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Abstract: It is well known that oxidative stress induces muscle atrophy, which decreases with the
activation of Nrf2/HO-1. Fermented oyster extracts (FO), rich in γ-aminobutyric acid (GABA) and
lactate, have shown antioxidative effects. We evaluated whether FO decreased oxidative stress by
upregulating Nrf2/HO-1 and whether it decreased NF-κB, leading to decreased IL-6 and TNF-α.
Decreased oxidative stress led to the downregulation of Cbl-b ubiquitin ligase, which increased IGF-1
and decreased FoxO3, atrogin1, and Murf1, and eventually decreased muscle atrophy in dexametha-
sone (Dexa)-induced muscle atrophy animal model. For four weeks, mice were orally administered
with FO, GABA, lactate, or GABA+Lactate, and then Dexa was subcutaneously injected for ten days.
During Dexa injection period, FO, GABA, lactate, or GABA+Lactate were also administered, and
grip strength test and muscle harvesting were performed on the day of the last Dexa injection. We
compared the attenuation effect of FO with GABA, lactate, and GABA+lactate treatment. Nrf2 and
HO-1 expressions were increased by Dexa but decreased by FO; SOD activity and glutathione levels
were decreased by Dexa but increased by FO; NADPH oxidase activity was increased by Dexa but
decreased by FO; NF-κB, IL-6, and TNF-α activities were increased by Dexa were decreased by FO;
Cbl-b expression was increased by Dexa but restored by FO; IGF-1 expression was decreased by
Dexa but increased by FO; FoxO3, Atrogin-1, and MuRF1 expressions were increased by Dexa but
decreased by FO. The gastrocnemius thickness and weight were decreased by Dexa but increased by
FO. The cross-sectional area of muscle fiber and grip strength were decreased by Dexa but increased
by FO. In conclusion, FO decreased Dexa-induced oxidative stress through the upregulation of
Nrf2/HO-1. Decreased oxidative stress led to decreased Cbl-b, FoxO3, atrogin1, and MuRF1, which
attenuated muscle atrophy.

Keywords: muscle atrophy; GABA; lactate; oxidative stress; Nrf2

1. Introduction

It is known that excessive oxidative stress caused by an imbalance between the
generation and removal of intracellular reactive oxygen species (ROS) can decrease protein
synthesis and enhance protein degradation, eventually leading to muscle atrophy [1–3].

Dexamethasone (Dexa) can cause oxidative stress in various cells such as skeletal
muscle cells, adipocytes, pancreatic cells, and osteoblastic cells [4–8]. Excessive ROS in
rodent myotubes has reportedly enhanced expression of the ubiquitin ligase casitas B-
lineage lymphoma proto-oncogene-b (Cbl-b), eventually leading to the degradation of
insulin receptor substate-1 (IRS-1) which causes muscle atrophy [9].
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In addition, the upregulation of Cbl-b by ROS leads to decreased insulin-like growth
factor-1 (IGF-1) signaling [9,10], which leads to increased dephosphorylation of Forkhead
box O (FoxO) 3a and consequently induces upregulation of muscle atrophy-associated
ubiquitin ligases, such as muscle atrophy F-box (MAFbx)/atrogin-1 and muscle RING
finger 1 (MuRF1) [11].

Nuclear factor erythroid 2-related factor 2 (Nrf2) has essential protective roles against
oxidative stress-induced muscle damage [12] and atrophy [13].

In the homeostatic state without oxidative stress, inactivated Nrf2 exists in the cy-
toplasm by binding to Kelch-like ECH-associated protein 1 (Keap1), which prohibits the
nuclear translocation of Nrf2 [12,14,15].

Under oxidative stress, the binding of Nrf2 to Keap1 is broken, leading to the translo-
cation of Nrf2 into the nucleus, consequently stimulating the transcriptional activity of
antioxidant response element (ARE) response genes. ARE response genes induce the up-
regulation of phase II antioxidant enzymes such as heme oxygenase-1 (HO-1), glutathione
peroxidase-1 (GPx1), NAD(P)H quinone dehydrogenase-1 (NQO-1), and thioredoxin-1
(Trx1) [13–15]. Glutathione (GSH) is a nonenzymatical antioxidant that reacts with su-
peroxide, nitric oxide, hydroxyl radical, and peroxynitrite [16]. GSH is also increased by
upregulation of Nrf2 and HO-1 [17]. Expression of superoxide dismutase (SOD), which is
also a ROS scavenger, is also increased by HO-1 [18].

