 m2) [18,19]. Patients were followed until either death occurred or
the study period ended, whichever occurred first.

2.3. Blood and Urine Sampling and Gal-3 Measurement

Blood and spot urine samples collected at the time of kidney biopsy were centrifuged
for 15 min at 2000× g and 4 ◦C before being stored at −80 ◦C. These samples were thawed
to 4 ◦C before further analysis. The plasma and urinary Gal-3 levels were measured in
picograms per milliliter using an in-house multiplex bead-based immunoassay, as described
previously [20,21].

2.4. Kidney Biopsy Specimen Analysis

The histopathological findings of the kidney biopsy specimens were reviewed with
light microscopy, immunofluorescence staining, and electron microscopy by an experienced
pathologist. For light microscopic analysis, the specimens were stained with hematoxylin
and eosin, periodic acid–Schiff, and Masson’s trichrome stains. Immunofluorescence was
used to examine immunoglobulin and complement deposits, and transmission electron mi-
croscopy was used to examine the ultrastructure of the glomerulus and tubulointerstitium.
Detailed findings from these analyses were also examined in relation to the urinary Gal-3
level for different kidney disease etiologies. The collected kidney biopsy specimens were
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immediately frozen in −80 ◦C with RNAlater reagent. Using a manual microdissection
technique, the tissue samples were divided into glomerular compartments and tubulointer-
stitial compartments. RNA of the dissected tubulointerstitial compartments were isolated,
followed by complementary deoxyribonucleic acid synthesis. The renal tubulointerstitial
compartments were further analyzed to explore the associations between intrarenal mRNA
expression of LGALS3 (the Gal-3 gene) and gene expressions of other known CKD biomark-
ers or fibrosis-associated genes as follows: genes of renal stress biomarkers (IGFBP7 and
TIMP2), renal function biomarkers (PTGDS and B2M), tubular injury biomarkers (HAVCR1,
LCN2, and PTX3), inflammation biomarkers (IL6 and GDF15), and fibrosis-associated genes
(TGFB1, COL1A1,ACTA2, DES and EGF) [22–26]. Relative expression of mRNA levels was
normalized to the housekeeping gene GAPDH mRNA levels.

2.5. Statistical Analysis

Categorical data are presented as number and percentages and analyzed using chi-
squared test. Continuous data are presented as medians with interquartile ranges and
analyzed using one-way ANOVA. The Cox proportional-hazards model was used to assess
the risk of kidney disease progression according to tertiles of the urinary Gal-3 level.
Kaplan–Meier curves were used to estimate the probability of kidney disease progression
and the tertiles of urinary Gal-3 level. Recently, net reclassification (NRI) and integrated
discrimination improvement (IDI) have been introduced to measure the improvement
in model prediction based on the addition of a new biomarker to the existing prediction
model. In our study, we calculated the NRI and IDI to examine the net effects of adding
plasma or urinary Gal-3 for predicting kidney disease progression [27,28]. In addition,
the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) values
were calculated to estimate the quality of the models, and adjusted R-squared values were
also calculated [29,30]. To determine the magnitude of correlations between the intrarenal
mRNA expressions of LGALS3 and gene expressions of known CKD biomarkers and
fibrosis-associated genes in the kidney biopsy specimens, we generated correlation plots.
The data were analyzed using SAS software (version 9.4; SAS Institute Inc., Cary, NC, USA)
and R software (version 3.5.2 for Windows; R Core Team, Vienna, Austria). p values < 0.05
were considered to be significant.

3. Results
3.1. Baseline Characteristics of Participants

Table 1 shows the demographic and clinical characteristics of the study participants.
In total, 280 patients (60.7% male) with a mean (standard deviation (SD)) age of 56.2 (16.5)
years were further stratified by tertiles of the urinary Gal-3 level (<354.6, 354.6–510.7, and
≥510.8 pg/mL). Seventy-three (26.1%) patients had diabetes mellitus and 115 (41.1%) pa-
tients had hypertension. To explore the relationship between urinary Gal-3 levels and
renal function, the eGFR values showed significant decreases across urinary Gal-3 tertiles
(p < 0.001), suggesting a worse renal function with higher urinary Gal-3 levels. Increased
UPCR levels were observed across urinary Gal-3 tertiles (p < 0.001). Moreover, the propor-
tion of participants with diabetes mellitus increased across urinary Gal-3 tertiles (p = 0.030).

