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Fungi, usually present as commensals, are a major cause of opportunistic infections in 
immunocompromised patients. Such infections, if not diagnosed or treated properly, 
can prove fatal. However, in most cases healthy individuals are able to avert the fungal 
attacks by mounting proper antifungal immune responses. Among the pattern recogni-
tion receptors (PRRs), C-type lectin receptors (CLRs) are the major players in antifungal 
immunity. CLRs can recognize carbohydrate ligands, such as β-glucans and mannans, 
which are mainly found on fungal cell surfaces. They induce proinflammatory immune 
reactions, including phagocytosis, oxidative burst, cytokine, and chemokine production 
from innate effector cells, as well as activation of adaptive immunity via Th17 responses. 
CLRs such as Dectin-1, Dectin-2, Mincle, mannose receptor (MR), and DC-SIGN can 
recognize many disease-causing fungi and also collaborate with each other as well as 
other PRRs in mounting a fungi-specific immune response. Mutations in these receptors 
affect the host response and have been linked to a higher risk in contracting fungal 
infections. This review focuses on how CLRs on various immune cells orchestrate the 
antifungal response and on the contribution of single nucleotide polymorphisms in these 
receptors toward the risk of developing such infections.

Keywords: pattern recognition receptor, C-type lectin receptor, Candida, Aspergillus, pathogenic fungi, single 
nucleotide polymorphisms

iNTRODUCTiON

Fungi are ubiquitously present in the environment and as commensals in humans; therefore, innate 
immunity needs to continuously work against the constant exposure. Pattern recognition receptors 
(PRRs) found on cell surfaces and as soluble forms in body fluids can recognize microbe-specific 
molecules; the so-called pathogen-associated molecular patterns (PAMPs). PRRs are expressed 
on immune cells and also on epithelial cells. The interaction of PRRs with PAMPs induces cell- 
and receptor-specific cellular host responses involving both, the innate and the acquired immune 
system. There are mainly four different kinds of PRR families, including the toll-like receptors, 
Nod-like receptors, C-type lectin receptors (CLRs), and RIG-I-like receptors (1). CLRs can recog-
nize carbohydrates by virtue of having a C-type lectin-like domain (2). The domain consists of a 
conserved double loop structure and a long, structurally, and evolutionarily flexible loop which is 
involved in Ca2+-dependent carbohydrate binding (3). The characteristic fungal cell wall feature is 
its richness in carbohydrates and, therefore, they serve as the candidate targets for recognition by 
CLRs. It is widely accepted that CLRs play major role in antifungal immunity compared to other 
PRRs (1, 4).
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TABLe 1 | C-type lectin receptors and their respective ligands involved in fungal recognition by different human cell types.

Receptor Fungus Ligand Cell Type Reference

Dectin-1 Aspergillus fumigatus, Malassezia spp., Saccharomyces cerevisiae, 
Fonsecaea pedrosoi, Pneumocystis carinii, Cryptococcus 
neoformans, Paracoccidioides brasiliensis, Histoplasma capsulatum, 
Coccidioides posadasii, T. mentagrophytes, Candida albicans, 
Talaromyces marneffei, Fusarium solani, Exserohilum rostratum, 
Cladosporium cladosporioides, T. asahii, and Sporothrix schenckii

β-1,3-glucan hDC, macrophages, bronchial 
epithelial cells, monocytes, 
neutrophils, mast cells, dendritic 
cells (DCs), and pulmonary 
epithelium

(12, 15–32)

Dectin-2 A. fumigatus, Malassezia spp., F. pedrosoi, H. capsulatum,  
T. rubrum, C. albicans, C. glabrata, and M. audouinii

α-mannans DCs, macrophages (11, 33–37)

MR A. fumigatus, S. cerevisiae, P. carinii, C. neoformans, P. brasiliensis, 
C. albicans, C. parapsilosis, T. marneffei, and S. schenckii

gp43 (P. brasiliensis), 
mannoproteins (C. 
neoformans), and α-mannans

Corneal epithelial cells, alveolar 
macrophages (AMs), DCs, 
monocytes, and keratinocytes

(38–47)

SP-A, 
SP-D

A. fumigatus, S. cerevisiae, Pneumocystis spp., C. neoformans, 
Histoplasma spp., and Coccidioides spp.

β(1→6)-glucan, gpA 
and gp120 (P. carinii), 
glucuronoxylomannan, and 
mannoprotein (C. neoformans)

Isolated from lung lavage fluids (48–54)

MBL A. fumigatus, P. carinii, C. neoformans, and C. albicans Purified from plasma (55–58)

DC-SIGN A. fumigatus, S. cerevisiae, C. neoformans, C.albicans, T. marneffei, 
and C. topicum

Galactomannans  
(A. fumigatus), mannoprotein 
(C. neoformans), and N-linked 
mannans

DCs, AMs (5, 39, 
59–64)

Mincle A. fumigatus, Malassezia spp., F. pedrosoi, P. carinii, and C. albicans α-mannose, glyceroglycolipid 
and mannosyl fatty acids 
(Malassezia spp.), MSG/gpA 
(P. carinii)

Corneal epithelial cells, monocytes, 
macrophages, neutrophils, myeloid 
DCs, and some B-cell subsets

(36, 65–69)

MCL C. neoformans, C. albicans α-mannans Plasmacytoid dendritic cells (70, 71)

CR3 A. fumigatus, M. furfur, S. cerevisiae, P. brasiliensis, H. capsulatum, 
and C. albicans

pH-regulated Ag 1 (C.albicans) Neutrophils, macrophages, natural 
killer cells, and monocytes

(5, 72–78)

Lox-1 A. fumigatus Corneal epithelial cells (79, 80)

Langerin M. furfur, S. cerevisia, C. albicans, C. glabrata, C. krusei,  
C. parapsilosis, and C. tropicalis

β-glucan Langerhans cells (81)

MelLec A. fumigatus 1,8-dihydroxynaphthalene-
melanin

Endothelial cells, macrophages (82)
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C-type lectin receptors can be found as soluble forms in 
the serum and other body fluids or as transmembrane recep-
tors on various immune cells, such as macrophages, dendritic 
cells (DCs), neutrophils, and various other cell types (Table 1) 
(5). Although CLRs have been divided based on their domain 
organization and phylogenetic features (3, 6), a broader clas-
sification of transmembrane receptors is possible based on 
the type of signaling mechanisms employed by them (7). One 
such mechanism is the signaling of CLRs via immunoreceptor 
tyrosine-based activation motifs (ITAMs). The ITAM motif 
(consensus sequence YxxL/I) recruits and phosphorylates Syk 
kinase on receptor ligation. Signaling via Syk typically leads 
to NF-κB activation via the complex consisting of caspase 
recruitment domain-containing protein 9 (CARD9) singalo-
some, a trimeric CARD9, B  cell lymphoma/leukemia 10, and 
the mucosa-associated lymphoid tissue lymphoma transloca-
tion protein 1. Syk activation ultimately induces subsequent 
proinflammatory responses, as well as other responses, such as 
phagocytosis and reactive oxygen species (ROS) and reactive 
nitrogen species (RNS) production (8, 9). Some CLRs do not 
have their own cytoplasmic ITAMs. Such receptors couple with 

ITAM containing adaptor molecules like FcRγ to emanate sign-
aling (10, 11). Dectin-1 is another non-classical CLR bearing 
a hemITAM motif (consensus sequence YxxL) and the ligand 
binding is Ca2+ independent (12). A second signaling mecha-
nism with contrary effects to those elicited by ITAM signaling 
is employed by CLRs containing a cytoplasmic immunoreceptor 
tyrosine-based inhibitory motif (ITIM). Here, receptor ligation 
leads to the phosphorylation of tyrosine within the ITIM motif 
(consensus sequence I/V/L/SxYxxI/L/V) and the recruitment 
of SHP-1, SHP-2, and/or SHIP-1 phosphatases which exert an 
inhibitory effect by dampening the proinflammatory response 
(13, 14). Finally, some CLRs do not contain any known signaling 
motifs and, therefore, only little is known about their signaling 
mechanisms, such as LOX-1, MR, and langerin.

Fungal pathogens have a huge influence on human life, since 
they can infect the human body and cause various diseases 
from superficial infections to invasive and systemic infections. 
Infections of the skin and nails are the most common fungal 
diseases which affect ~25% of the general population worldwide 
(83). Invasive fungal infections have a lower incidence than 
superficial infections; however, they are of greater concern 
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FiGURe 1 | A diagrammatic representation of C-type lectin receptors (CLRs) involved in the recognition of various fungal species, and the resepective cellular 
responses triggered on receptor–ligand binding.
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because they are associated with high morbidity and mortality. 
They are mostly caused by opportunistic fungal pathogens that 
take advantage of a debilitated immune system to proliferate in 
the human host and cause disease (84). Among the fungal spe-
cies, only several 100 species are associated with human fungal 
diseases and just a minor number of species cause the most 
common invasive infections in immunocompromised individu-
als (85). The most notorious genera that are responsible for more 
than 90% of all reported fungal-related deaths are Cryptococcus, 
Candida, Aspergillus, and Pneumocystis (84). This increased 
prevalence of fungal infections has motivated the study of host–
pathogen interactions in order to understand the protective and 
nonprotective mechanisms of antifungal immune responses in 
the human body. Investigation of the fungal recognition by 
the innate immune system led to the discovery of CLRs, the 
best-characterized PRRs for fungi. CLRs recognize carbohy-
drate polymers (mannan, glucans, and chitins) present in the 
fungal cell wall, resulting in the induction of innate and adaptive 
immunity to clear the pathogen (Figure 1; Table 1) (86).

In the following sections, we will summarize the current 
knowledge about the interaction of important human pathogenic 
fungi with CLRs. We further include information on CLR-
associated single nucleotide polymorphisms (SNPs) and their 
effect on the susceptibility to fungal infections.