HO-1 has an antioxidant defense mechanism that works by breaking down heme into
carbon monoxide, free iron, and biliverdin. Biliverdin is further broken down into bilirubin,
which has the antioxidant potential [19,20]. In addition, bilirubin is known to inhibit the
activity of NADPH oxidase, which generates ROS [21].

ROS are generated by mitochondria, NADPH oxidase, and the endoplasmic reticulum,
leading to the activation and translocation of NF-κB. When translocated to the nucleus,
NF-κB enhances various target gene transcription, such as tumor necrosis factor-alpha
(TNF-α), interleukin (IL)-1β, and IL-6 [22]. As inflammatory cytokines, TNF-α, IL-1β, and
IL-6 all have the central role in mediating muscle wasting and atrophy [23].

Several oyster extracts such as hydrolysates of oyster (Saccostrea cucullata) protein have
shown antioxidant effects or free radical scavenging ability [24]. The phenolic compounds
from the Pacific oyster (Crassostrea gigas) have even attenuated the apoptosis of hepatocytes
by oxidative stress [25–27].

By fermentation with Lactobacillus brevis BJ20, fermented oyster extracts (FO) from Cras-
sostrea gigas have an increased concentration of γ-aminobutyric acid (GABA), which is bio-
converted from glutamic acid within the oyster and creates high amounts of lactate [28,29].

FO showed antioxidant activities and decreased oxidative cell injuries in oblasts by
increasing the activation of Nrf2/HO-1 signaling [30]. Dexa is frequently used for treating
respiratory diseases such as chronic obstructive pulmonary disease or asthma [31,32]. It is
also used for various inflammatory diseases, autoimmune diseases, and even cancer [31,32].
It is also known that muscle atrophy induced by Dexa is associated with increased morbid-
ity and mortality after Dexa therapy. Thus many studies have been performed to find new
targets for inhibiting Dexa-induced muscle atrophy [33–35].

Even though muscle atrophy is closely related to oxidative stress, and FO is known to
have antioxidative effects by activating the Nrf2/HO-1 signal, it is still unknown whether
FO could attenuate muscle atrophy by modulating the Nrf2/HO-1 signal. We hypothesized
that FO would (1) decrease oxidative stress by upregulating Nrf2/HO-1 and (2) decrease
NF-κBwhich, which would, in turn, decrease IL-6 and TNF-α. We also hypothesized
that decreased oxidative stress would lead to the downregulation of Cbl-b, which would
increase IGF-1 and decrease FoxO3, atrogin1, and Murf1, eventually decreasing muscle
atrophy. In our study, we evaluated the attenuation effect of FO on muscle atrophy in the
Dexa-induced muscle atrophy animal model and compared the attenuation effect of FO
with GABA and lactate.
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2. Results
2.1. FO Led to Increased Nrf2/HO-1, Decreased NADPH Activity, and Decreased OXIDATIVE
Stress in Muscle of Dexa-Treated Animals

Nrf2 mRNA expression was significantly decreased in the gastrocnemius muscle after
Dexa treatment and significantly increased after the administration of GABA, GABA+lactate,
and FO. The most notable increase was seen with 200 mg/kg of FO (Figure 1a).
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Figure 1. FO reduced ROS through Nrf2/Ho-1 in the gastrocnemius muscle atrophy induced mouse
model; (a) The mRNA levels of nrf2 were decreased by Dexa/Saline but increased by GABA, lactate,
GABA+lactate, and FO treatment; (b) The mRNA levels of keap1 were increased by Dexa/Saline but
decreased by GABA, lactate, GABA+lactate, and FO treatment; (c) Relative NADP/NDPH ratios were
increased by Dexa/Saline but decreased by GABA, lactate, GABA+lactate, and FO treatment; (d) The
mRNA levels of ho-1 were decreased by Dexa/Saline but increased by GABA, lactate, GABA+lactate,
and FO treatment; (e,f) SOD activity (e) and total glutathione (f) were decreased by Dexa/Saline
but increased by GABA, lactate, GABA+lactate, and FO treatment. Different letters, a–g, indicate
significant differences among the group as determined by multiple comparisons (Mann-Whitney
U test); p < 0.05; fermented oyster extracts (FO); γ-aminobutyric acid (GABA); heme oxygenase
(ho-1); gastrocnemius (gastroc.); kelch-like ECH-associated protein 1 (keap1); nicotinamide adenine
dinucleotide phosphate (NADP); nicotinamide adenine dinucleotide phosphate hydrate (NADPH);
nuclear factor erythroid-2-related factor 2 (nrf); superoxide dismutase (SOD).
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Keap1 mRNA expression was significantly increased in the gastrocnemius muscle after
Dexa treatment and significantly decreased by administering GABA, lactate, GABA+lactate,
and FO. The most prominent decrease was seen with GABA+lactate and 100 and 200 mg/kg
of FO (Figure 1b).