3.2. Associations of the Urinary Gal-3 Level with Plasma Gal-3, eGFR, Creatinine and Proteinuria

The urinary Gal-3 level correlated inversely with the eGFR (r = −0. 35, p < 0.001), and
positively with plasma Gal-3 level (r = 0.65, p < 0.001), creatinine level (r = 0.41, p < 0.001)
and UPCR (r = 0.20, p < 0.001; Figure 1). Interestingly, there was a gradual increase in
urinary Gal-3 levels with CKD stage progression, with an increase that was greatest among
patients with CKD stage 5 (Figure 2A).
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Figure 1. Correlation between urinary Gal-3, plasma Gal-3, eGFR, creatinine, and UPCR. (A) Corre-
lation plots between urinary Gal-3 and plasma Gal-3 levels. (B) Correlation plots between urinary 
Gal-3 level and eGFR. (C) Correlation plots between urinary Gal-3 level and creatinine. (D) Corre-
lation plots between urinary Gal-3 level and UPCR. Abbreviations: Gal-3, Galectin-3; eGFR, estimated 
glomerular filtration rate; UPCR, spot urine protein–creatinine ratio. 

Figure 1. Correlation between urinary Gal-3, plasma Gal-3, eGFR, creatinine, and UPCR. (A) Corre-
lation plots between urinary Gal-3 and plasma Gal-3 levels. (B) Correlation plots between urinary
Gal-3 level and eGFR. (C) Correlation plots between urinary Gal-3 level and creatinine. (D) Correla-
tion plots between urinary Gal-3 level and UPCR. Abbreviations: Gal-3, Galectin-3; eGFR, estimated
glomerular filtration rate; UPCR, spot urine protein–creatinine ratio.

Table 1. Clinical characteristics of the study participants stratified by tertiles of urinary Gal-3.

Tertiles of Urinary Gal-3

All Patients Lowest Tertile
(<354.6 pg/mL)

Middle Tertile
(354.6–510.7 pg/mL)

Highest Tertile
(≥510.8 pg/mL) p Value

(n = 280) (n = 93) (n = 93) (n = 94)

Age, years 56.2 ± 16.5 54.7 ± 17.4 56.5 ± 17.3 57.3 ± 14.7 0.541
Male sex, n (%) 170 (60.7) 56 (60.2) 54 (58.1) 60 (63.8) 0.717
eGFR, mL/min/1.73 m2 46.8 ± 36.0 61.0 ± 36.0 51.0 ± 37.5 28.7 ± 25.7 <0.001 a

≥60, mL/min/1.73 m2, n (%) 84 (30.0) 44 (47.3) 30 (32.3) 10 (10.6)
<60, mL/min/1.73 m2, n (%) 196 (70.0) 49 (52.7) 63 (67.7) 84 (89.4)
UPCR, g/g 5.6 ± 9.4 2.9 ± 4.2 4.6 ± 5.5 9.2 ± 14.0 <0.001 b

Uric acid, mg/dL 6.7 ± 2.2 6.4 ± 2.2 6.6 ± 2.2 7.0 ± 2.2 0.298
Albumin, mg/dL 3.2 ± 0.9 3.4 ± 0.9 3.1 ± 0.8 3.1 ± 0.8 0.092
Alanine transaminase, U/L 19.4 ± 14.2 19.7 ± 12.2 19.0 ± 13.2 19.6 ± 17.0 0.944
Hypertension, n (%) 115 (41.1) 35 (37.6) 39 (41.9) 41 (43.6) 0.693
Dyslipidemia, n (%) 55 (19.6) 14 (15.1) 18 (19.4) 23 (24.5) 0.268
Diabetes mellitus, n (%) 73 (26.1) 17 (18.3) 23 (24.7) 33 (35.1) 0.030 c

SLE, n (%) 11 (3.9) 4 (4.3) 5 (5.4) 2 (2.1) 0.507
Coronary artery disease, n (%) 23 (8.2) 8 (8.6) 7 (7.5) 8 (8.5) 0.957
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Table 1. Cont.

