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DT-13 synergistically enhanced vinorelbine-mediated
mitotic arrest through inhibition of FOXM1-BICD2 axis
in non-small-cell lung cancer cells

Hongyang Li1,5, Li Sun2,5, Hang Li2, Xiaodan Lv1, Herve Semukunzi1, Ruiming Li3, Jun Yu4, Shengtao Yuan*,1 and Sensen Lin*,2

Non-small-cell lung cancer (NSCLC) is the most commonly diagnosed malignant disease with the leading cause of cancer-related
death. Combination treatment remains the major strategy in the clinical therapy of NSCLC. Vinorelbine (NVB), a semi-synthetic
vinca alkaloid, is used for advanced and metastatic NSCLC by destabilizing microtubule formation to induce mitotic arrest and cell
death. However, the side effect of NVB heavily affected its effectiveness in clinical therapy. Hence, it is of great significance to
develop new agents to synergize with NVB and decrease the adverse effect. In our study, we found that the saponin monomer 13 of
the dwarf lilyturf tuber, DT-13, exhibiting anti-angiogenesis and anti-metastasis effect, synergized with NVB to inhibit cell
proliferation in NSCLC cells. The synergistic interaction of DT-13 and NVB was confirmed by combination Index values. Also, DT-13
and NVB act in concert to inhibit the long-term colony formation. Furthermore, DT-13/NVB co-treatment cooperated to induce
mitotic arrest and subsequent apoptosis. Mechanistically, we found that nuclear expression of transcription factors forkhead box
M1 (FOXM1) and levels of motor adaptor bicaudal D2 (BICD2) were dramatically reduced by combination treatment. Importantly,
oncogene FOXM1 was identified as the crucial regulator of BICD2, which played critical roles in NVB-induced mitotic spindle
defects. Moreover, overexpression of FOXM1 and BICD2 significantly reversed mitotic arrest induced by DT-13/NVB co-treatment,
and siRNAs against both genes greatly increased the combinational effects. In addition, in vivo study revealed that DT-13 combined
with NVB significantly suppressed tumor growth in nude mice xenograft model, and downregulated the expression of FOXM1 and
BICD2 in tumor tissues, which was consistent with in vitro study. In conclusion, DT-13 might provide a novel strategy for the
chemosensitization of NVB in NSCLC therapy.
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Non-small-cell lung cancer (NSCLC) is most commonly diag-
nosed and malignant type of lung cancer, which remains the
leading cause of tumor-related deaths.1 Nowadays, chemother-
apy andmolecular-targeted drugs are themain therapy option for
NSCLC therapy except radiotherapy and surgical resection.
Moreover, different epidermal growth factor receptor (EGFR)
status in NSCLC displayed various sensitivity of chemotherapy
and EGFR inhibitors. Recent studies have demonstrated that
chemotherapy wasmore effective than EGFR inhibitors, gefitinib
or erlotinib, to prolong the progression-free survival and overall
survival of patients with NSCLC who exhibited wild-type
EGFR.2–4 Thus, improving effectiveness of chemotherapy is
also of great significance for the particular NSCLC patients.
To ensure genomic stability in cell cycle progression

without uncompletely replicated and damaged DNA, eukar-
yote cells mainly depended on a tightly controlled surveil-
lance program such as G1/S, G2/M and spindle assembly
checkpoint (SAC).5–7 Dysregulation in cell cycle transition is
a property of cancer development, and disruption of the
progression can trigger cell cycle arrest and subsequent cell

death, which contributes to cancer suppression.8

Microtubule-targeting agents (MTAs), such as taxanes and
vinca alkaloids, have gained great success in clinical
therapy by activating SAC to induce mitotic arrest. However,
clinical toxicity and chemotherapeutic resistance seriously
hampered the application and development of these
cytotoxic drugs. To overcome these adverse effects,
favorable combination strategy is urgently needed to be
developed.
Cell cycle progression is partly regulated by multiple

