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Lung function reflects the physiological

state of the lungs and airways, and

abnormalities are present in asthma and

chronic obstructive pulmonary disease

(COPD), for example. Function measure-

ments (e.g., forced expiratory volume in

one second, FEV1) are often used in

clinical practice to detect obstructive or

restrictive conditions. Smoking is well-

known to affect lung function negatively,

presumably through induction of oxidative

stress, inflammation, and lung damage.

Studies also report negative effects on lung

function and later asthma risk in children

whose mothers smoked during pregnancy

[1], which supports the ‘‘Barker hypothe-

sis’’ that cardiovascular and respiratory

diseases in adulthood may have their

origin during fetal life [2]. Interestingly,

transgenerational pulmonary effects of

nicotine exposure during pregnancy, pos-

sibly mediated by epigenetic mechanisms,

have recently been observed in animal

studies [3]. Twin studies suggest a sub-

stantial genetic contribution to the vari-

ability of lung function, and several

important loci have been identified in

recent genome-wide association studies

(GWASs) [4]. In addition, genetic factors

of relevance for respiratory diseases are

also proposed to influence lung growth in

utero [5].

Although smoking is the most well-

studied and established lifestyle risk factor

for respiratory diseases, not all smokers

develop diseases such as asthma or

COPD [6]. Large individual variability

in responses to environmental factors

exists, and genetic susceptibility may

partly account for this. For example,

IL13 single nucleotide polymorphisms

(SNPs) have been shown to modulate

the adverse effects of long-term cigarette

smoking on pulmonary function [7].

MMP12, a protease involved in tissue

degradation, has been associated with

lung function and risk of COPD, but

only in high-risk populations such as

smokers and asthmatics [8]. The lungs

develop during fetal life and throughout

childhood [9], which is likely why chil-

dren have been reported to be more

susceptible to hazardous airborne sub-

stances compared to adults [10]. Whether

this has any relevance for the identification

of gene–environment interactions in adults

or children remains to be investigated.

As the effects of gene-smoking interac-

tions on lung function have not been

extensively studied in large data sets so far,

the paper by Hancock et al. in this issue of

PLOS Genetics adds value to the current

literature in many ways [11]. The authors

present a large scale gene–environment

interaction study based on GWAS data,

smoking status, and lung function out-

comes in over 50,000 adults from 19

studies primarily from the CHARGE

and SpiroMeta consortia (Figure 1). Few

similar studies on a complex trait where

interaction effects have been thoroughly

explored have been published to date.

Hancock et al. used a recently devel-

oped joint meta-analysis method (JMA)

[12] primarily designed to detect genetic

effects while taking environmental factors

into account as the main method for their

analyses. The method jointly tests main

genetic (SNP) and interaction effects and is

attractive for gene–environment interac-

tion analyses thanks to its robustness and

superior power over standard interaction

models under certain conditions. Three

novel regions of potential importance for

lung function were identified in the

present study: DNER (2q36), HLA-DQ

(6p21), and KCNJ2/SOX9 (17q24). Fur-

ther, using the publicly available GEO

repository, the authors were able to show

differential expression of DNER and SOX9

in epithelial cells from smokers versus non-

smokers, which supports the involvement

of these genes in smoking-induced lung

function deterioration. In addition, recent

experimental data from studies on mice

show that tracheal and bronchial cartilage

formation is regulated by Tbx4 and Tbx5

through Sox9 expression [13]. Interesting-

ly, HLA-DQ has been associated with

asthma in independent GWASs of asthma

[14,15].

The most significant association was for

rs7594321 in DNER with a p-value for the

joint test equal to 5.0610211 in the pack-

years model and 2.661029 in the ever-

smoking model. The corresponding inter-

action p-values were non-significant. In

the ever-smoking model, stratified genetic

effects of per allele change 0.049 in never-

smokers (comparable to approximately a

year and a half of FEV1 decline) and 0.035

in ever-smokers were observed. Thus, the

effect of this particular variant seemed to

only marginally differ between never-

smokers and ever-smokers. In addition,

standard interaction analyses identified

no SNP by smoking interaction at the

genome-wide significant level (p,561028).

Using the JMA method, Hancock et al.

successfully identified three novel loci not

previously associated with lung function in

GWAS or candidate gene studies. Yet, it is

likely that important gene–environment

interaction effects for lung function remain

to be identified. Alternatively, one must

accept that there are no gene-smoking

interaction effects of importance for lung

function after all. The latter alternative,

albeit possible, seems to contrast with

clinical and epidemiological evidence.

Besides, clear and abundant evidence of

interactions between gene and exposures
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has been found in animal studies and

epigenetic projects [16,17].

So why are interaction effects so difficult

to identify even in large, well-character-

ized data sets? This question has not found

a definite answer yet, and excellent reviews

of methodological challenges and the

current status of the research have recently

been published [18,19].

It has long been recognized that com-

binations of multiple variants of different

genes may together raise the risk of

complex diseases more than any single

variant alone. Combinations of variants

may in turn interact with one or more

environmental factors. It is also sensible to

allow for the possibility that any such

combinations, if they exist, may not be

identical for all individuals. The identifi-

cation of possible combinations of vari-

ants, interacting environmental factors,

and inter-individual heterogeneity presents

major challenges that are best met by

interdisciplinary efforts.

So far, most attempts to find interac-

tions between individual or multiple gene

variants and environmental factors at the

genome-wide level have been undermined

by insuperable limitations of statistical

power and sample size. The recent

advances in analytical methodology may

have alleviated these limitations but surely

not overcome them. The sheer number of

gene variants in GWAS or genome

sequencing studies, and the even greater

number of their possible combinations,

make it statistically unreasonable to pursue

such quests with standard statistical hy-

pothesis testing.

The wealth of information contained in

the human genome, however, cannot be

left untapped, and much can be done with

the resources that are already available or

expected to become available in the near

future. Promising trails point to (1) devel-

opment of exploratory analytical ap-

proaches that may help tackle high-order

interactions between multiple variables; (2)

acknowledgment and evaluation of the

inter-individual heterogeneity observed

clinically and experimentally through ge-

nomic, transcriptomic, and proteomic

profiling; (3) investigation of the negative

findings through power analyses that

might help restrict the potential effect of

some gene variants and rule out biologi-

cally or clinically relevant effects of many

of them; and (4) critical assessment of the

applicability to this context of the frequen-

tist and Bayesian inferential paradigms

and exploration of possible alternatives.

Whatever trails are to be followed, re-

search can only progress through close

collaboration between disciplines like bio-

statistics, epidemiology, biology, and

medicine.
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Figure 1. In this issue of PLOS Genetics,
Hancock et al. address gene–environ-
ment interaction effects based on smok-
ing status, GWAS data, and lung func-
tion outcomes in over 50,000 adults. This
Perspective highlights the main findings in
Hancock et al. [11] and discusses why
interaction effects are so difficult to identify
even in large, well-characterized data sets.
doi:10.1371/journal.pgen.1003174.g001
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