OPPORTUNiSTiC iNvASive MYCOSeS

Aspergillus spp.
Aspergillus species (Aspergillus spp.) are ubiquitous molds com-
monly found in the soil. They produce a large number of conidia, 
which are released and dispersed into the air by wind leading to a 
deep penetration into the respiratory tract upon inhalation (87). 
These conidia are effectively cleared from the lungs of immuno-
competent individuals. However, patients with a compromised 
immunity are at risk of developing an acute invasive aspergillosis 
(AIA). AIA is characterized by hyphal invasion of lung tissues and 
even dissemination to other organs (87). Aspergillus fumigatus 
(A. fumigatus) accounts for about 65% of all invasive infections 
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in humans and is the most frequently encountered Aspergillus 
spp. in pulmonary infections. A. flavus, A. niger, A. terreus, and  
A. nidulans are less frequent causes of infections (87). The primary 
innate immune response is mediated mainly by macrophages, 
DCs, and neutrophils, taking place after Aspergillus spp. encoun-
ters these cells. Several of the Aspergillus cell wall components, 
such as β-glucans, chitins, and mannans act as ligands that are 
recognized by CLRs. Ligation results in the activation of cellular 
immune responses, such as phagocytosis, extracellular trap for-
mation, conidial killing, and the production of proinflammatory 
and anti-inflammatory cytokines, such as TNF-α, IFN-α, IL-6, 
and IL-18 (88–91). Fungal recognition by specific CLRs can 
depend on morphological changes of Aspergillus spp., since dif-
ferent growth forms expose diverse PAMPs at variable amounts 
on their surface. For example, the surface of the Aspergillus 
dormant conidia does not present β-glucan, but is accessible 
for receptor recognition after the loss of hydrophobic cell wall 
components (outer layer of rodlets/hydrophobins and melanin) 
during the swelling of conidia and the development of germ 
tubes (89, 92, 93). Several CLRs are involved in the recognition of 
Aspergillus spp. such as the transmembrane receptors Dectin-1, 
Dectin-2, MR, DC-SIGN, and the soluble collectins MBL and 
the lung surfactant proteins (SP) SP-A and SP-D (94) (Table 1). 
The most studied Aspergillus receptor is Dectin-1. It is present 
on the surface of myeloid cells recognizing β-1,3-glucan, a com-
mon component of the cell wall of several fungi (15). However, 
another Aspergillus cell wall-associated polysaccharide, the 
galactosaminogalactan, has also been identified as a ligand and 
prevents host inflammatory responses in vitro and in vivo, in part 
by avoiding cell wall β-glucans recognition by Dectin-1 (95). 
Several observations suggest a significant role for Dectin-1 in 
protective immunity against A. fumigatus (96–98). A. fumigatus 
also induces the expression of cytokines (TNF-α and IL-12) and 
genes related to fungal recognition and phagocytosis in imma-
ture human DCs (99). The transcription of Dectin-1 in response 
to A. fumigatus likely occurs via granulocyte-macrophage 
colony stimulating factor (GM-CSF)/PU.1, where GM-CSF 
potentiates the expression of PU.1, which carries out transcrip-
tion of Dectin-1 augmenting Dectin-1 protein expression and 
responsiveness in THP-1 cells (100, 101). In HEK293T cells, the 
activation of AP-1 by heat-killed swollen conidia was inhibited 
by treatment with Syk inhibitor, indicating that the Syk signaling 
pathway is required for AP-1 activation in a Dectin-1-dependent 
manner (102). Silencing of Dectin-1 in murine macrophages 
resulted in a reduced expression of proinflammatory cytokines, 
and an observed inhibition of phagocytosis (103). Likewise,  
A. fumigatus conidia and germ tubes stimulated NF-κB activation, 
mediated the secretion of proinflammatory cytokines involved in 
the recruitment of neutrophils, and led to ROS production by 
human monocyte-derived macrophages, murine macrophages, 
and alveolar macrophages (AMs) (89, 92, 93). Clinical studies 
showed that individuals who developed AIA during the course of 
chemotherapy often displayed a defective expression of Dectin-1. 
The frequency of Dectin-1-expressing monocytes was reduced in 
patients with AIA compared to controls (65.6 vs. 87.5%) (104). 
This important role of Dectin-1 was confirmed by transfecting 
murine AMs with a vector encoding full-length Dectin-1 (105). 

Results demonstrated that Dectin-1 overexpression enhanced 
the generation of proinflammatory cytokines TNF-α and 
IL-1β, and enhanced the killing ability of macrophages during  
A. fumigatus exposure (105). The epithelial lining of human 
airways is another important spot for host-pathogen interac-
tions, and Dectin-1 is also expressed in lung tissues (12). One 
study found that A. fumigatus induces the expression of Dectin-1 
via TLR-2 in human bronchial epithelial cells, resulting in the 
stimulation of proinflammatory responses and ROS generation in 
response to A. fumigatus indicating its important role in the innate 
immune response in non-phagocytic cells (106). Furthermore, 
some findings indicate that the pulmonary infection of mice with 
A. fumigatus induces concurrent Th1 and Th17 responses that 
depend on Dectin-1 (107). With regards to Aspergillus-induced 
fungal keratitis, recent findings demonstrated that Dectin-1 is 
expressed in the cornea of rat and mice, where it is involved in the 
detection of invading fungi (108–110). Also Dectin-2 triggers a 
response to A. fumigatus infection. Human plasmacytoid den-
dritic cells (pDCs) recognize A. fumigatus hyphae via Dectin-2, 
resulting in cytokine release and extracellular trap (pET) 
formation (88). The noticeable Dectin-2 expression of AMs in 
human lung during A. fumigatus invasion suggests a prominent 
contribution to antifungal defenses in pulmonary aspergillosis 
(90). Moreover, Dectin-2 ligation leads to NF-κB activation and 
ROS production in response to A. fumigatus infection in human 
macrophages (111). An A. fumigatus-specific ligand has not been 
described until now, but Dectin-2 binds to high-mannose struc-
tures distributed in several fungal species, including Aspergillus 
spp. (33). Collectins, such as SP-A, SP-D, and MBL also bind 
to A. fumigatus (55, 112). One study about the contribution of 
MBL in the antifungal defense in invasive pulmonary aspergil-
losis (IPA) showed that in murine models of IPA, rhMBL-treated 
(recombinant human MBL) mice showed 80% survival compared 
to untreated IPA mice. A clear increase of TNF-α and IL-1α in 
treated IPA mice and a significant decrease in pulmonary fungal 
hyphae and IL-10 could be observed (113). In vitro, there was 
an enhanced uptake of A. fumigatus conidia by polymorphonu-
clear neutrophil (PMNs) in the presence of rhMBL, indicating 
a protective role of this receptor during IPA, possibly through 
MBL-mediated lectin complement activation (113). SP-A and 
SP-D also enhanced agglutination and binding of conidia to AMs 
and neutrophils and increased the phagocytosis, oxidative burst, 
and killing of A. fumigatus conidia by human neutrophils and 
AMs (91). The SP-D-mediated protective mechanism is depend-
ent on calcium-activated protein phosphatase calcineurin (114) 
and include enhanced phagocytosis by recruited macrophages 
and neutrophils and enhanced local production of the Th1 
cytokines TNF-α and IFN-γ in the supernatant from mice lung 
cell suspension (115). Corneal epithelial cells also express SP-D 
and in the setting of fungal keratitis A. fumigatus may induce 
these cells to express inflammatory cytokines via the SP-D and 
NF-κB pathway (116, 117). Since β(1→6)-glucan is a ligand for 
SP-D and since many fungi, including Aspergillus spp., have 
this carbohydrate structure in their cell wall compositions, it is 
expected that SP-D recognizes all Aspergillus spp. (48).

Several other CLRs ligate Aspergillus spp., but for each only 
a few data are available. DC-SIGN, another transmembrane 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


5

Goyal et al. The Interaction of Human Pathogenic Fungi With CLRs

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1261

receptor of the CLR family expressed on the surface of DCs, con-
tributes to the binding of A. fumigatus conidia in human DC (59). 
However, DC-SIGN is also expressed in AMs and lung tissue, 
suggesting a contribution of DC-SIGN in the initial stages and 
in fungal spreading during AIA (60). Galactomannans appear to 
be the main DC-SIGN ligand on the cell wall of A. fumigatus 
conidia (60). Additionally, CR3 influences adaptive responses to 
Aspergillus. Blocking of CR3 significantly reduced Aspergillus-
induced Th1 and Th17 responses independently from comple-
ment activation, demonstrating that CR3 might play a significant 
role in the adaptive host defense against A. fumigatus (72).

In fungal keratitis models, LOX-1 was increased in A. fumigatus 
infected corneas of C57BL/6 mice and human corneal epithelial 
cells, indicating a possible role of this receptor in controlling the 
infection (79, 80). In addition, Mincle and MR may play a role in 
the early innate immune response of the corneal resistance, since 
their expression increased significantly during the initial period 
of A. fumigatus infection, along with an increased expression of 
TNF-α and IL-1β in human and rat cornea (38, 65). A. fumigatus-
specific ligands for these receptors have not been described up 
to now.

Recently, the CLR Clec1a, also called melanin-sensing C-type 
lectin receptor (MelLec), has been decribed to play an important 
role in the detection of A. fumigatus through recognition of the 
naphthalene-diol unit of 1,8-dihydroxynaphthalene-melanin in 
conidial spores of A. fumigatus. MelLec is ubiquitously expressed 
by CD31+ endothelial cells in mice and is required for protec-
tion against disseminated infection with A. fumigatus. MelLec is 
also expressed by myeloid cells in humans and a SNP within the 
coding region of this receptor (rs 2306894) was identified that 
significantly increased the susceptibility of stem-cell transplant 
recipients to AIA (82). AIA is of great interest for immunogenetic 
studies due to its high prevalence. A moderately large number 
of studies have investigated the association of SNPs and other 
genetic variations of different CLRs in order to get some benefit 
for preventive strategies. For Dectin-1, the CLEC7A rs3901533 
(T/T) and rs7309123 (G/G) genotypes and the presence of Y238X 
(rs16910526) polymorphism resulted in a significantly increased 
risk of AIA in a Caucasian population (118–120). Two SNPs of 
CD209 encoding DC-SIGN (rs735239 and rs735240) are associ-
ated with a higher susceptibility to fungal keratitis in the northern 
Han Chinese population (121). Association analysis revealed that 
carriers the CD209 rs4804800 (G), rs11465384 (T), rs7248637 
(A), and rs7252229 (C) alleles and the variant CD209-139A/G 
(rs2287886) in the Caucasian population had a significantly 
increased risk of contracting IPA (118, 122).