NADP/NADPH ratio was significantly increased in the gastrocnemius muscle after
Dexa treatment and significantly decreased after using GABA, lactate, GABA+lactate, and
FO. The most prominent decrease was seen with 100 and 200 mg/kg of FO (Figure 1c).

HO-1 mRNA expression was significantly decreased in the gastrocnemius muscle
after Dexa treatment and significantly increased after the administration of GABA, lactate,
GABA+lactate, and FO. The most notable increase was seen with 100 and 200 mg/kg of FO
(Figure 1d).

SOD activity was significantly decreased in the gastrocnemius muscle after Dexa
treatment and significantly increased after administering GABA, lactate, GABA+lactate,
and FO. The most notable increase was seen with GABA+lactate (Figure 1e).

The amount of total glutathione was significantly decreased in the gastrocnemius
muscle after Dexa treatment and significantly increased after the administration of GABA,
lactate, GABA+lactate, and FO. The most significant increase was seen with GABA+lactate
and 200 mg/kg of FO (Figure 1f).

2.2. FO Decreased Expression of NF-κB/IL-6/TNF-α

NF-κBexpression in the nuclei was significantly increased by Dexa and significantly
decreased by GABA, lactate, GABA+lactate, and FO. The most prominent decrease was
seen with lactate, GABA+lactate, and 100 and 200 mg/kg of FO (first line in Figure 2a,b).

Molecules 2021, 26, x FOR PEER REVIEW 4 of 13 
 

 

Keap1 mRNA expression was significantly increased in the gastrocnemius muscle 
after Dexa treatment and significantly decreased by administering GABA, lactate, 
GABA+lactate, and FO. The most prominent decrease was seen with GABA+lactate and 
100 and 200 mg/kg of FO (Figure 1b). 

NADP/NADPH ratio was significantly increased in the gastrocnemius muscle after 
Dexa treatment and significantly decreased after using GABA, lactate, GABA+lactate, and 
FO. The most prominent decrease was seen with 100 and 200 mg/kg of FO (Figure 1c). 

HO-1 mRNA expression was significantly decreased in the gastrocnemius muscle 
after Dexa treatment and significantly increased after the administration of GABA, lactate, 
GABA+lactate, and FO. The most notable increase was seen with 100 and 200 mg/kg of FO 
(Figure 1d). 

SOD activity was significantly decreased in the gastrocnemius muscle after Dexa 
treatment and significantly increased after administering GABA, lactate, GABA+lactate, 
and FO. The most notable increase was seen with GABA+lactate (Figure 1e). 

The amount of total glutathione was significantly decreased in the gastrocnemius 
muscle after Dexa treatment and significantly increased after the administration of GABA, 
lactate, GABA+lactate, and FO. The most significant increase was seen with GABA+lactate 
and 200 mg/kg of FO (Figure 1f). 

2.2. FO Decreased Expression of NF-κB/IL-6/TNF-α 
NF-κBexpression in the nuclei was significantly increased by Dexa and significantly 

decreased by GABA, lactate, GABA+lactate, and FO. The most prominent decrease was 
seen with lactate, GABA+lactate, and 100 and 200 mg/kg of FO (first line in Figure 2a,b). 

 
Figure 2. FO reduced intramuscular inflammation in a muscle atrophy-induced mouse model; ((a) first line and (b)) The 
number of NF-κB translocated into the nucleus was increased Dexa/Saline but decreased by GABA, lactate, GABA+lactate, 
and FO treatment; ((a), first and second line, (c,d)) The intensity of IL-6 and TNF-α were increased Dexa/Saline but de-
creased by GABA, lactate, GABA+lactate, and FO treatment. Scale bar = 100 μm. Different letters a–f indicate significant 
differences among groups as determined by multiple comparisons (Mann-Whitney U test); p < 0.05., 3,3′-Diaminobenzi-
dine tetrahydrochloride (DAB); fermented oyster extracts (FO); γ-aminobutyric acid (GABA); gastrocnemius (gastroc.); 
interleukin-6 (IL-6); nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); tumor necrosis factor-alpha 
(TNF-α). 