Tertiles of Urinary Gal-3

All Patients Lowest Tertile
(<354.6 pg/mL)

Middle Tertile
(354.6–510.7 pg/mL)

Highest Tertile
(≥510.8 pg/mL) p Value

(n = 280) (n = 93) (n = 93) (n = 94)

Congestive heart failure, n (%) 50 (17.9) 15 (16.1) 14 (15.1) 21 (22.3) 0.372
Stroke, n (%) 12 (4.3) 7 (7.5) 1 (1.1) 4 (4.3) 0.094
COPD, n (%) 8 (2.9) 2 (2.2) 1 (1.1) 5 (5.3) 0.194
Peptic ulcer disease, n (%) 21 (7.5) 8 (8.6) 7 (7.5) 6 (6.4) 0.847
Malignancy, n (%) 64 (22.9) 18 (19.4) 18 (19.4) 28 (29.8) 0.146

a Post hoc test of eGFR showed a significant difference between lowest vs. highest tertile (p < 0.001) and middle
vs. highest tertile (p < 0.001). b Post hoc test of UPCR showed a significant difference between lowest vs. highest
tertile (p < 0.001) and middle vs. highest tertile (p = 0.002). c Post hoc test of diabetes mellitus showed a significant
difference between lowest vs. highest tertile (p = 0.024). Abbreviations: Gal-3, galectin-3; eGFR, estimated
glomerular filtration rate; UPCR, urine protein–creatinine ratio; SLE, systemic lupus erythematosus; COPD,
chronic obstructive pulmonary disease.
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Figure 2. The associations between urinary Gal-3 levels and renal outcomes. (A) Urinary Gal-3
levels increased as CKD stage progressed. (B) Kaplan–Meier curves for the risks of kidney disease
progression in tertiles of urinary Gal-3. (C) The associations between different pathological diagnoses
and urinary Gal-3 levels. Abbreviations: Gal-3, Galectin-3; CKD, chronic kidney disease; MCD, minimal
change disease; MGN, membranous glomerulonephritis; FSGS, focal segmental glomerulosclerosis;
IgA, immunoglobulin A; DM, diabetes mellitus.
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3.3. Association of the Urinary Gal-3 Levels with Kidney Disease Progression

In multivariate Cox regression (Table 2), adjusted hazard ratios (aHRs) with 95%
confidence intervals (CIs) for kidney disease progression among patients in the highest
(aHR, 4.60; 95% CI, 2.85–7.71; p < 0.001) and middle (aHR, 1.82; 95% CI, 1.08–3.15; p = 0.027)
urinary Gal-3 tertile relative to those in the lowest tertile. Each 100 pg/mL increase in the
urinary Gal-3 levels increased the risks of kidney disease progression (aHR, 1.19; 95% CI,
1.13–1.25; p < 0.001). Kaplan–Meier analysis showed that patients in the highest urinary
Gal-3 tertile were more likely to be at risk of kidney disease progression than were those in
the middle and lowest tertiles (log-rank test, p < 0.001; Figure 2B).

Table 2. Risks of kidney disease progression and urinary Gal-3 levels.

Kidney Disease Progression *

Crude HR 95% CI p Value Adjusted HR † 95% CI p Value

Tertiles of urinary Gal-3 levels

Highest vs. lowest tertile 5.33 3.33–8.87 <0.001 4.60 2.85–7.71 <0.001
Middle vs. lowest tertile 1.96 1.16–3.37 0.013 1.82 1.08–3.15 0.027

Continuous values of urinary Gal-3 levels (per 100 pg/mL)

Urinary Gal-3 levels 1.22 1.16–1.27 <0.001 1.19 1.13–1.25 <0.001

* Kidney disease progression was defined as ≥40% decline in the eGFR from baseline or ESRD (i.e., the initiation of
hemodialysis or peritoneal dialysis, the receipt of a kidney transplant or eGFR < 15 mL/min/1.73 m2). † Adjusted
for the presence of diabetic nephropathy, glomerulonephritis or other pathological findings in kidney biopsy.
Abbreviation: Gal-3, galectin-3; HR, hazard ratio; CI, confidence interval.

3.4. NRI, IDI, AIC, BIC and Adjusted R2 for the Combined Assessment of eGFR and Gal-3 in
Predicting Kidney Disease Progression

The NRI was 0.5395 (95% CI: 0.3133–0.7657; p < 0.001) and IDI was 0.0626 (95% CI:
0.0344–0.0907; p < 0.001) in model 2 compared to model 1, showing that the predictive
performance was improved by adding urinary Gal-3 to the model (Table 3). Similarly, the
NRI was 0.7333 (95% CI: 0.5172–0.9494; p < 0.001) and IDI was 0.0633 (95% CI: 0.0333–0.0934;
p < 0.001) in model 3 compared to model 1, showing that the predictive performance was
improved by adding plasma Gal-3 to the model. Of note, the IDI was increased to 0.090
in model 4 by adding both urinary and plasma Gal-3 to the model 1. The AIC and BIC
values were reduced in model 2, model 3 and model 4 compared to model 1, suggesting
that adding urinary Gal-3 or plasma Gal-3 or both provided better model fits.