Several studies show that distinct alleles, genotypes, and 
genotype arrangements of SFTPA2 and MBL2 may contribute to a 
susceptibility of the host to aspergillosis. A significant association 
of SFTPA2 1649G and SFTPA2 1660G and MBL2 1011A alleles 
with allergic bronchopulmonary aspergillosis patients suggests 
that defects in these innate immune molecules may lead to an 
increased genetic susceptibility to allergic airway inflammation 
and asthma (123–126). Another study implies that the presence 
of the T allele and CT genotype at position 868 of MBL2, the CC 
genotype at position 1649 of SFTPA2, and its combination with 
the CC or CT genotype on position 868 of MBL gene increases 

susceptibility specifically to chronic cavitary pulmonary aspergil-
losis in the Caucasian population (127). It was demonstrated that 
the presence of the codon 52 mutation (W/M52) within the MBL 
gene was particularly common in patients with chronic necrotiz-
ing pulmonary aspergillosis. Since the mutation results in changes 
in the protein structure, it is likely that a reduced amount of active 
protein is available for pathogen clearance (128).

Overall, Dectin-1 plays an important role in the local immune 
response during aspergillosis by inducing the expression of 
proinflammatory cytokines. Dectin-1 is the best-characterized 
CLR for the recognition of A. fumigatus, since it recognizes 
β-1,3-glucan, which is a major component of the inner cell wall of 
this fungus. Even a single polymorphism results in a significantly 
increased risk of contracting AIA, indicating the importance of 
this receptor in the contribution to antifungal defenses. With 
regards to the other CLRs recognizing Aspergillus spp., more 
studies are required in order to establish a concrete role of them 
during an AIA.

Candida spp.
The most common species of Candida responsible for causing 
human diseases is Candida albicans. It is an opportunistic patho-
gen that commensally colonizes not only the skin but also the 
gastro-intestinal and urino-genital mucosal surfaces mostly in 
yeast form in healthy individuals. In cases of immunosuppression 
or weakening, the yeast forms can convert into virulent hyphae 
that can cause either muco-cutaneous infection or disseminate to 
internal organs causing candidaemia (129). In addition to phe-
notypic switching between yeast and hyphal forms, C. albicans 
virulence factors include adhesion properties, secreted lipases, 
and aspartyl proteases (130). Other clinically relevant Candida 
species include C. krusei, C. glabrata, C. tropicalis, C. parapsilosis, 
and others (131). Among the Candida species-recognizing CLRs 
are Dectin-1, Dectin-2, MCL, Mincle, MR, DC-SIGN, CR3, MBL, 
and Langerin.

Dectin-1 is a type II transmembrane receptor expressed on 
several antigen-presenting cells of myeloid origin, including 
macrophages, monocytes, neutrophils, mast cells, DCs, as well 
as pulmonary epithelium (12, 16). Like A. fumigatus and other 
fungi, Dectin-1 also recognizes C. albicans by binding to β-1,3-
glucan (Table 1) (132).The binding of β-1,3-glucan to Dectin-1 
is Ca2+-independent (133). Notably, Dectin-1 recognition of the 
yeast form of C. albicans induces responses such as phagocytosis 
and oxidative burst in mouse phagocytes, ultimately resulting 
in the clearance of the yeast cells; in contrast, filamentous forms 
may mask the β-glucans by mannans and affect certain β-glucan-
mediated responses (17, 134, 135). However, C. albicans germ 
tubes can be resognized by Dectin-1 in Syk-dependent mecha-
nism and initiate Th-17 response (136).

Dectin-1 recognition of C. albicans or its ligand β-1,3-glucan 
initiates several distinct immune responses. β-1,3-glucan-Dectin-1 
binding leads to NFκB-mediated ROS production and proin-
flammatory cytokine release, such as IL-12, TNFα, and IL-6, via 
the Syk-CARD9 pathway in mouse DCs and macrophages, as 
well as in human intestinal cells. The response is enhanced in 
co-operation with TLR-2 (137–141). Interestingly, C. albicans 
activation of Dectin-1 can also result in anti-inflammatory 
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responses, like IL-10 release by macrophages and peripheral 
blood mononuclear cells (PBMCs) or the production of IL-1 
receptor antagonist (IL-1Ra) (142–144). Furthermore, ligation of 
Dectin-1 on APC by C. albicans, but also by other fungi and even 
the endogenous ligand galectin-9 drives T cell differentiation into 
a TH2/TH17 response (145–148). PKCδ is essential for CARD9-
dependent NFκB activation (149). C. albicans also induces mast 
cell activation in rat and mice that leads to a differential cytokine 
production depending upon the fungal morphology, and induces 
phagocytosis and nitric oxide production in a TLR-2 and 
Dectin-1-dependent manner (150, 151). A similar co-operation 
of Dectin-1 with TLR-2 and TLR-4 can be observed in human 
mononuclear cells, PBMCs, and macrophages on stimulation 
with β-1,3-glucan (152, 153). The Dectin-1-Syk-CARD-9 path-
way can also activate IRF5 to produce IFN-β (154) or ERK to 
generate proinflammatory responses against C. albicans (155). 
Moreover, Dectin-1 also mediates the β-1,3-glucan-medidated 
opsonization-independent phagocytosis by human neutrophils 
and retinal microglia (156, 157). The Syk-dependent pathway is 
also involved in β-1,3-glucan-containing phagosome maturation 
and recruitment of TLR-9 in RAW cells (158). Additionally, 
Dectin-1 involvement with C. albicans activates many other 
signaling pathways. Dectin-1 binding with C. albicans can 
activate NFAT transcription factors induce IL-2, IL-10, and 
IL-p70 release in collaboration with TLR-2 in mouse DCs  
(15, 159). β-1,3-glucan-induced human DCs activate NFκB via 
Syk as well as Raf-1 in vitro. In fact, Raf-1 activation represses Syk-
induced RelB activity, although not completely, and increases p65 
transactivation activity to induce IL-12p40 and IL-1β production 
(160). Several studies based on human and mouse cell lines have 
demonstrated that Dectin-1 is important in activating the inflam-
masomes such as the noncanonical caspase-8 inflammasome 
that promotes Th-17 responses which are essential for antifungal 
immunity (136, 161–166). Th17 responses are important against 
cutaneous infection, while Th1 responses are directed against 
systemic infection (134). Dectin-1 also co-operates with other 
CLRs such as SIGNR1 in mouse macrophages enhancing the 
oxidative burst against C. albicans (167). Some studies have also 
demonstrated a Dectin-1-dependent CR3 activation on mouse 
neutrophils and subsequent killing of C. albicans by these cells 
(168, 169). Human neutrophils release neutrophil extracellular 
traps in response to C. albicans in  vitro, triggered by the ROS 
production on recognition of β-glucan by Dectin-1 and CR-3 
(170, 171). Interestingly, Dectin-1 stimulation with C. albicans 
or β-1,3-glucan can also generate certain immunomodulatory 
responses, e.g., IL-10 production and reduction in ROS produc-
tion via SHIP-1 activation in mouse GM-CSF-derived bone mar-
row cells (172). Additionally, C. albicans-Dectin-1 engagement 
induces human as well as mouse granulocytic myeloid-derived 
suppressor cells to dampen the pathogenic hyperinflammatory 
NK and Th17 responses (173). Moreover, a recent study has 
also demonstrated a role of Dectin-1 in adaptive immunity by 
controlling CD4+ T cell responses in the murine gut (174). All 
these results indicate how C. albicans can influence the immune 
responses by engaging the same receptor on different cell types.

Mouse knockout studies have shown contrasting results. 
Dectin-1 deficient mice display defective macrophage activation 

with impaired subsequent inflammatory responses and present 
enhanced fungal burden and dissemination after C. albicans 
infection (163, 175). However, further mouse studies implied 
that Dectin-1 deficiency probably plays a minor role in systemic 
Candida infection but may control the mucosal infections  
(176). The differences in the results may be attributed to 
different mouse and C. albicans strains used in experiments 
(177). Dectin-1-deficient mice also are more susceptible 
to C. glabrata infections and show impaired inflammatory 
responses (178).

Polymorphisms in Dectin-1 have been studied with respect 
to Candida infections. The first study to report an early-stop-
codon mutation Y238X in a family with recurrent vulvovaginal 
candidiasis (RVVC) among four women demonstrated that the 
monocytes and neutrophils from homozygotes lack Dectin-1 
expression and are defective in cytokine production such as IL-17 
upon C. albicans stimulation in vitro. However, phagocytosis and 
killing of fungi is normal (179, 180). Another report demonstrated 
that heterozygotes for Y238X receiving hematopoietic stem cell 
transplantation display an increased incidence of gastrointestinal 
Candida colonization. The monocytes of homozygotes show less 
IL-1β production and lack of TLR-2-Dectin-1 synergism comple-
menting the previous in vivo and in vitro studies describing the 
role of Dectin-1 in Candida infections (181). In an HIV-infected 
African population, a mutation I223S has been associated with a 
lower IFNγ response to C. albicans stimulation of whole blood 
and tends to provide protection against oropharyngeal candidi-
asis (182).

The hyphal form of C. albicans can be recognized by Dectin-2, 
which binds to high-mannose structures such as α-mannans 
in a cation-dependent manner and is expressed predominantly 
on macrophages and DCs (Table 1) (11, 33). Several studies in 
mouse DCs and macrophages have demonstrated that Dectin-2 
mediates its signaling via the ITAM-bearing adapter FcRγ and 
the Syk-CARD9 pathway but the subsequent responses seem 
to differ depending upon the cell type, fungal morphology, 
and methodologies (11, 34, 183, 184). Nevertheless, C. albicans 
recognition by Dectin-2 can induce phagocytosis, proinflam-
matory cytokine production, such as IL-6, IL-23, TNFα, and 
IL-12 as well as protective Th-17 responses (34, 183). In addi-
tion, Dectin-2-deficient mice show decreased survival and high 
kidney fungal burden after 10 days of infection with C. albicans 
(34). Indeed, it was later shown in two independent studies that 
Dectin-2-deficient mice are also susceptible to C. albicans and  
C. glabrata systemic infections, showing high fungal burdens in 
kidneys and reduced neutrophilic phagocytosis (185, 186). Similar 
to Dectin-1, Dectin-2 can also induce type I IFN responses in 
mouse macrophages and DCs by activating IRF5 in response to  
C. albicans (154). PLCγ2 is essential for Dectin-2-mediated 
NF-κB, MAPK and ROS activation in mouse macrophages 
when infected with hyphal C. albicans (187). Zhu et al. showed 
that Dectin-2 and MCL (Dectin-3) heterodimers recognize  
C. albicans α-mannans more effectively than either receptor alone 
and that MCL-deficient mice are highly susceptible to systemic 
candidiasis (70). However, most of these studies have been per-
formed in mouse models and provide a picture of Dectin-2 and 
MCL roles in murine Candida infections, and studies regarding 
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their role in the human host and the impact of mutations in the 
human receptors will be needed in order to complete the picture.