Figure 2. FO reduced intramuscular inflammation in a muscle atrophy-induced mouse model; ((a) first line and (b)) The
number of NF-κB translocated into the nucleus was increased Dexa/Saline but decreased by GABA, lactate, GABA+lactate,
and FO treatment; ((a), first and second line, (c,d)) The intensity of IL-6 and TNF-α were increased Dexa/Saline but decreased
by GABA, lactate, GABA+lactate, and FO treatment. Scale bar = 100 µm. Different letters a–f indicate significant differences
among groups as determined by multiple comparisons (Mann-Whitney U test); p < 0.05., 3,3′-Diaminobenzidine tetrahy-
drochloride (DAB); fermented oyster extracts (FO); γ-aminobutyric acid (GABA); gastrocnemius (gastroc.); interleukin-6
(IL-6); nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); tumor necrosis factor-alpha (TNF-α).
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IL-6 expression was significantly increased by Dexa and significantly decreased by
GABA, lactate, GABA+lactate, and FO. The most prominent decrease was seen with
GABA+lactate and 200 mg/kg of FO (second line in Figure 2a,c).

TNF-α expression was significantly increased by Dexa and significantly decreased
by GABA, lactate, GABA+lactate, and FO. The most prominent decrease was seen with
GABA+lactate and 100 and 200 mg/kg of FO (third line in Figure 2a,d).

2.3. FO Leads to Decreased Expression of Cbl-b, Increased IGF-1, and Decreased
FoxO3/Atrogin-1/Murf-1 in the Muscle of Dexa-Treated Animals

The mRNA levels of Cbl-b expression were significantly increased by Dexa and
significantly decreased by GABA, lactate, GABA+lactate, and FO. The most prominent
decrease was seen with GABA+lactate and 100 and 200 mg/kg of FO (Figure 3a).
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Figure 3. FO reduced muscle proteolysis through IGF-1 in a muscle atrophy-induced mouse model. (a) The mRNA levels of
cbl-b were increased by Dexa/Saline but decreased by GABA, lactate, GABA+lactate, and FO treatment; (b) The mRNA
levels of igf-1 were decreased by Dexa/Saline but increased by GABA, lactate, GABA+lactate, and FO treatment; (c–e) The
mRNA levels foxo3a (c), atrogin-1 (d), and murf1 (e), were increased by Dexa/Saline but decreased by GABA, lactate,
GABA+lactate, and FO treatment. a–e Different letters indicate significant differences among groups as determined by
multiple comparisons (Mann-Whitney U test); p < 0.05. a muscle-specific F-box protein (atrogin-1); Cbl Proto-Oncogene B
(cbl-b); fermented oyster extracts (FO); γ-aminobutyric acid (GABA); gastrocnemius (gastroc); forkhead box O3 (foxO3a);
insulin-like growth factor 1 (igf-1); Muscle RING-finger protein-1 (murf1).

The mRNA levels of IGF-1 expression were significantly decreased by Dexa and
significantly increased by GABA, lactate, GABA+lactate, and FO. The most notable increase
was seen with GABA+lactate and 100 and 200 mg/kg of FO (Figure 3b).

The mRNA levels of FoxO3a, atrogin-1, and murf1 expression were significantly
increased by Dexa and significantly decreased by GABA, lactate, GABA+lactate, and FO.
The most prominent decrease was seen with GABA+lactate and 100 and 200 mg/kg of FO
(Figure 3c–e).
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2.4. FO Attenuated Muscle Atrophy and Improved Grip Strength