Table 3. NRI, IDI, AIC, BIC and adjusted R2 for the combined assessment of eGFR and Gal-3 in
predicting kidney disease progression.

NRI and IDI Model Comparison

NRI 95% CI p Value † IDI 95% CI p Value †

Model 1: eGFR - - - - - -
Model 2: eGFR + Urinary Gal-3 0.5395 0.3133–0.7657 <0.001 0.0626 0.0344–0.0907 <0.001
Model 3: eGFR + Plasma Gal-3 0.7333 0.5172–0.9494 <0.001 0.0633 0.0333–0.0934 <0.001
Model 4: eGFR + Urinary Gal-3 + Plasma Gal-3 0.6040 0.3805–0.8277 <0.001 0.0909 0.0564–0.1254 <0.001

AIC and BIC and R Square Model Comparison

AIC BIC Adjusted R2 p Value

Model 1: eGFR 287.6032 298.5076 0.3541 <0.001
Model 2: eGFR + Urinary Gal-3 269.3027 283.8419 0.3971 <0.001
Model 3: eGFR + Plasma Gal-3 267.0637 281.6029 0.4019 <0.001
Model 4: eGFR + Urinary Gal-3 + Plasma Gal-3 264.8257 282.9997 0.4088 <0.001

† p value vs. model 1. Abbreviations: NRI, net reclassification improvement; IDI, integrated discrimination
improvement; AIC, Akaike information; BIC, Bayesian information criterion; eGFR, estimated glomerular filtration
rate; Gal-3, galectin-3; CI, confidence interval.
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3.5. Associations of the Urinary Gal-3 Level with the Histopathological Findings in Kidney Biopsy
Specimens

The detailed associations of urinary Gal-3 levels and histopathological findings are
shown in Table 4. Higher levels of urinary Gal-3 level were associated with more se-
vere GBM double contour (p < 0.001), GBM rigid (p < 0.001), GBM thickening (p = 0.001),
GBM collapse (p = 0.009), endocapillary hypertrophy (p < 0.001), interstitial inflammation
(p = 0.003), interstitial fibrosis (p = 0.003), tubular atrophy (p = 0.002). The detailed patho-
logical diagnoses of kidney biopsies in our study are provided in Table S1. Among different
pathological diagnosis, patients with diabetic nephropathy had the highest urinary Gal-3
levels (Figure 2C). The associations between different pathological diagnoses and eGFR are
shown in Figure S1.

Table 4. Logistic regression for urinary Gal-3 (per 100 pg/mL) and renal pathological findings.

Pathological Findings β SE Odds Ratio 95% CI p Value

Glomerular description

Global sclerosis 0.137 0.071 1.147 1.008–1.328 0.052
Segmental sclerosis 0.046 0.051 1.048 0.947–1.163 0.365
GBM double contour * 0.237 0.065 1.268 1.123–1.447 <0.001
GBM rigid * 0.258 0.067 1.295 1.143–1.484 <0.001
GBM thickening * 0.220 0.064 1.246 1.106–1.420 0.001
GBM collapse * 0.154 0.058 1.166 1.046–1.315 0.009
GBM attenuation 0.079 0.053 1.082 0.978–1.206 0.136
Glomerular necrosis −0.810 0.537 0.445 0.128–1.076 0.131
Glomerular inflammatory change −0.045 0.066 0.956 0.844–1.102 0.494
Glomerular ischemic change 0.105 0.069 1.111 0.957–1.275 0.130
Endocapillary hypertrophy * 0.235 0.064 1.265 1.122–1.444 <0.001
Extracapillary hypertrophy 0.075 0.053 1.077 0.974–1.200 0.157

Tubulointerstital descriptions

Tubulitis 0.063 0.095 1.065 0.905–1.305 0.505
Interstitial edema 0.123 0.111 1.131 0.838–1.371 0.266
Interstitial inflammation * 0.207 0.069 1.229 1.083–1.417 0.003
Interstitial fibrosis * 0.196 0.066 1.217 1.076–1.394 0.003
Tubular atrophy * 0.208 0.068 1.231 1.086–1.416 0.002
Acute tubular necrosis 0.045 0.107 1.046 0.807–1.247 0.674
Casts 0.130 0.522 1.139 0.692–4.131 0.804

Vasculature descriptions

Hyaline arteriosclerosis 0.029 0.087 1.029 0.845–1.196 0.740
Vascular intimal fibrosis −0.031 0.090 0.969 0.796–1.131 0.728
Vascular necrosis −1.457 0.998 0.233 0.015–1.054 0.144

* Statistically significant and p value are shown in bold. Abbreviations: Gal-3, galectin-3; SE, standard error; CI,
confidence interval; GBM, glomerular basement membrane.