Mannose receptor is a mannan-binding lectin found on pha-
gocytic cell surfaces and recognizes C. albicans α-mannans 
(Table 1) (39). Early studies have demonstrated the involvement 
of MR in cytokine release, non-opsonic phagocytosis, and killing 
of Candida spp. by phagocytic cells (Figure  1) (40, 188, 189). 
Human DCs phagocytose and kill Candida via MR leading to 
subsequent responses such as Th1 immunity and ROS production 
(39, 190–192). Dectin-1 engagement with C. albicans on mouse 
macrophages induces surface MR shedding which could be the 
reason for downregulation of MR surface expression observed on 
rat macrophages after C. albicans ingestion (193, 194). Dectin-1 
was later shown to be the main phagocytic receptor, while MR is 
recruited to phagosomes in mouse macrophages in later stages 
and mediates the secretion of immunomodulators such as TNFα 
and MCP-1 (195). Indeed, MR-deficient mouse macrophages are 
able to take up and phagocytose C. albicans normally (195, 196). 
However, in human phagocytic cells, MR induces Th17 responses 
upon stimulation with C. albicans in vitro by inducing IL-1β and 
prostaglandin E2 production, which is enhanced by Dectin-1/
TLR-2 synergism (162, 197–199). Neumann et al. reported the 
formation of unique MR-induced pseudopodial protrusions 
called fungipods in human monocyte-derived DCs in response to 
C. albicans yeast, which may have role in fungal phagocytosis. This 
response is species-specific with C. parapsilosis showing stronger 
fungipod formation compared to C. albicans and C. tropicalis 
(41). In fact, the innate immune recognition of C. parapsilosis 
complex and C. albicans by human PBMCs differ with respect to 
the receptors involved and the induced cytokine production; for 
example, MR is important for TNFα and IL-1β production upon 
C. parapsilosis stimulation (200). Interestingly, IFNγ stimulation 
of human monocyte-derived DCs and macrophages increases 
the candidacidal activity of these cells by increasing non-opsonic 
phagocytosis and ROS production which is related to a reduced 
expression of MR (201, 202). So far, no genetic studies have been 
performed to understand the significance of MR polymorphisms 
in Candida infections.

Candida albicans yeast and hyphae are also recognized by 
the collectin MBL (56, 203). Several studies have demonstrated 
the binding of Candida spp. to MBL followed by activation  
of the complement system and subsequent opsonophagocytosis 
of fungi by phagocytic cells in vitro (204–206). Li et al. demon-
strated MBL-dependent opsonophagocytosis of C. albicans by 
human neutrophils but without complement activation. This 
response was coupled with intracellular Dectin-1-dependent 
ROS production (207). Parenteral administration of MBL 
increased the resistance of mice in a model of disseminated 
candidiasis (56). In fact, mice deficient in MBL-A and MBL-C 
(mice homologs to human MBL) are more susceptible to 
systemic Candida infection (208). MBL is expressed in the 
mouse gut and its blocking or elimination leads to increased 
C. albicans colonization (209). MBL can also modulate the  
C. albicans-triggered TLR-generated proinflammatory signals 
by THP-1 cells (210). MBL concentrations are greatly affected 
by promoter polymorphisms in the MBL2 gene and the result-
ing lower MBL levels are linked to the risk to develop several 

infectious diseases (128, 211, 212). Reduced levels of MBL 
were observed in the cervicovaginal lavage of RVVC patients, 
while the levels were higher in VVC patients compared to 
healthy controls (213–215). Moreover, MBL deficiency is also 
associated with the development of abdominal yeast infection 
in peritonitis patients (216). However, MBL serum levels and 
genotypes were not associated with intra-abdominal candidiasis 
in a Swiss cohort (217). The RVVC patients also have a higher 
frequency of MBL2 mutations compared to both VVC and 
healthy groups (214). Furthermore, the MBL2 codon 54 allele 
B is associated with a higher susceptibility to RVVC as observed 
in Belgian, Latvian, and Brazilian women (215, 218, 219). A 
recent meta-analysis of five different studies also concluded the 
correlation of allele B of codon 54 to be associated with both 
RVVC and VVC (220). Only a couple of studies have addressed 
the polymorphisms in components of MBL complement path-
way in development of invasive fungal infections (221, 222). 
The polymorphisms in MBL complement pathway components 
have been associated with other infectious diseases as well, 
such as tuberculosis and leprosy (223, 224) and further studies 
exploring the effects of mutations in complement proteins on 
the pathogenesis of fungal infections are still needed.

Another CLR, DC-SIGN, can recognize the N-linked man nans  
in the C. albicans cell wall (39, 225). It mediates the internalization  
of conidia by human DCs, which are abundantly present in mucosal 
tissue (Table 1) (61), although human DCs exhibit less-efficient 
phagocytic activity compared to monocytes and macrophages 
(226). Gringhuis et  al. showed that C. albicans stimulation can 
modulate TLR-dependent pathways by Raf-1 activation in human 
DCs. There is also evidence for possible anti-inflammatory effects 
upon DC-SIGN ligation. However, data so far are derived from 
non-fungal ligands (227). The fungus-induced IL-10 production 
is mediated through coactivation of DC-SIGN and TLR signaling 
pathways (228). The mouse homolog of DC-SIGN, SIGNR1 works 
in co-operation with Dectin-1 and TLR-2 in mouse macrophages 
to induce responses such as oxidative burst and TNFα production 
in vitro (167, 229). Knockout mouse studies and genetic studies 
may enlighten us more regarding the importance of this CLR in 
these fungal infections.

Candida albicans is also recognized by Mincle, another CLR 
expressed on several immune cells (Table  1), although the 
related ligand has not yet been discovered (230). An in vivo study 
demonstrated a non-redundant role of Mincle against Candida 
infection as Mincle-deficient mice were highly susceptible to 
systemic candidiasis. Mincle induces TNFα production in mouse 
macrophages upon C. albicans hyphae stimulation in vitro but is 
not important for phagocytosis, indicating that Mincle has a role 
in initial macrophage binding and early responses to the fungus 
(66). A similar effect was observed in human monocytes where 
the stimulation with C. albicans yeast leads to TNFα production 
but is related to poor yeast uptake. However, human neutrophils 
expressing Mincle show a fungicidal activity correlated with 
phagocytosis of the yeast (231). Taken together, more studies are 
needed to discover the C. albicans ligand(s) for Mincle and the 
related pathways as well as in vitro and in vivo immune responses 
and further work is necessary to elucidate the role of Mincle 
polymorphisms in fungal infections.
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CR3 is an important CLR expressed on neutrophils, mac-
rophages, NK cells, and monocytes and is involved in adhesion 
and phagocytosis of C. albicans (5, 73, 232). CR3 has a role in  
C. albicans hyphae recognition as the human lymphocyte adhe-
sion of C. albicans hyphae was abrogated upon blocking CR3 
with monoclonal antibodies (233, 234). Soloviev et  al. showed 
that C. albicans releases a soluble CR3-binding mannoprotein 
called pH-regulated Ag 1 (Pra1), which mediates CR3-dependent 
adhesion and migration of THP-1 cells and neutrophils toward 
C. albicans (74, 235). Pra1 is expressed highly and exclusively on 
C. albicans hyphae (236). Soluble Pra1 was found to be beneficial 
for fungal survival as it inhibits the human neutrophil activation 
upon stimulation with Pra1 overexpressing C. albicans hyphae 
(235). Additionally, a CR3 knockout mouse study demon-
strated that these mice show an increased susceptibility toward  
C. albicans systemic infection (168, 237) and their neutrophils 
display impaired adhesion, migration, and oxidative burst when 
challenged with C. albicans in  vitro (237). Several studies have 
shown β-glucan to be another potential ligand for CR3 (238–240). 
Dectin-1 and CR3 co-localize on yeast C. albicans phagocytic cups 
in mouse peritoneal macrophages (195). Further studies support 
the interaction of Dectin-1 and CR3 in C. albicans infection as 
mentioned earlier. Dectin-1 activates CR3 for recognition of  
C. albicans yeast components and together they induce neutrophil 
cytotoxic responses in mice (168, 169).

Langerhans cells (LCs), found in epidermis and mucosal 
linings, express Langerin, which can bind to β-glucans and 
recognizes Candida spp., including C. albicans, C. glabrata,  
C. parapsilosis, C. tropicalis, and C. krusei, among others, in vitro 
(81, 241, 242). Some studies have shed light on the roles of LCs in 
Candida infections (243, 244), but specific studies regarding the 
role of Langerin are lacking.

Taken together, Candida is recognized by a number of 
CLRs, each of which is able to generate fungal-specific immune 
responses. While Dectin-2 and CR3 can recognize and respond 
to the fungal hyphae, Dectin-1, MR, and DC-SIGN mainly rec-
ognize the conidial forms. For Mincle, MCL and Langerin little is 
known and they need to be further investigated for their roles in 
Candida infections. Moreover, more studies need to focus on the 
genetic component of the effect of CLRs on Candida infections.

Cryptococcus spp.
Cryptococcosis is a worldwide distributed and invasive fungal 
infection that is caused by species of the genus Cryptococcus. 
Nearly 100 species have been described within this genus so far, 
but Cryptococcus neoformans and C. gattii species are considered 
to be the only disease-causing fungi (245). Although crypto-
coccosis is predominantly a disease of immunocompromised 
patients (AIDS-defining illness), a recent outbreak showed the 
capacity of some lineages of the fungus to act as primary patho-
gens in healthy individuals (246). Within the lung, Cryptococcus 
spp. can cause pneumonia in immunosuppressed patients, and 
the latent infection can then disseminate to other tissues, most 
particularly the central nervous system (CNS), where this fun-
gus causes an infection of the meninges accompanied by elevated 
intracranial pressure and without a rapid treatment it becomes 
fatal (246).

The interaction of Cryptococcus with CLRs is poorly under-
stood. Initial data demonstrated that C. neoformans binds to 
soluble collectin MBL and the ingestion of the acapsular form is 
inhibited by both soluble mannan and β-1,3-glucan, showing that 
ingestion of acapsular C. neoformans takes place via mannose and 
β-glucan receptors in murine macrophages (247).