The bodyweight of the Dexa group was 0.80 times lower than that of the control group.
It was significantly increased by GABA, lactate, GABA+lactate, 50, 100, and 200 mg/kg FO
(1.1 times than Dexa group) (Figure 4a).
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Figure 4. FO improved body weight, muscle thickness, weight, and fiber size of gastrocnemius and strength in a muscle
atrophy induced mouse model. Bodyweight was decreased by Dexa/Saline but increased by GABA, lactate, GABA+lactate,
and FO treatment (a). The muscle thickness of gastrocnemius (b–d) and muscle weight of gastrocnemius (b,d) were
decreased by Dexa/Saline but increased by GABA, lactate, GABA+lactate, and FO treatment (c,d). The mean CSA of
gastrocnemius muscle fiber was decreased Dexa/Saline but increased by GABA, lactate, GABA+lactate, and FO treatment.
Scale bar = 1 cm (e,f). The grip strength was decreased Dexa/Saline but increased by GABA, lactate, GABA+lactate, and
FO treatment. Scale bar = 100 µm (g). Different letters a–g indicate significant differences among the group as determined
by multiple comparisons (Mann-Whitney U test); p < 0.05. BW, body weight; cross-sectional area (CSA); fermented oyster
extracts (FO); γ-aminobutyric acid (GABA); gastrocnemius (gastroc.).

The thickness of the gastrocnemius of the Dexa treated group was 0.8 times lower
than that of the control group. It was significantly increased by GABA (1.1 times), lactate
(1.1 times), GABA+lactate (1.2 times), 50 mg/kg FO (1.1 times), 100 mg/kg FO (1.2 times),
and 200 mg/kg FO (1.2 times). The most notable increase was seen with GABA+lactate
and 100 and 200 mg/kg of FO (Figure 4b,d).
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The weight (normalized by body weight) of the gastrocnemius of the Dexa treated
group was 0.6 times lower than that of the control group. It was significantly increased by
GABA (1.3 times), lactate (1.1 times), GABA+lactate (1.5 times), 50 mg/kg FO (1.3 times),
100 mg/kg FO (1.5 times), and 200 mg/kg FO (1.6 times). The most prominent increase
was seen with GABA+lactate and 100 and 200 mg/kg of FO (Figure 4c).

The mean CSA of the muscle fibers of the Dexa group was 0.60 times lower than that
of the control group. It was significantly increased by GABA (1.2 times than Dexa group),
lactate (1.1 times), GABA+lactate (1.3 times), 50 mg/kg FO (1.2 times), 100 mg/kg FO
(1.3 times), and 200 mg/kg FO (1.4 times). The most prominent increase was shown at
200 mg/kg FO (Figure 4e,f).

The grip strength of the Dexa group was 0.8 times lower than that of the control group.
It was significantly increased by GABA (1.1 times), lactate (1.0 times), GABA+lactate
(1.1 times), 50 mg/kg FO (1.1 times), 100 mg/kg FO (1.1 times), and 200 mg/kg FO
(1.2 times). The most prominent decrease was seen with GABA+lactate and 100 and 200
mg/kg of FO (Figure 4g).

3. Discussion

Oxidative stress is one of the main pathophysiological mechanisms of muscle atro-
phy and is induced by various conditions such as malnutrition, disuse, cancer, diabetes,
denervation, and aging [2,36,37].

Excessive intracellular ROS leads to massive protein oxidation, which enhances pro-
tein degradation by various ubiquitin-proteasome systems and downregulation of the
phosphoinositide 3-kinase (PI3K)/Akt pathway, which is essential for protein synthe-
sis [37].

ROS accumulation is known to be increased in aged satellite cells or proliferating
aged myoblasts. Excessive ROS change mitochondrial function, which is the main mecha-
nism in the development of primary sarcopenia induced by aging [38]. Moreover, Dexa
-induced muscle atrophy is also related to increased ROS accumulation [39]. Glucocorticoid
treatment increases the expression of NADPH oxidase, which generates ROS [40,41].

Disturbance of Nrf2-Keap1 signaling is accompanied by human aging and is associated
with the development of sarcopenia. In addition, inhibition of Nrf2 by caveolin-1 enhances
premature senescence [42]. It is also known that Nrf2 has protective roles regarding
oxidative stress-induced muscle damage [12]. Sulforaphane (SFN), an inducer of Nrf2
activation, decreased muscle atrophy induced by oxidative stress [13].

On the other hand, GABA intake decreased oxidized proteins, which is increased in
the skeletal muscle by high fat and increased expression of SOD, catalase, and glutathione
peroxidase. Thus, GABA showed an antioxidant effect in the skeletal muscle [43].

Lactate is known to have antioxidant effects by modulating Nfr2 and reduced cell
death which is induced by ROS [44]. Through the specialized fermentation process, the
oyster extract has enriched GABA and lactate, increasing the oyster’s bioactive proper-
ties [45].