3.6. Associations of the Intrarenal RNA Expression of LGALS3, Known CKD Biomarkers and
Fibrosis-Associated Genes in Kidney Biopsy Specimens

The intrarenal RNA expressions were examined in 50 patients who had undergone
percutaneous kidney biopsy, and the detailed clinical characteristics of these patients are
presented in Table S2. The urinary Gal-3 level correlated positive with intrarenal LGALS3
(r = 0.75, p < 0.001; Figure 3A). In the correlation plots, correlation coefficients of LGALS3
with genes of renal stress biomarkers, IGFBP7 and TIMP2 and renal function markers,
PTGDS were 0.84, 0.82 and 0.81, respectively (Figure 3B–D). In addition, LGALS3 was
most correlated with fibrosis-associated genes, TGFB1 (r = 0.78) and COL1A1 (r = 0.63),
suggesting that LGALS3 is involved in transforming growth factor-β (TGF-β)-induced
fibrotic processes (Figure 3E,F). The correlation coefficients of LGALS3 with other CKD
biomarkers and fibrosis-associated genes are shown in Figure S2.
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4. Discussion

The main aim of this study was to test the ability of the urinary Gal-3 level to predict
kidney disease progression and the degrees of renal fibrosis in a cohort of patients who
underwent renal biopsy. First, we found that urinary Gal-3 levels were inversely related
to eGFR but were positively related to creatinine and UPCR. Secondly, we found that
the highest urinary Gal-3 tertile was associated with increased risks of kidney disease
progression compared to the lowest tertile. Thirdly, higher urinary Gal-3 levels were
associated with more severe renal fibrosis. Combining urinary and plasma Gal-3 may
provide better predictive performance for kidney disease progression. Finally, we observed
a correlation between intrarenal RNA expression of LGALS3 and genes of renal stress
biomarkers (IGFBP7 and TIMB2), renal function markers (PTGDS) and fibrosis-associated
genes (TGFB1) in kidney biopsy specimens. Taken together, our data suggest that urinary
Gal-3 may be a useful biomarker for the identification of individuals at risk of kidney
disease progression and those predisposing to renal fibrosis, which may contribute to the
pathogenesis of CKD early in the disease course.

To date, the prediction of kidney disease progression has been attempted by incorpo-
rating traditional laboratory data, such as creatinine, eGFR as well as other clinical and
biochemical variables [31,32]. However, the individual course of kidney disease varies,
and these laboratory data may not be able to predict progression accurately [33]. Serum
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and plasma Gal-3, which has been recently shown to be associated with incident CKD and
eGFR decline in previous studies [13–16,34]. As urine can be collected non-invasively and
is easily accessible, our study showed an inverse relationship between urinary Gal-3 levels
and eGFR, and a positive relationship between creatinine and UPCR. In our study, patients
in the highest tertile of urinary Gal-3 levels were associated with a 4.60-fold greater risk of
kidney disease progression compared to those in the lowest tertile.

Numerous studies have found that the tubulointerstitial injury is more important
in determining the subsequent decline in renal function than that caused by glomerular
damage [35–37]. Following tubulointerstitial injury, inflammatory cells infiltrate in the
interstitium, triggering inflammatory responses as well as the production of mediators
involved in the fibrosis pathway, such as TGF-β [38,39]. Therefore, regardless of the
underlying cause, tubulointerstitial fibrosis may be one of the most important pathogeneses
of kidney disease progression [40,41]. This study found that higher levels of urinary Gal-3
were associated with global sclerosis, interstitial fibrosis and tubular atrophy. Based on
the histopathological findings of our study, urinary Gal-3 is not only a urine biomarker for
kidney disease progression but may also play a role in predicting renal fibrosis.