transcription factors. Forkhead box M1 (FOXM1), a member
of Forkhead family, is an oncogenic transcription factor, and
highly expressed in various cancers.9 A number of studies
have shown that FOXM1 played important roles in cell
proliferation, angiogenesis, metastasis, cellular senescence
and drug resistance.9–11 In mitosis progression, FOXM1
controlled mitotic entry by regulating Cdc25B, cyclin B,
PLK-1 and Nek-2, SAC activation by centromere protein A,
B, F (CENP-A, B and F), KIF20A, PLK-1, Aurora A and B,
cytokinesis and mitotic exit by Aurora-B, Plk-1 and
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survivin.11,12 Furthermore, FOXM1 expression was also
involved in the drug sensitivity and resistance of
paclitaxel.11,13 Hence, targeting FOXM1 may be a feasible
strategy to improve the effectiveness of MTAs.
Vinorelbine (NVB), as a semi-synthetic vinca alkaloid, is used

for the treatment of advanced and metastatic NSCLC by
destabilizingmicrotubule formation and activating SAC to induce
mitotic arrest and cell death.14 Although it is widely used in
clinical application, myelosuppression, neurotoxicities and drug
resistance becamemajor obstacle for its clinical application.15–17

DT-13, a saponin monomer 13 of the dwarf lilyturf tuber, was
derived from Liriopes Radix.18 Our previous research showed
that DT-13 exhibited pro-autophagy,19 anti-thrombus and anti-
inflammation activity.20,21 Furthermore, DT-13 inhibited the
cancer cell metastasis,22 cancer angiogenesis23 and synergis-
tically enhanced topotecan-induced apoptosis.24

In our present study, we found that DT-13 combined with
NVB exhibited potent synergistic effects to inhibit the
proliferation of NSCLC cells according to a set of screening,
and further demonstrated that FOXM1 levels were involved in
the synergistic effect in vitro and in vivo.

Results

DT-13 synergistically increased the cytotoxicity of NVB in
NSCLC cells. To investigate whether DT-13 can be a
candidate exploited to increase the drug sensitivity in NSCLC
cells, we explored the combination treatment of DT-13 and
NVB, which was used in standard chemotherapy regimen of
NSCLC.25 As shown in Figure 1a, MTT assay showed that
10 μM DT-13 significantly increased the cytotoxicity of NVB in
NCI-H460 and A549 cells. Drug interaction of DT-13 and NVB
was calculated by combination Index (CI) values (Figure 1b),
which demonstrated that DT-13/NVB co-treatment exhibited
potent synergistic effect in NSCLC cells. Furthermore,
compared with DT-13 and NVB treatment alone, combination
treatment dramatically inhibited the colony formation in both
NCI-H460 and A549 cells (Figures 1c and d).
To explore whether the synergistic interaction of DT-13 and

NVB was of broader relevance in other NSCLC cells, we used
NCI-H1975 and HCC827 cells to evaluate the combinational
effects. As shown in Supplementary Figures 1A and B, DT-13/
NVB co-treatment also exhibited synergistic effects to inhibit the
proliferation of both NCI-H1975 and HCC827 cells. Moreover,
taxol, a classical anti-mitosis drugs, was also evaluated in the
combination treatment with DT-13. We found that DT-13
synergistically enhanced the cytotoxicity of taxol in NCI-H460,
NCI-H1975 and HCC827 cells except for A549 cells
(Supplementary Figures 1C–F). Overall, the synergistic inter-
action of DT-13 and NVB or taxol was summarized in
Supplementary Table S1, and the date demonstrated that
DT-13 could synergistically enhance NVB or taxol sensitivity in
NSCLC cells.