Here, we evaluated the attenuation effect of FO on Dexa-induced muscle atrophy by
increasing the activity of Nrf2. Dexa treatment decreased Nrf2 expression, but this was
restored by the administration of FO (Figure 1a). On the other hand, Keap1 expression was
increased by Dexa, and it was decreased by FO (Figure 1b).

The NADP+/NADPH is frequently used for evaluating NADPH oxidase activity [46].
NADPH oxidases are known as the primary source of ROS in the skeletal muscle cells [47].

SOD transforms superoxide into H2O2 and O2 [48]. Deletion of SOD was reported to
decrease muscle mass since SOD is essential for maintaining muscle fibers [49].

GSH is the most abundant nonprotein thiol in cells and acts as a nonenzymatic
antioxidant that detoxifies hydroperoxides [50,51]. It is reported that a cystine-based GSH
precursor attenuated decreasing muscle mass by reducing the production of ROS [52].

NADPH oxidase activity was increased by Dexa and decreased by FO most promi-
nently at 100 and 200 mg/kg of FO (Figure 1c). HO-1 expression was significantly decreased
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by Dexa and significantly increased by FO. This increase was more evident in 100 and
200 mg/kg of FO than individual administration of GABA, lactate, or GABA+lactate
(Figure 1d). The activity of SOD was significantly decreased by Dexa and significantly
increased by FO. This increase was more evident in 100 and 200 mg/kg of FO (Figure 1e).
The amount of glutathione was significantly decreased by Dexa and significantly increased
by FO. This increase was more evident in GABA+lactate and 200 mg/kg of FO (Figure 1f).
It seemed that FO increased Nrf2 and HO-1, which led to decreased oxidative stress by
decreasing NAPDH oxidase activity, increasing SOD, and increasing GSH in the muscle.

The increased activation of NF-κB led to skeletal muscle atrophy through various
mechanisms. NF-κB upregulates the expression of components of the ubiquitin-proteasome
system, which causes degradation of specific muscle proteins [53,54]. NF-κB increased
the expression of proinflammatory cytokines, such as IL-1β or IL-6, which directly or
indirectly enhance muscle wasting [55]. Furthermore, NF-κB inhibits muscle differentiation-
related genes, such as myoblast determination protein 1 and myogenin, which lead to the
regeneration of atrophied skeletal muscle [56,57].

TNF-α is also related to muscle atrophy. C2C12 myotubes treated with TNF-α showed
an increased Atrogin-1 and Murf-1 (part of the ubiquitin-proteasome system) and de-
creased muscle differentiation-related genes such as myoblast determination protein 1 and
myogenin [58].

Our results showed that the activity of NF-κB and expression of IL-6 and TNF-
α were increased by Dexa but significantly decreased by FO. The decreasing effect of
100,200 mg/kg of FO was similar to GABA+lactate (Figure 2).

IGF-1 is involved in various pathways related to muscle growth, differentiation, and
regeneration [59]. It was reported that FO enhanced the release of IGF-1 and upregulated
the down signal pathway of the IGF-1 receptor (involving GSK-3β at Ser9), leading to bone
formation [60]. IGF-1 signaling is disturbed by ROS-induced upregulation of Cbl-b ubiqui-
tin ligase [9,10]. Decreased IGF-1 signaling led to increased dephosphorylation of Foxo3a,
which induces the expression of MAFbx1/atrogin-1 and MuRF-1 [11]. Dexa treatment
reduced the diameter of C2C12 myotubes and increased Cbl-b ubiquitin ligase, atrogin-1,
and Murf-1. Moreover, Dexa also decreased phosphorylated Foxo3a and increased total
Foxo3a expression in C2C12 myotubes [39].

Herein, we evaluated whether the decreased ROS caused by Nrf2/HO-1 upregulation
affects the expression of Cbl-b ubiquitin ligase and IGF-1. The expression of cbl-b ubiquitin
ligase was increased by Dexa and decreased by FO, with the most decrease seen with
GABA+lactate and 100 and 200 mg/kg of FO in gastrocnemius and soles Figure 3a and
Figure S1a). The expression of IGF-1 in gastrocnemius and soles was decreased by Dexa
and restored by FO. The increasing effects of GABA+lactate and 100 and 200 mg/kg of
FO were not different (Figure 3b and Figure S1b). The expressions of foxO3a, atrogin-1,
and murf1 in gastrocnemius and soles increased significantly by Dexa but significantly
decreased by FO. The decreasing effects of GABA+lactate and 100 and 200 mg/kg of FO
were not different (Figure 3c–e and Figure S1c–e).