The role of Dectin-1 is still controversial, since no significant 
differences were observed in the clinical course and cytokine pro-
duction between Dectin-1-deficient and control mice in a crypto-
coccosis model (248), but another study found that C. neoformans 
spores are phagocytosed by murine AMs via Dectin-1 (18). The 
role of Dectin-2 is also poorly understood. Some results show 
that it may not be required for the production of Th1 and Th17 
responses, proinflammatory cytokines or for the clearance of  
C. neoformans in Dectin-2 knockout mice (249). Dectin-3 seems 
to have a role as it was demonstrated that human and murine 
pDCs have a direct Dectin-3-dependent anti-cryptococcal activ-
ity by inhibiting the growth of C. neoformans via ROS production 
(71). A Cryptococcus-specific ligand for this receptor has not been 
described yet.

Mannose receptor also has a role in Cryptococcus infection. 
After a pulmonary infection with C. neoformans, MR knockout 
mice died significantly earlier than wild-type mice and had 
higher lung fungal burdens (250). This receptor was required for 
the presentation of C. neoformans antigens to T lymphocytes by 
primary DCs, since blocking this receptor reduced both uptake 
of C. neoformans and lymphocyte proliferation (251). Some data 
suggest that mannoproteins, secreted by C. neoformans, might 
be the ligands for MR, as T  cell stimulation is inhibited either 
by competitive blockade of MR in APCs or by removal of car-
bohydrate residues from mannoproteins. These results imply a 
capacity of mannoproteins to bind MR and to be processed by 
APCs to stimulate primary T cells (42). However, multiple recep-
tors on DC could recognize this ligand, since DC-SIGN was also 
determined to have an affinity for mannoproteins. Further, MR 
and DC-SIGN both colocalize with mannoproteins, supporting a 
role for each in mannoprotein capture (62).

The pulmonary surfactant proteins, SP-A and SP-D bind to 
both encapsulated and acapsular C. neoformans (49, 252) and 
SP-D binds to the high-molecular weight polysaccharide glucu-
ronoxylomannan and mannoproteins on the fungal cell wall (50). 
However, some data suggest that these receptors actually increase 
the susceptibility to C. neoformans infection. SP-A inhibits the 
IgG-dependent phagocytosis of C. neoformans by AMs and 
SP-A−/− mice exhibit wild-type vulnerability to C. neoformans; 
SP-D−/− mice are even protected during C. neoformans infection 
and display decreased fungal burden compared to wild-type 
mice. SP-D−/− AMs also demonstrate an enhanced ability to kill 
C. neoformans cells (253, 254). Indeed, SP-D increases vulner-
ability to C. neoformans infection by stimulating C. neoformans-
driven pulmonary IL-5 and eosinophil infiltration (255). SP-D 
may also play a role in protecting C. neoformans cells during 
the early stages of infection by opsonization. It was found that 
SP-D increases phagocytosis of hypocapsular C. neoformans by 
murine macrophages and enhances fungal survival allowing to 
gain access to specific intracellular compartments where it can 
grow (256). Another study reports that both, the presence of 
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capsules and a wild-type cell wall design, prevent MBL binding 
to C. neoformans (257).

Last but not the least, complement activation by Cryptococcus 
spp. was demonstrated in the presence of MBL in  vitro (57). 
A Cryptococcus-specific ligand for this receptor has not been 
described up to now.

Given that Dectin-1, Dectin-2, SP-A, and SP-D studies showed 
controversial results and their interactions with Cryptococcus are 
poorly understood, further studies are necessary.

Mucorales spp.
Mucormycosis is the second most-common form of invasive 
mold infections. The disease is characterized by vessel thrombosis 
and tissue necrosis resulting from extensive angioinvasion and 
further dissemination (258). The members of the Mucorales order 
of Zygomycetes are among the leading causes of mucormycosis 
in immunocompromised individuals apart from more common 
fungal genera, such as Candida or Aspergillus, with mortality 
rates ranging from 50 to 100% (259). Among Mucorales spp., 
although rare, Rhizopus oryzae accounts for 70% of mucormyco-
sis infections. Mainly phagocytotic cells play an important role in 
restricting the infection (260). The studies on mechanistic details 
of fungal recognition by CLRs and their role in pathogenesis are 
still lacking. One study reported that patients with mucormycosis 
showed reduced expression of Dectin-1 on monocytes compared 
to healthy controls (104). However, further investigations into the 
role of C-type lectins and their polymorphisms in this infection 
are needed.

Pneumocystis spp.
The genus Pneumocystis includes a variety of ubiquitous fungi 
that colonize and infect several mammalian host species. The spe-
cies P. jirovecii particularly infects humans, whereas Pneumocystis 
carinii (P. carinii) and P. murina are associated with rats and mice, 
respectively. In the immunocompromised host, Pneumocystis 
pneumonia (PCP) is fatal if untreated. However, infection of 
an immunocompetent host can result in a self-limited mild or 
subclinical lower respiratory tract infection (261).

The first studies demonstrated an interaction of Pneumocystis  
cell wall isolates with macrophage β-glucan receptors, which 
induced a potent stimulation of TNF-α release in rat AMs in 
response to P. carinii (262, 263). During P. carinii infection, the 
expression of Dectin-1 is upregulated in macrophages of immuno-
competent rat models (264). According to some studies, Dectin-1 
is required for the protection against P. carinii infection, since 
Dectin-1-knockout mice are more sensitive to infection than 
infected wild-type mice, and production of ROS is completely 
abolished in Dectin-1-knockout macrophages incubated with  
P. carinii (176). Probably, the expression levels of Dectin-1 in 
AMs are under the control of the transcription factor PU.1 dur-
ing a PCP infection, where the GM-CSF appears to play a major 
role in the regulation of PU.1 expression (265). Phagocytosis of  
P. carinii and generation of hydrogen peroxide by murine AMs 
is mediated by Dectin-1, since the blockage of Dectin-1 inhib-
its the binding and killing of P. carinii (266). The binding of 
Dectin-1 to Pneumocystis was tested by creating recombinant 
Dectin-Fc fusion proteins which bind P. carinii and enhance 

murine macrophage-dependent killing. These findings dem-
onstrate that Dectin-1 binds β-glucan from Pneumocystis, 
enhancing host recognition and clearance of P. carinii (19).  
P. carinii β-glucan cell wall component challenge of rat alveolar 
epithelial cells resulted in a prominent nuclear translocation of 
p65 NF-κB with a subsequent increase in MIP-2 and TNF-α 
mRNA production. However, rat alveolar epithelial cells do not 
require Dectin-1 for MIP-2 production, which rather involves 
the participation of the alternative lactosylceramide β-glucan 
receptor (267, 268).

Pneumocystis carinii also enhances soluble MR production in 
human and murine macrophages (269). In human AMs, phago-
cytosis of Pneumocystis is mediated through MR and depends on 
Cdc42 and especially RhoB activation (270). Pneumocystis also 
stimulates NF-κB nuclear translocation in human AMs, which 
is mediated primarily through MR (43). A recombinant soluble 
MR-Fc fusion protein binds P. carinii and leads to an increased 
uptake by hPMNs (271). The role of MR was confirmed by the 
fact that binding and uptake of cultured P. carinii by human and 
rat AMs is reduced 90% by using competitive inhibitors of MR, 
emphasizing the role of the AMs in the first-line host defense 
(272). Other studies suggest that a reduced AM MR-mediated 
binding of P. carinii may contribute to the susceptibility of HIV-
infected individuals to this pathogen (273). However, it was 
demonstrated that IL-8 release by human AMs following the 
stimulation with Pneumocystis requires the co-expression of MR 
and TLR-2, since the IL-8 release is reduced significantly upon 
blocking of TLR-2 and silencing of MR gene (274). These results 
support the idea that MR on human AMs may suppress the pro-
duction of proinflammatory cytokines and may serve to regulate 
the innate inflammatory responses to Pneumocystis infection in 
the lungs (275). A Pneumocystis-specific ligand for MR has not 
been described up to now.

Some results indicate that SP-A and SP-D can modulate the 
virulence of P. murina and P. carinii during development of infec-
tion in SP-D- and SP-A-deficient and immunosuppressed mice. 
They attenuate the production of proinflammatory cytokines and 
ROS and RNS, indicating that both receptors are local effector 
molecules in the lung host defense against Pneumocystis in vivo 
(276–280). These results are supported by the fact that SP-A and 
SP-D can bind P. carinii, acting as opsonins and enhancing their 
phagocytosis by AMs (281–284). However, some data suggest 
that the increased SP-A and SP-D mediated aggregation of P. cari-
nii fungal particles interferes with AM recognition and thus the 
SPs may contribute to the pathogenesis of P. carinii pneumonia 
(285–287). This view is supported by the fact that SP-A in immu-
nosuppressed mice acts as a therapeutic agent in the beginning 
of Pneumocystis infection, but not in the middle or late stages of 
the infection (288). SP-D strongly interacts with gpA, the main 
glycoprotein antigen on the surface of P. carinii. The interaction of 
SP-D with P. carinii gpA is mediated by the carbohydrate recogni-
tion domain (CRD) of this collectin (51, 289). Similarly, the CRD 
of SP-A mediates binding to the main surface glycoprotein gp120 
of P. carinii (52, 290).

Binding of MBL to P. carinii is followed by the activation of the 
respiratory burst, indicating that the MBL in serum has opsoniz-
ing properties and might contribute in controlling fungal spread 
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from the lungs (58). A Pneumocystis-specific ligand has not been 
described up to now for this receptor.

Mincle binds whole P. carinii and a surface glycoprotein called 
MSG/gpA, a Pneumocystis cell wall component, which is expressed  
at enhanced levels during infection (67). Moreover, Mincle−/− 
mice exhibit significantly higher P. murina burdens with elevated 
levels of TNF-α, IL-6, and IL-1Ra during infection, indicating 
that Mincle functions as an important signaling receptor in host 
defense against Pneumocystis infection (67).

Little is known about polymorphisms affecting Pneumocystis 
recognition, however, one study analyzed 53 HIV patients hav-
ing CD4 counts <200 μL, in order to find a correlation between 
MBL and PCP. Of these 53 patients, 30 had PCP at admission, 
and 23 did not. Genotypes related with a low production of MBL 
were significantly more common in the PCP group than in the 
non-PCP group. Serum MBL levels were significantly higher in 
the non-PCP group. Genetic variations influencing MBL pro-
duction also affect the susceptibility to PCP in HIV-advanced 
infection patients, and may be considered as a risk factor for 
PCP (291).