DT-13 and NVB cooperated to trigger caspase-dependent
apoptosis in NSCLC cells. The current study showed that
DT-13/NVB co-treatment exhibited synergistic effects in
NCI-H460 and A549 cells, both of which displayed wild-type
EGFR status. Hence, it is of great significance to investigate the

synergistic mechanisms of DT-13 and NVB. NVB has been
reported to cause apoptosis by releasing cytochrome c and
activating caspase-related proteins in NSCLC cells.26 To
demonstrate whether apoptosis was involved in the synergistic
effect, we performed Annexin V/PI staining after DT-13 and
NVB co-treatment, and results showed that the combination
treatment significantly induced apoptosis in NCI-H460 and
A549 cells for 48 h, compared with DT-13 or NVB treatment
alone (Figures 2a and b). At a mechanistic level, PARP
cleavage and caspases activation were known as important
effectors of apoptosis induction.27 Western blotting analysis
showed that DT-13 and NVB cooperated to induce the
cleavage of PARP and the activation of caspase-8, caspase-
9 and caspase-3 (Figures 2c and d). To investigate the
requirement of caspase activity for apoptosis induction, we
applied the broad range caspase inhibitor zVAD.fmk, and found
that pretreatment of zVAD.fmk greatly reduced
DT-13/NVB-induced apoptosis in both NCI-H460 and A549
cells (Figures 2e and f). Moreover, combination treatment for
48 h triggered significant changes of cell number and
morphology, compared with DT-13 or NVB treatment alone
(Supplementary Figure 2A). Above all, these data determined
that DT-13/NVB co-treatment induced caspase-dependent
apoptosis, which was the result of synergistic drug interactions.

DT-13 dramatically potentiated NVB-caused mitotic
arrest in NSCLC cells. As reported, NVB bound to tubulin
and induced the depolymerization of microtubule, and SAC
was then activated and cells were arrested in mitotic phase.28

Here, we found that mitotic arrest was not greatly induced by
DT-13/NVB co-treatment in both NCI-H460 and A549 cells at
48 h, but the percentage of sub G1 cells was greatly
increased (Supplementary Figure 3), which was consistent
with the results of apoptosis induction in Figure 2. In addition,
prolonged mitotic arrest could trigger intrinsic apoptotic
pathway.29 Therefore, we investigated whether DT-13/NVB
co-treatment caused mitotic arrest after short-term treatment.
As expected, we found that cells treated with the combination
of DT-13 and NVB turned rounder (Supplementary
Figure 2B), and were greatly arrested in G2/M phase at
12 h (Figure 3a). The percentage of G2/M phase cells in
combination treatment was dramatically higher than DT-13 or
NVB treatment alone (Figure 3b). To determine that
combination treatment induced cell cycle arrest in G2 phase
or in mitotic phase, we used MPM2 as the specific mitotic
marker.30 Western blotting analysis revealed that MPM2
expression was powerfully induced by DT-13 combined with
NVB (Figure 3c). Furthermore, the transition from G2 phase
to mitosis required the activation of cyclin B1/CDK1
checkpoint complex.31,32 Here, we found that cyclin B1 was
accumulated and CDK1/cdc2 was activated by combination
treatment (Figure 3c). Collectively, the results demonstrated
that DT-13 synergistically potentiated NVB-induced mitotic
arrest in NSCLC cells.

Mitotic arrest induced by combination treatment was
necessary for apoptosis induction. As reported, when
levels of cyclin B1 expression decreased below the threshold
that required for the activation of CDK, cell death pathway
would be activated.29,33 Here, we found that cyclin B1
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expression was dramatically increased at short-term treat-
ment (Figure 3c) and decreased at long-term treatment
(Figure 4a) in both NCI-H460 and A549 cells. To further
demonstrate whether DT-13/NVB-induced mitotic arrest was
required for apoptosis induction, CDK1 inhibitor RO-3306
was used to inhibit cell cycle transition from G2 phase to
mitosis (Figure 4b). Interestingly, DT-13/NVB-induced apop-
tosis at 48 h was greatly reduced by pretreatment of RO-3306

(Figures 4c and d). This set of experiments demonstrated that
DT-13/NVB-induced mitotic arrest was required for the
activation of apoptosis pathway.