The bodyweight, thickness, weight of the gastrocnemius and soleus, and grip strength
were decreased by Dexa but restored by FO. The restoring effects of GABA+lactate and 100
and 200 mg/kg of FO were not different (Figure 4a–d,g, and Figure S2a–c). Moreover, the
CSA of muscle fibers of gastrocnemius and soleus were increased by FO, with 200 mg/kg
of FO being the most effective (Figure 4e,f and Figure S2d,e).

Recently, much evidence suggested that extreme loss of muscle mass and muscle
function increase morbidity and mortality as well as disability in physical function [61].

Thus, interest in finding proper therapeutics for muscle atrophy related to various
diseases has rapidly increased. In conclusion, we showed that FO decreased oxidative
stress by upregulation of Nrf2/HO-1 and increased defense mechanisms such as GSH and
activity of SOD in the Dexa treated muscle. Thus, the decreased oxidative stress induced to
decreased activity of NF-κB, which plays a role in upregulating proinflammatory cytokines.
In addition, the expression of Cbl-b was reduced by decreased oxidative stress and led
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to a restored expression of IGF-1, which consequently led to decreased FoxO3, atrogin1,
and murf1. Thus, decreased inflammatory cytokines and muscle atrophy genes lead to
attenuate muscle atrophy and decreased muscle function.

4. Materials and Methods
4.1. Preparation of FO, GABA, and Lactate

FO extract was obtained from Marine Bioprocess Co., Ltd. (Gijang, Busan, Korea). For
extraction, FO was prepared by fermentation with Lactobacillus brevis BJ20 [29,45,62–64],
and glutamic acid and dextrin were used on behalf of monosodium glutamate and an
excipient, respectively. Glutamate was used as a precursor to producing GABA through a
decarboxylation reaction for fermentation with Lactobacillus brevis BJ20 [45,62–64]. In this
study, used FO was the same batch as used that in a previous report [45,62–64], which
was composed of 46 g/100 g carbohydrate, 36 g/100 g crude protein, 6.3 g/100 g sugars,
114 mg/g GABA, and 40.3 mg/g lactic acid [45,64]. FO was diluted with saline to adjust
the final treatment concentration before use.

4.2. Dexa Incued Muscle Atrophy Mice Model

Male ICR mice (aged nine weeks) were obtained from Orient Bio (Seongnam, Gyeonggi-
do, Korea) and cared at the same condition (temperature of −23 ◦C, relative humidity of
50%, and a dark/light cycle of 12/12 h) with free access to rodent chow and water. After
one week of the acclimation period, mice were then randomly categorized into eight groups
like below:

(i) Control group: mice were orally administered with saline.
(ii) Dexa/Saline group: mice were orally administered with saline, and muscle atrophy

was induced with dexamethasone.
(iii) Dexa/GABA group: mice were orally administered with 5 mg/kg of GABA, and

muscle atrophy was induced with dexamethasone.
(iv) Dexa/Lactate group: mice were orally administered with 4 mg/kg of GABA, and

muscle atrophy was induced with dexamethasone.
(v) Dexa/GABA+Lactate group: mice were orally administered with 5 mg/kg of GABA

+ 4 mg/kg of GABA, and muscle atrophy was induced with dexamethasone.
(vi) Dexa/FO50: mice were orally administered with 50 mg/kg of FO, and muscle atrophy

was induced with dexamethasone.
(vii) Dexa/FO100: mice were orally administered 100 mg/kg of FO, and muscle atrophy

was induced with dexamethasone.
(viii) exa/FO200: mice were orally administered 200 mg/kg of FO, and muscle atrophy

was induced with dexamethasone.

FO, GABA, or Lactate was orally administrated once a day for four weeks. After four
weeks of oral administration, 1 mg/kg of Dexa was subcutaneously injected once a day for
ten days with oral administration [65–67]. After the last Dexa injection, the grip strength
test was performed. All animal experiments were performed with approval according
to the ethical principles of the Institutional Animal Care and Use Committee of Gachon
University (approval no. LCDI-2020-0030).