Overall, CLRs seem to be of importance for orchestrating  
the Pneumocystis-induced immune response. However, Pneu-
mocystis cannot easily be propagated in culture, which has 
delayed the understanding of its pathobiology. Efforts to study 
Pneumocystis have been greatly limited by the inability to main-
tain ex vivo culture of the organism. Early attempts to isolate 
and propagate P. jirovecii, have been moderately successful, 
however, none of these models garnered sufficient recognition 
to become a standard method for the isolation of Pneumocystis 
(292). Nonetheless, studies of organisms isolated directly from 
the infected lung of patients or immunosuppressed research 
animals still allow for some insight into the pathobiology of 
Pneumocystis (293).

eNDeMiC DiMORPHiC MYCOSeS

Coccidioides spp.
There are two species of Coccidioides (C. immitis and Coccidioides 
posadasii) that cause human disease. They have similar pheno-
types and pathogenicities, but differ in genotype and geographic 
distribution. They are the etiologic agents of coccidioidomycosis, 
which ranges from asymptomatic infections to pneumonia and 
severe disseminated disease. These organisms are found in the 
soil, especially in low-moisture environments, so preventing 
exposure can be difficult due to the ubiquitous risk of dust inhala-
tion by individuals living in endemic areas. The pathogenesis of 
coccidioidomycosis is complex and can be asymptomatic but also 
cause extrapulmonary dissemination (294).

The reasons of the complexity of the pathogenesis of coc-
cidioidomycosis are not well understood; however, some data 
suggest the main involvement of Dectin-1. Some results suggest 
that an alternative splicing of the Dectin-1 gene enhances the 
susceptibility of C57BL/6 mice to coccidioidomycosis, regulat-
ing the cytokine responses of macrophages and mDCs to spher-
ules, the pathognomonic structure of this fungus (295). RAW 
264.7 macrophages overexpressing Dectin-1 produced more 
TNF-α than control macrophages in respond to C. posadasii 

spherules. Also, macrophages overexpressing Dectin-1 and 
activated with purified β-glucan from C. posadasii spherules 
produced a significantly higher level of TNF-α than control 
macrophages, indicating a role of β-glucan from C. posadasii 
as a ligand for Dectin-1 (20). Moreover, Dectin-1 activation is 
essential to leading the adaptive immune response toward Th1 
and Th17 pathways, thus leading to the resolution of infections 
in mice (35, 296).

Other results suggest that there is an association between low 
serum MBL levels and symptomatic coccidioidomycosis, but in 
order to understand the role of MBL in the pathogenesis of this 
fungal disease, further studies are necessary (297). SP-A and 
SP-D also bind coccidioidal antigens (53). Deficiencies of MR and 
Dectin-2, either alone or in combination, affect cellular responses 
to formalin-killed spherules in vitro but do not make C57BL/6 
mice more vulnerable to pulmonary coccidioidomycosis (298). 
A Coccidioides-specific ligand for these receptors has not been 
described up to now.

In conclusion, further studies are necessary to elucidate inter-
actions of Coccidioides with CLTRs, since few receptors and no 
ligands have been studied. However, Dectin-1 seems to have an 
important role in this infection.

Histoplasma spp.
Fungi of the genus Histoplasma cause histoplasmosis and are 
found throughout the world, but are most common in North 
America and Central America. Histoplasma capsulatum is a 
member of this group of fungal pathogens that cause respiratory 
and disseminated disease in mammals. It grows as a saprobic 
conidia-producing mycelium in the environment, and when the 
aerosolized mycelium fragments and conidia are inhaled, they 
reach the lower respiratory tract causing disease even in immu-
nocompetent hosts (299).

Little is known about the receptors recognizing Histoplasma 
and its signaling response. However some CLRs, such as Dectin-1, 
Dectin-2, and some collectins are involved in Histoplasma immu-
nity (Table 1). Dectin-1 and Dectin-2 exert several contributions 
to the development of antifungal Th1 and Th17 cells and vaccine 
resistance in mice against H. capsulatum (35, 300). CR3 and 
Dectin-1 act together to induce murine macrophages to TNF and 
IL-6 responses through a Syk-JNK-AP-1-dependent mechanism 
(75). Some data show that CR3 participates in phagocytosis and 
cytokine responses, but Dectin-1 takes part in cytokine produc-
tion only on murine macrophage (21). Histoplasma pathogenic 
yeast cells secrete Eng1, a β-glucanase that hydrolyzes β-(1,3)-
glycosyl linkages, which reduces levels of surface-exposed 
β-glucans on yeast cells, thereby enabling Histoplasma yeasts to 
escape detection by Dectin-1. Histoplasma yeasts deficient for 
Eng1 show an enhanced binding to Dectin-1 and an increased 
TNF-α and IL-6 production in murine macrophages and DCs 
(301, 302). Also, SP-A and SP-D demonstrate potent antifungal 
properties, since they cause a dose-dependent decrement in 
yeast viability, which is associated with an increase in the perme-
ability of the yeast cells. Mice lacking SP-A manifest a modestly 
higher fungal burden in lungs than wild-type littermates (54). 
A Histoplasma-specific ligand for these receptors has not been 
described up to now.
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Together, these studies indicate minor roles for CLRs in 
the control of Histoplasma infections, but further studies are 
needed to understand the significance of CLRs in Histoplasma 
infections.

Paracoccidioides spp.
Paracoccidioides spp. is the causal agent of paracoccidioidomy-
cosis (PCM), a systemic mycosis endemic to Latin America. 
It comprises two species: Paracoccidioides brasiliensis and the 
recently described P. lutzii (303). Manifestations of PCM include 
subclinical or asymptomatic infection. The symptomatic disease 
causes an acute/subacute or a chronic form, the latter involving 
the lungs as well as other organs. PCM is acquired after inhalation 
of infectious propagules in the environment, leading to a primary 
pulmonary infection (303).

Few studies have investigated the role of CLRs on Para-
coccidioides infection. Human monocytes display a decrease  
in Dectin-1 expression as soon as 30 min after stimulation with 
P. brasiliensis (22). There is a trend toward an increased Dectin-1 
mRNA expression in response to P. brasiliensis and this receptor 
is able to induce a balanced production of TNF-α, IFN-γ, IL-12, 
and IL-10 in human neutrophils and monocytes (22, 304, 305). 
By binding to Dectin-1, P. brasiliensis induces neutrophil extra-
cellular trap (NET) release that is responsible for trapping yeast 
cells, promoting their immobilization, as well as contributing to 
their extracellular killing (306). Moreover, the fungal infection 
of Dectin-1−/− mice results in enhanced tissue pathology and 
mortality rates. The deficiency of Dectin-1 has also reduced the 
production of Th1, Th2, and Th17 cytokines and the activation 
and migration of T cells to the site of infection (307). Altogether, 
these results suggest the participation of Dectin-1 in P. brasiliensis 
recognition, internalization, and consequent activation of the 
immune response against the fungus. A Paracoccidioides-specific 
ligand for Dectin-1 has not been described up to now, however, 
it is known that Dectin-1 binds glucan structures that are distrib-
uted in a wide range of fungal species.

The gp43 glycoprotein is the main antigenic component 
secreted by P. brasiliensis. gp43 binds to TLR2, TLR4, and MR 
receptors and all three receptors influenced a high production 
of IL-10 and TNF-α in human monocytes (44). The specific 
blockade of MR and CR3 impaired fungal recognition and 
modified the production of cytokines (308). The CR3 receptor 
may participate in phagocytosis of P. brasiliensis conidia through 
both opsonic and non-opsonic mechanisms, since treatment of 
murine macrophages with anti-CR3 and α-methyl-d-mannoside, 
a competetive inhibitor of the binding of mannose, decreased 
phagocytosis of P. brasiliensis (76). In the same way, the mannose-
binding lectin complement pathway was demonstrated to play 
a key role in complement activation by P. brasiliensis (309).  
A Paracoccidioides-specific ligand for this receptor has not been 
described until now.

Overall, interactions between host immune cells and Para-
coccidioides spp. are mediated by the recognition of Dectin-1 
which controls internalization by phagocytes as well as lym-
phocyte proliferation during P. brasiliensis infection. However, 
further studies are necessary, since few receptors and no ligands 
have been studied.

Penicillium spp.
Penicillium species are rarely considered as human pathogens 
except Talaromyces (Penicillium) marneffei, which can cause 
opportunistic infections, called penicilliosis, in immunocompro-
mised patients, especially in HIV positive persons, but also in old 
and new born (310). The infection is most prevalent in South-east 
Asia and is characterized by symptoms, such as weight loss and 
fever, skin lesions, generalized lymphadenopathy and hepato-
megaly, and respiratory signs such as hemoptysis (310, 311).  
The main virulence factor of T. marneffei is its temperature-
dependent dimorphic growth, owing to which it grows as mycelium 
at 25°C while at 37°C it grows as yeast (311). In vitro experiments 
have shown that T. marneffei can be recognized by Dectin-1, 
DC-SIGN, and MR (Figure  1) (23, 45, 63). Koguchi and col-
leagues demonstrated that blocking MR with antagonists reduces 
the osteopontin production from PBMCs upon T. marneffei 
stimulation and suggested a mannoprotein as the possible ligand 
(45). Indeed, MR was later found to be involved in adhesion and 
phagocytosis of the fungus by human monocyte-derived DCs, 
while DC-SIGN only mediated adhesion (63). IL-12p40 produc-
tion by bone marrow-derived dendritic cells (BMDCs) upon 
stimulation with T. marneffei is abrogated in Dectin-1 knockout 
mice (23). Together, these studies suggest that CLRs modulate 
the immune response to T. marneffei; however, further studies 
are needed to dissect the in vivo role of CLRs and their polymor-
phisms in T. marneffei infections.

OTHeR FUNGi CAUSiNG FReQUeNT 
iNFeCTiONS

Trichophyton spp.
Dermatophytosis is one of the most common mycoses worldwide. 
Compromising keratinized tissues and characterized by establish-
ing chronic inflammatory processes, it is highly resistant to stan-
dard antifungal therapies. The main etiological agent in humans 
is Trichophyton rubrum. It establishes infection after being inocu-
lated in the host tissue, where it survives through the degradation 
of dead cells, consuming keratin and other host components (312).

Only few studies analyzed the roles of CLRs in Trichophyton 
spp. infections. Dectin-1 is involved in mediating inflamma-
tion induced by trichophytin, a T. mentagrophytes antigen with 
β-glucans and zymosan as the main components (24). T. rubrum 
hyphae are recognized by Dectin-1 and Dectin-2 in murine 
DCs, triggering production of inflammatory cytokines, mainly 
IL-1β and TNF-α. This inflammatory process is able to promote 
the clearance of the pathogen in  vivo without the involvement 
of lymphocytes. Even though IL-17 is induced, it is not essential 
for infection resolution (313). Moreover, trichophytin enhances 
the Dectin-1 expression in mice, and the blockage of Dectin-1 
inhibits the increased IFN-γ production in cervical lymph node 
cells from mice in  vitro (314). Dectin-2 preferentially binds to 
hyphae of various fungal species, including T. rubrum (11).