Combination of DT-13 and NVB inhibited FOXM1 and
BICD2 expression at mRNA and protein levels. As
reported, FOXM1 played important roles in paclitaxel
sensitivity,34 and modulated the segregation of chromosome

Figure 1 DT-13 and NVB synergized to inhibit cell proliferation in NSCLC cells. (a) NCI-H460 and A549 cells were treated with 10 μM DT-13 and indicated concentrations of
NVB for 48 h. MTTassays were performed to analyze the cell viability of NSCLC cells. (b) CI values were calculated by CalcuSyn software, and drug interactions were indicated
as synergism (CIo0.9), additivity (0.9oCIo1.1) or antagonism (CI41.1). (c) NCI-H460 and A549 cells were exposed to 10 μM DT-13 and/or 0.01 μM NVB for 12 h, and
incubated for another 8 days. The colonies were stained with crystal violet. (d) The number of colonies was counted macroscopically, and expressed as the percentage of
untreated control. The data were expressed as mean± S.D. in triplicate using Student’s t-test (two-tailed). *Po0.05, **Po0.01 and ***Po0.001
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in mitosis by regulating the expression of KIF20A,11 CENP-A,
B, F35,36 and its potential downstream target bicaudal D2
(BICD2).37 At mRNA levels, we found that DT-13/NVB co-
treatment significantly reduced the expression of FOXM1 and
BICD2, compared with DT-13 or NVB treatment alone
(Figures 5a and b). Meanwhile, other downstream targets
of FOXM1 showed no great changes in both cells
(Supplementary Figures 4A–D). Subsequently, western blot-
ting analysis showed that FOXM1 expression at 48 h, BICD2

expression at both 12 and 48 h was dramatically decreased
by combination treatment (Figure 5c). However, we found that
FOXM1 expression at 12 h was not significantly changed
(Figure 5c). Previous studies showed that FOXM1 could be
increased at the post-translational levels by the treatment of
mitotic inhibitors.34–39 Hence, we performed nuclear and
cytoplasmic protein extraction analysis and found that
DT-13/NVB co-treatment strongly inhibited the FOXM1
expression in the nucleus (Figure 5d). DT-13 also exhibited

Figure 2 Combination treatment of DT-13 and NVB-induced caspase-dependent apoptosis in NSCLC cells. NCI-H460 and A549 cells were treated with 10 μM DT-13 and
0.01 μM NVB for 48 h. Annexin V/PI analysis for NCI-H460 (a) and A549 (b) cells were performed by flow cytometry to detect the percentage of apoptotic cells, and the frequency
of apoptotic cells (including early and late apoptotic cells) was shown in the histograms. The activation of apoptosis-related proteins for NCI-H460 (c) and A549 (d) cells at 48 h
was observed by the detection of active cleavage fragments of PARP, caspase-8, caspase-9 and caspase-3, β-actin was served as the loading control. NCI-H460 (e) and A549 (f)
cells were pretreated with 10 μM zVAD.fmk for 2 h, and then cells were exposed with 10 μM DT-13 and 0.01 μM NVB for another 48 h. Annexin V/PI analysis was performed to
detect the percentage of apoptotic cells, and the frequency of apoptotic cells (including early and late apoptotic cells) was shown in the histograms. The data were expressed as
mean± S.D. in triplicate using Student’s t-test (two-tailed). *Po0.05, **Po0.01 and ***Po0.001
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inhibitory effects on FOXM1 expression in cytoplasm and
nucleus in a time-dependent manner, whereas NVB triggered
upregulation of FOXM1 expression before downregulation
(Supplementary Figure 5A). In addition, DT-13 significantly
decreased FOXM1 and BICD2 expression in a dose-
dependent manner (Supplementary Figure 5B).