There have been several small studies that reported higher serum Gal-3 levels in
diabetes patients compared with healthy controls, and Gal-3 was a predictor of diabetes
even after adjusting for traditional risk factors [42–44]. In a large, multiethnic population of
a Dallas Heart Study including 6586 study participants, plasma Gal-3 was associated with
diabetes prevalence and the incident diabetes mellitus, possibly through the inflammatory
pathway contributing to impaired insulin secretion and β-cell fibrosis [45]. Interestingly,
our study found that patients in the highest urinary Gal-3 tertile had higher proportions of
diabetes mellitus. In addition, the diagnosis of diabetic nephropathy was associated with
higher urinary Gal-3 levels based on kidney biopsy specimens.

In our study, we selected several genes of CKD biomarkers that have been identified
as CKD predictors through various pathophysiological mechanisms responsible for CKD
initiation and progression [22,46]. B2M belongs to the major histocompatibility class I
molecules, which are found on the surface of most nucleated cells, and the levels rise as
CKD progression and ESRD [47]. Kidney injury molecule-1, encoded by HAVCR1, is a
type 1 transmembrane protein that is undetectable in normal kidneys but is markedly
upregulated after kidney damage [48]. Neutrophil gelatinase-associated lipocalin, encoded
by LCN2, is a ubiquitous lipocalin iron-carrying protein, which is released by renal tubular
epithelial cells in response to cell injury [49]. PTX3 is a member of the pentraxin superfamily,
which is rapidly produced and released by resident and innate immunity cells in response
to kidney injury, and PTX3 levels were observed to rise as eGFR decreased [50]. GDF15 was
responsible for inflammatory pathways involved in regulating cell apoptosis, repair, and
proliferation and was found to be elevated as CKD progression [51]. Interleukin-6, encoded
by IL6, is a pleiotropic cytokine and was found to contribute to acute and chronic kidney
injury and fibrosis [52]. After kidney stress injury or cell damage, renal tubular cells enter
the G1 phase and cell-cycle arrest occurs accompanied by the accumulation of damaged
DNA [53,54]. The levels of IGFBP7 and TIMP-2 are found to be elevated in G1 cell-cycle
arrest during tubular cell stress and injury [55]. Most previous studies have focused on
IGFBP7 and TIMP-2 for their role in acute kidney injury (AKI) prediction [56,57]. Of note,
another study involving 50 patients undergoing cardiac surgery with cardiopulmonary
bypass found that TIMP-2 and IGFBP7 are important determinants to predict patients’
recovery from AKI [24]. Beta trace protein (BTP), encoded by PTGDS, has been found to be
filtered freely in the kidneys and highly correlated with measured GFR and residual kidney
function. BTP has been found to be increased as CKD progresses [58,59]. TGFB1 promotes
renal fibrosis by activating the Smad signaling pathway to transcriptionally regulate renal
inflammation and fibrosis [60]. In our kidney biopsy specimens, we observed that intrarenal
mRNA expressions of LGALS3 were most correlated with IGFBP7, TIMP-2 and PTGDS
as well as TGFB1, suggesting that LGALS3 may be involved in renal dysfunction and
promotes fibrotic processes after kidney stress and injury.
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The strengths of this study are the completeness of data collection and the verification
of the histopathological findings and intrarenal mRNA expression in a biopsy-proven
cohort. In addition, this study prospectively examines the predictive ability of the urinary
Gal-3 level for the risk of kidney disease progression during the study period. The study,
however, has several limitations. First, we used eGFR values, rather than inulin or cystatin
C measurement, to identify renal function, as eGFR values are more convenient to obtain
and are available for patients in clinical practice. Second, as the eGFR was measured at
the time of biopsy, AKI cannot be ruled out. However, the etiologies of renal diseases can
also be identified by histopathological findings in our study. In addition, we conducted
follow-up studies to assess changes in the eGFR, thereby allowing the detection of AKI.
Third, our study was based on data collected from a renal biopsy cohort; further research
should be conducted with a variety of patient populations. Finally, the urinary Gal-3 level
was measured once, at the time of kidney biopsy; studies of serial changes in urinary
biomarkers may be warranted.

5. Conclusions

In our study, we found that the highest urinary Gal-3 tertile was associated with more
severe renal fibrosis and combining urinary and plasma Gal-3 may provide the better
predictive performance for kidney disease progression. The generalizability of our findings
needs to be examined, and the findings need to be validated in additional studies. Further
research is also needed to determine whether therapeutic measures targeting Gal-3 might
delay the progression of CKD.
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