Malassezia spp.
The fungal genus Malassezia comprises yeast species that are part 
of the normal skin microbiota. However, Malassezia spp. can be 
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involved in skin disorders, such as pityriasis versicolor, seborrheic 
dermatitis, atopic eczema, and folliculitis (315). Malassezia spp. 
may also cause invasive infections in infants and in immunocom-
promised individuals. The clinical spectrum ranges from asymp-
tomatic infections to life-threatening sepsis and disseminated 
diseases (316).

Various Malassezia spp. (M. japonica, M. slooffiae, M. furfur, 
and M. sympodialis) induce a Dectin-1-dependent NLRP3 inflam-
masome activation with a subsequent IL-1β secretion in human 
APCs. This activation is dependent on Dectin-1, since the blocking 
of Dectin-1 decreased the IL-1β secretion upon M. furfur exposure 
(25). A Malassezia-specific ligand has not been described until 
now, but β-1,3-glucan is most likely present on their surface.

Several Malassezia spp. (M. pachydermatis and M. furfur) are 
recognized by Mincle and Dectin-2 through different ligands.  
A glyceroglycolipid and mannosyl fatty acids linked to mannitol 
are two Mincle ligands, and an O-linked mannobiose-rich glyco-
protein is a ligand for Dectin-2. Both receptors cooperatively con-
tribute to the TNF and IL-10 production in BMDCs from mice in 
response to Malassezia spp (36). Other results indicate that Mincle 
also recognizes Malassezia spp. (M. pachydermatis, M. dermatis, 
M. japonica, M. nana, M. slooffiae, M. sympodialis, M. furfur, and 
M. pachydermatis) through α-mannose but not mannan. Mincle 
may recognize a particular distribution of α-mannosyl residues 
on Malassezia spp. and use this to discriminate them from other 
fungi, inducing inflammatory responses (TNFα and IL-10) in 
murine macrophages (317).

Langerin plays a role in pathogen recognition by facilitating 
pathogen uptake and processing for antigen presentation (318). 
Langerin on primary LCs isolated from human epidermis interact 
strongly with M. furfur via β-glucan structures and the interac-
tion can lead to the phagocytosis of the fungus (81). M. furfur is 
also recognized through MR and CR3 on THP-1 cells (77).

Fonsecaea spp.
Fonsecaea spp. are found in soil and plants. Although they are 
considered a worldwide-distributed fungus, they are frequently 
found in tropical regions (319). Fonsecaea pedrosoi is a frequent 
causative agent of chromoblastomycosis (or chromomycosis), 
a chronic fungal disease limited to the skin and subcutaneous 
tissues. Initial lesions are habitually erythematous papules, which 
progressively enlarge to morphologies, such as verrucous nod-
ules, cauliflower-like tumors, and psoriasis-like plaques (319).

Dectin-1, Dentin-2, and Mincle have a role in the recognition 
of this fungus (Table 1). Murine macrophages stimulated by co-
culturing with muriform cells (the parasitic form of F. pedrosoi) 
show an elevated expression of the Dectin-1, and by blocking 
Dectin-1, the phagocytosis of muriform cells, was impaired, dem-
onstrating that muriform cells are recognized by Dectin-1 in vitro 
(26). F. pedrosoi spores trigger Dectin-1 and Dectin-2 signaling 
and induce IL-6 production, but only the Dectin-2 signaling 
pathway promotes the differentiation of Th17  cells, indicating 
that the adaptive immune response to F. pedrosoi spores in 
this murine infection model is determined by Dectin-2 (37). A 
Fonsecaea-specific ligand has not been described until today.

Mincle acts as a major receptor involved in the innate immune 
response to F. pedrosoi through the Syk/CARD9 pathway in 

murine BMDCs (68). However, another study identified Mincle 
as a suppressor of antifungal defenses by suppressing IL-12. 
The absence of IL-12 leads to impaired Th1 responses. Dectin-1 
binding of F. monophora activates the transcription factor IRF1, 
which is crucial for the IL12A transcription. However, simul-
taneous binding of F. monophora to Mincle induces a Mdm2 
(E3 ubiquitin ligase)-dependent degradation pathway via Syk-
CARD9-mediated PKB signaling, that leads to the loss of nuclear 
IRF1 activity, therefore, blocking IL12A transcription (320).  
A Fonsecaea-specific ligand has not been described up to now 
for this receptor.

Regarding Mincle, it is difficult to ascertain a particular role for 
this CLR in Fonsecaea infection, since it is not clear if this receptor 
is mainly involved in the recognition and subsequent clearance of 
this fungus or acts as a suppressor of antifungal defenses and is 
exploited for immuno evasive strategies.

Microsporum spp.
Microsporum causes skin infections or dermatophytosis charac-
terized by severe scalp itching and patchy scaly scalp skin which 
is highly contagious. The pathogenic species include mainly  
M. cani, M. gypseum, and M. hominis (321). The fungi secrete a 
number of enzymes and immunomodulators such as keratino-
lytic subtilase and keratinolytic metalloprotease as well as other 
cell wall glyco-proteins, endoproteases, and exoproteases (322). 
M. cani activates the NLRP3 inflammasomes in THP-1 cells. The 
production of IL-1β and its precursor are decreased in Dectin-1, 
Syk, and CARD-9 knockdown cells (323). Soluble Dectin-2 can 
bind the filamentous M. audouinii (11). Further research on CLR 
ligands, their recognition, and corresponding immune response 
in Microsporum infection are lacking.

Fusarium spp.
Fusarium species can cause superficial, locally invasive infections 
in immunocompetent individuals, or disseminated infections in 
immunocompromised patients. The infection is called fusariosis 
and is characterized by keratitis, onychomycosis, fungimia with 
or without organ involvement, and other symptoms depending 
upon the fungal species, port of entry, and host immune status. 
In humans, Fusarium solani and F. oxysporum are responsible 
for most cases of infections by these species (324). Fusarium 
spp. secrete various mycotoxins as well as certain proteases and 
collagenases, which modulate the immune response and destroy 
tissue (324).

Dectin-1 expression is highly elevated in the corneal tissue 
from patients infected with F. solani when compared to healthy 
non-infected individuals (325). Human corneal epithelial cells 
secrete defensive antimicrobial peptides in response to heat-
killed F. solani or zymosan and this effect was Dectin-1- and 
TLR-2-dependent (326). Another more recent study addressed 
the Dectin-1-dependent CXCL-8 release from the human bron-
chial epithelial cell line BEAS-2B in response to F. proliferatum 
and showed that the chemokine release is decreased to various 
degrees by inhibiting Dectin-1, Syk, MAPKs, PI3K, and NFκB, 
respectively (27). The expression of SP-D increased in rat corneal 
cells after F. solani infection but its further role in murine models 
as well in humans is still to be established (327).
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Trichosporon spp.
Trichosporon are ubiquitous dimorphic fungi, which also exist 
as commenals on the skin and in the gastrointestinal tract in 
humans. They induce superficial infections such as white piedra 
characterized by the presence of irregular nodules on the affected 
hair, as well as invasive infections such as allergic pneumonitis 
and trichosporonosis (invasive mycoses) especially in immuno-
compromised patients and those with hematological malignan-
cies (328, 329). T. asahii, T. asteroids, and T. mucoides are the 
major causes of trichosporonosis and opportunistic infections 
(330). Only a little is known about the interaction of these fungi 
with CLRs. Dectin-1 binds T. asahii via β-glucan recognition 
(28). Dectin-1-deficient mice with T. asahii induced hypersen-
sitivity pneumonitis show decreased Th-17 cell populations and 
less monocytes/MDMs compared to wild-type mice (28).

RARe DiSeASe CAUSiNG FUNGi

Saccharomyces spp.
Classically, Saccharomyces spp. are considered safe, non-pathogenic  
organisms. Within this genus, Saccharomyces cerevisiae is the 
most important species (331). However, due to its ubiquity and 
long association with humans, S. cerevisiae has been implicated 
as a causative agent of infections in immunocompromised indi-
viduals, those with underlying diseases or medical conditions 
(332). Several cases of life-threatening invasive infections with S. 
cerevisiae resulting in pneumonia, liver abscess, and sepsis have 
been reported (333).

Saccharomyces cerevisiae cells cause a subtle upregulation of 
Dectin-1 from the moment of initial recognition in human DCs 
(334). Most studies have been performed by evaluating pure 
soluble and particulate β-glucans such as β-1,6-branched and 
β-1,3-d-glucan found in the S. cerevisiae cell wall (335), which can 
be directly recognized by Dectin-1 (29, 336). β-glucan induces 
Dectin-1 signaling pathways for the activation of TNFα in both 
human and mouse macrophages. The signaling pathways involve 
RTKs, ROS production, and NF-κB activation (337, 338). The 
Dectin-1-dependent response is essential for immunomodulatory 
effects on DC activation and macrophage phagocytosis. It induces 
the expression of immuno-regulatory cytokines, such as IL-10, 
TGF-β1, and IL-2 and can promote both Treg and Th17 responses 
(339–341). Moreover, the Dectin-1 response was investigated by 
observing the direct phagocytosis of β-glucan-coated particles by 
RAW macrophages expressing a GFP-Dectin-1 fusion protein. 
As expected, the β-1,3-beads induced a higher TNF-α response 
and a GFP-Dectin-1 recruitment to the phagosome, indicating 
that Dectin-1 recruitment is specific to β-1,3-glucan (342). In 
general, binding of particulate β-glucans to Dectin-1 triggers 
phagocytosis (343, 344). However, phagocytosis of β-glucan-
bearing particles by human neutrophils is CR3-dependent, with 
a very minor role for Dectin-1, if any (78). Like C. albicans, also 
S. cerevisiae components in form of Zymosan are able to induce 
anti-inflammatory responses such as IL-10 release in human and 
mouse DCs and macrophages (345, 346).

Also, Langerin and DC-SIGN interact strongly with S. cerevisiae  
(64, 81). SP-D but not SP-A binds S. cerevisiae, and β(1→6)-glucan 

is a ligand for SP-D (48). Moreover, phagocytosis of unopsonized 
heat-killed yeast by murine macrophages is also mediated by  
MR (46).