4.3. RNA Extraction and Complementary DNA (cDNA) Synthesis and Quantitative Real-Time
Polymerase Chain Reaction (qRT-PCR)

The mice gastrocnemius and soleus muscles were homogenized in ice using a dispos-
able pestle in 0.5 mL of RNAiso (Takara; Tokyo, Japan), and samples were added to 0.1 mL
of chloroform centrifuged at 12,000× g for 15 min at 4 ◦C. The aqueous layer was collected,
mixed with 0.25 mL of isopropanol, and centrifuged at 12,000× g for 15 min at 4 ◦C. The
supernatant was discarded, leaving only the pellet that was then washed with 70% ethanol
and dissolved in 50 µL of diethyl pyrocarbonate-treated water. The isolated RNA samples
were synthesized with cDNA using a Prime Script 1st strand cDNA Synthesis Kit according
to the manufacturer’s instructions (Takara).
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After synthesis, qRT-PCR was assessed using cDNA samples by the CFX384 TouchTM
Real-Time PCR detection system (Bio-Rad Laboratories; Contra Costa, CA, USA). Three
hundred nanograms of cDNA samples, 5 µL of SYBR premix (Takara), 0.4 µM forward,
and reverse primers (listed in Table S1) were mixed, then threshold cycle numbers were
determined using CFX ManagerTM software (Version 2.1; Bio-Rad Laboratories).

4.4. Enzyme-Linked Immunosorbent Assay (ELISA)

NADP/NADPH+ ratio (ab65349; Abcam, Cambridge, UK), SOD activity (706002;
Cayman, Ann Arbor, MI, USA), and total glutathione (703002; Cayman Chemical, Ann
Arbor, MI, USA) in the gastrocnemius muscle of each group were determined using the
appropriate kit, following the manufacturer’s instructions.

4.5. Immunohistochemistry (3,3-Diaminobenzidine: DAB)

Tissue blocks of paraffin-embedded gastrocnemius muscle were cut into 7 µm-thick
sections, placed on a coated slide, and cooked at 45 ◦C for 24 h. The Slides with attached
gastrocnemius muscle tissue were deparaffinized and incubated in normal animal serum
to block antibody nonspecific binding. After blocking, primary antibodies were incubated
at 4 ◦C (listed in Table S2), then treated with biotinylated secondary antibodies using an
ABC kit (Vector Laboratories, Burlingame, CA, USA), loaded for 1 h at room temperature.
Slides were reacted with DAB substrate for up to 20 min, then mounted with a coverslip
and DPX mounting solution (Sigma-Aldrich, St. Louis, MO, USA). Images were assessed
using a light microscope (Olympus, Tokyo, Japan), and the intensity of the brown color
was quantified using ImageJ software (Version 1.53e, NIH, Bethesda, MD, USA).

4.6. Hematoxylin and Eosin (H&E) Staining

H&E staining was used for determining the mean cross-sectional area (CSA) of gas-
trocnemius and soleus muscle fiber changes. The muscle tissue slides were loaded with
hematoxylin (DAKO, Glostrup, Denmark) for 1 min, then rinsed using distilled water for
10 min, and incubated in eosin Y solution (Sigma-Aldrich, St. Lois, MO, USA) for 1 min at
room temperature. The completed slides observed under a light microscope (Olympus).
The mean CSA of muscle fiber was measured by ImageJ (Version 1.53e, NIH, Bethesda,
MD, USA). Histological analyses were conducted in a blinded manner, and three operators
conducted at least three replicates of each analysis.

4.7. Statistical Analysis

To validate the significance of the differences among the mice, we performed a Kruskal–
Wallis test for comparisons of the four groups, followed by a Mann–Whitney U test as a
post hoc test. This study was validated using an unpaired t-test. All results are presented
as mean ± Standard deviation, and statistical significance was set at p < 0.05. All statistical
analyses were performed using SPSS version 22 (IBM Corporation; Armonk, NY, USA),
and the means denoted by a different letter indicate significant intergroup differences.

Supplementary Materials: The following are available online. Figure S1: FO reduced muscle
proteolysis through IGF-1 of soleus in a muscle atrophy induced mouse model. Figure S2:FO
improved muscle thickness, weight, and fiber size of soleus in a muscle atrophy induced mouse
model, Table S1: List of primer for qRT-PCR. Table S2: List of antibodies for immunohistochemistry.
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