Several studies have concluded that genetically determined low 
MBL concentrations in patients could be, at least in part, respon-
sible for the enhanced immune reactivity to S. cerevisiae antigens 
(347–349). The analysis of MBL2 polymorphisms revealed an 
association between three variants rs930508, rs1800450, and 
rs5030737, with a reduction in MBL serum levels in Crohn’s 
disease patients (350). However, these results are in contrast 
with other reports in which such an association was not found. 
Therefore, the relationship between enhanced immune reactivity 
to S. cerevisiae antigens and MBL is still controversial (351, 352).

Despite its low pathogenicity, S. cerevisiae constitutes one of 
the better studied microorganisms, since it was developed as a 
model organism for several traits. Zymosan is mostly prepared 
from S. cerevisiae cell walls and consists of a glucan with repeat-
ing glucose units linked by β-1,3-glycosidic linkages, which have 
served as a model for recognition of microbes by the innate 
immune system for over 50 years (353). Many studies have been 
conducted testing and evaluating the zymosan interaction with 
human receptors and Dectin-1 emerged as the most important 
receptor for detecting Saccharomyces spp. However, for the other 
CLRs more studies are required in order to stablish a concrete 
role for them.

Exserohilum spp.
Exserohilum species are environmental fungi and, although rare, 
can lead to a number of human diseases such as skin and corneal 
infection, invasive disease, as well as allergic fungal sinusitis 
especially during impaired immunity, trauma, and atopy (354). 
Members of this genus are among the causes of phaeohypho-
mycosis which is characterized by the presence of dark septate 
mycelial elements in tissues (355). Not much work has been done 
to elucidate the mechanism of infection and immune responses 
against these fungi. A very recent work demonstrates the role of 
Dectin-1 in the recognition of Exserohilum rostratum (30). Mouse 
macrophages generate a Dectin-1 dependent TNF-α, IL-1β, 
MIP-1, and MIP-2 secretion in response to E. rostratum hyphae 
in  vitro and the response is diminished in Dectin-1-deficient 
macrophages. However, wild-type and Dectin-1-deficient mice 
show no difference with respect to the type of inflammatory 
response and fungal control (30).

Cladosporium spp.
The Cladosporium genus consists of ubiquitous fungi that are 
mainly plant pathogens but few species such as those belonging 
to Cladosporium cladosporioides and C. herbarum complexes may 
cause infections in humans (356). The clinical manifestations 
range from keratitis, opportunistic phaeohyphomycosis includ-
ing superficial or deep infections such as those of the CNS, to 
acnes (356–359). Cladosporium conidia are widely present in the 
air and have also been associated with respiratory allergy (360). 
The C. cladosporioides cell wall is rich in β-glucans but unavailable 
for recognition on live spores. A mouse in  vivo study demon-
strated that C. cladosporioides induces airway hyperresponsive-
ness and eosinophilia in a Dectin-1-independent manner (361). 
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Furthermore, the heat-induced availability of surface β-glucans  
is important for a Dectin-1-dependent pulmonary IL-17 response 
and Dectin-1−/− mouse DCs show a decreased IL-17 response 
upon stimulation with heat-killed C. cladosporioides (31). The 
ligands on live Cladosporium cell surfaces and the corresponding 
CLRs, as well the subsequent immune responses are still to be 
investigated.

Chrysosporium spp.
The members of this genus are saprophytic soil fungi and many 
species are keratinolytic (362). Several case reports of superfi-
cial infections affecting nails and skin as well as opportunistic 
infections in immunocompromised patients have been reported 
(362–365). Superficial infections are mainly caused by species, 
such as C. keratinophilum, C. tropicum, and C. queenlandicum 
(362). Invasive infections are rare but have been reported  
(366–368). A single study demonstrated that DC-SIGN recog-
nizes C. topicum conidia probably by recognition of fungal cell 
wall mannans in vitro (59).

Sporothrix spp.
These fungi are usually found living as a saprophytes thriving on 
decaying vegetation or soil. Sporotrichosis, caused by dimorphic 
Sporothrix spp., is one of the most prevalent forms of subcutane-
ous mycoses with a worldwide distribution particularly in tropi-
cal and subtropical regions (369, 370). While different species 
of clinical interest have been identified, including S. globosa, 
S. brasiliensis, S. Mexicana, and S. luriei, the most commonly 
reported species in human clinical isolates is Sporothrix schenckii 
(371, 372). Infection results in cutaneous or subcutaneous lesions 
usually with compromised adjacent lymphatic vessels. Rarely, dis-
seminated disease can also ensue and several publications report 
infection of the lung, the CNS, bones, and other organs, mostly 
in immunocompromised individuals (372–375).

In a rat co-infection model of Tenia taeniaeformis and  
S. schenckii, a high expression of Dectin-1 only occurs in cutaneous 
lesions of co-infected rats, but is dispensable for the clearance of  
S. schenckii (376). However, a more recent study shows an increased 
Dectin-1 expression in peritoneal macrophages from S. schenckii- 
infected mice. Furthermore, the antibody-mediated blockade of 
Dectin-1 inhibits the cytokine production in response to different 
stimuli by peritoneal macrophages. A Dectin-1 blockade addi-
tionally results in a decreased phagocytic uptake of S. schenckii 
yeast cells (32). Martínez-Álvarez et al. proved that Dectin-1 is 
crucial for the secretion of cytokines by human PBMCs during 
S. schenckii infection, but dispensable for the recognition of  
S. brasiliensis. The authors also reported that while MR appears to 
have only a minor role in the recognition of S. schenckii yeast-like 
cells, it mediates the production of proinflammatory cytokines 
by human PBMCs in response to conidia from this fungus as 
well as yeasts from S. brasiliensis (47). An earlier study on the 
contribution of MR in the recognition of S. schenckii evidenced 
the presence of mannose residues in the cell wall of S. schenckii 
conidia and yeasts. Nevertheless, MR seemed to be involved only 
in the phagocytosis of opsonized conidia (377). Taken together, 
Dectin-1 seems to be important for the generation of cytokines 
while MR mainly plays a role in the phagocytosis of this fungus.

CHALLeNGeS AND FUTURe DiReCTiONS

C-type lectin receptors recognize carbohydrate ligands in fungal 
cell walls and years of research have provided a huge body of 
evidence on their importance in modulating immune responses 
against fungal infections. However, there are still a number of 
gaps to be filled and areas that need attention from the scientific 
community. Almost all of the fungal infecitons are opportunistic, 
mainly concerning people with a compromised immune system, 
including HIV-infected individuals. Although they are a major 
high-risk group, many studies exclude HIV-infected patients and, 
therefore, this area of research seems to be largely unexplored. 
More studies focusing on HIV co-infection and the genetic make-
up of HIV-infected individuals which affects their susceptibility 
toward developing specific fungal infections would be fundamen-
tal in developing tailored therapies for such cases. Fungi such as 
Aspergillus and Candida species interact with a number of CLRs 
upon infection, opening up opportunities to study the interac-
tions between these receptors on a functional level [for example, 
the formation of heteromers as precdicted in case of Mincle and 
MCL (378)] as well as on a genetic level, including epistatic effects 
that the concerned genes have on each other. Another complex 
aspect that still needs to be studied in detail is how different cell 
types interact in an in vivo environment in order to control the 
infection. On the other hand, there are many fungal species such 
as Paracoccidiodes, Fusarium, etc., with few identified immune 
receptors, ligands, and/or virulence factors. Discovering these 
ligands and their corresponding receptors or new virulence 
factors will not only improve our understanding of fungal inter-
actions with immune cells but also aid in developing vaccines 
and diagnostic or even therapeutic strategies against these fungi. 
Moreover, we now also know that CLRs not only recognize car-
bohydrate ligands but also lipids, proteins, and nucleic acids (3). 
We need to widen our views and explore this aspect more fully, 
since the fungal cell walls in addition to their manyfold carbohy-
drate structures also contain a number of lipids and proteins that 
may as well serve as potential ligands for CLRs (379). Moreover, 
some recent studies have demonstrated how differential immune 
responses are generated by different fungal isolates or strains 
depending on their individual pahogenic potential and virulence 
(380–383). Such studies suggest that a strain-specific comparison 
of immune response might be essential to fully understand the 
host–pathogen interactions. This knowledge would be helpful 
in generating data for individual case-specific therapies and, 
therefore, such studies need to be encouraged. Furthermore, it 
is often noted that many studies, such as in  vivo mouse stud-
ies, provide contrasting results that lead to contradictions and 
questions. Therefore, the scientific studies need to be designed 
more carefully taking into account the strains of mice and the 
fungal species being studied, cell type or cell lines being used, 
and the type of in vitro or in vivo environment provided. Also, 
population structures and stratification in genetic studies should 
be addressed. The effects of each of these factors on the outcome 
of the results should be appropriately discussed in order to have 
a comprehensive view. In summary, there is a need to further 
enhance the understanding of how CLRs recognize pathogenic 
fungi in order to promote approaches to take advantage of this 
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knowledge for future therapeutic interventions. The ability of 
these receptors to bind a wide variety of pathogens which share 
the same ligand as fungi, makes them important molecules in the 
innate immune response. While there are many functional aspects 
of CLRs yet to be discovered, there is an increasing amount of 
information published over the past decade that already allows us 
to benefit from our knowledge on regulatory functions and new 
translational opportunities.

CONCLUSiON

It is widely excepted that CLRs play a major role in modulating 
immune responses with respect to fungal infections, being able 
to recognize the carbohydrate moieties in the fungal cell walls. 
Fungal infections, though mainly opportunistic, can prove fatal 
in case of faulty diagnosis or treatment. The fungal recognition 
by CLRs mainly leads to proinflammatory responses and a 
subsequent activation of adaptive immunity via Th17 responses. 
However, negative or anti-inflammatory effects have also been 
noted and both types of responses are necessary to mount a 
specific immune response. A considerable body of work has 
been done with regards to frequent pathogens, such as Candida, 
Aspergillus, and Cryptococcus, etc., and genetic susceptibilities 
pertaining to fungal infections have been attributed to various 
mutations in CLRs. While some fungal infections are frequent, 
others are emerging into a major health problem with the con-
tinous increase in immuno-compromised patients. A thorough 
knowledge of the molecular mechanisms of fungal infections 

and the interaction of these fungi with their major receptors, the 
CLRs, can provide a basis to a better and more specific diagnosis 
and treatment regime. Also, knowledge about the host-related 
genetic factors, which can greatly affect the course and outcome 
of these infections, may advance a timely diagnosis and care for 
the patient.
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