FOXM1 regulated the expression of BICD2, whereas
deletion furtherly potentiated the mitotic spindle defects
induced by NVB. Effects of DT-13 or NVB treatment alone
revealed that FOXM1 and BICD2 expression displayed

similar kinetic changes in both NCI-H460 and A549 cells
(Supplementary Figures 5A–C). To test the relationship
between FOXM1 and BICD2, we used the FOXM1 inhibitor
thiostrepton, which inhibited the transcription of FOXM1.40

Here, we found that thiostrepton decreased FOXM1 levels at
non-cytotoxicity concentrations (Figures 6a and b). Consis-
tently, BICD2 expression was also decreased by thiostrepton
treatment in a dose-dependent manner (Figure 6b). Further-
more, overexpression of FOXM1 significantly increased
BICD2 expression at mRNA and protein levels (Figures 6c
and d). Likewise, FOXM1 deletion by siRNAs also decreased
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BICD2 expression (Figures 6e and f). To further determine
whether FOXM1 is an upstream activator of BICD2, we found
that overexpression or deletion of BICD2 did not change the
protein levels of FOXM1 (Figures 6g and h).
As reported, FOXM1 deletion by siRNAs triggered mitotic

spindle defects.11 However, there was no data about the
effects of BICD2 in mitotic spindle formation or chromosome

alignment. In our study, we found that BICD2 deletion by
siRNAs showed no significant changes in mitotic spindle
formation, but potentiated NVB-induced mitotic spindle
defects in NCI-H460 cells (Figures 6i and j). Collectively,
these data indicated that FOXM1 is an upstream activator of
BICD2 expression, and BICD2 deletion was an amplification
signal of NVB-induced mitotic defects.

Figure 4 Mitotic arrest induced by DT-13 and NVB was required for apoptosis induction. (a) NCI-H460 and A549 cells were treated with 10 μM DT-13 and 0.01 μM NVB for
48 h, and the expression of cyclin B1 was determined by western blotting analysis. (b) NCI-H460 and A549 cells were pretreated with 5 μM CDK1 inhibitor RO-3306 for 2 h, and
cells were then exposed to 10 μMDT-13 and 0.01 μMNVB for another 12 h. Expression of mitotic marker MPM2 was observed by western blotting, and β-actin was served as the
loading control. (c) Cells were treated with 10 μM DT-13 and 0.01 μM NVB for 48 h after pretreatment of 5 μM RO-3306 for 2 h, and apoptotic cells were determined by Annexin
V/PI staining. (d) The percentage of apoptotic cells (including early and late apoptotic cells) was shown in the histograms, and the data were expressed as mean±S.D. in
triplicate using Student’s t-test (two-tailed). **Po0.01
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Levels of FOXM1 or BICD2 were related to mitotic arrest
induced by DT-13/NVB co-treatment. In order to further
determine whether FOXM1-BICD2 regulation axis was

involved in DT-13/NVB-induced synergistic effects, cells were
transfected with FOXM1 and BICD2 plasmids, respectively.
As shown in Figure 7a and Supplementary Figure 6A, we

Figure 5 DT-13/NVB co-treatment inhibited the expression of FOXM1 and BICD2 at mRNA and protein levels. NCI-H460 and A549 cells were treated with 10 μM DT-13 and
0.01 μM NVB for 12 and 48 h, respectively. The mRNA levels of FOXM1 and BICD2 in NCI-H460 (a) and A549 (b) cells were detected by RT-qPCR analysis, and the data were
expressed as mean± S.D. in triplicate using Student’s t-test (two-tailed). *Po0.05, **Po0.01. (c) Protein levels of FOXM1 and BICD2 in NCI-H460 and A549 cells were
determined by western blotting analysis, and β-actin was served as the loading control. (d) Nuclear and cytoplasmic expression of FOXM1 at 12 h was detected by western
blotting. Lamin B1 and β-actin were served as the loading control in nucleus and cytoplasm, respectively. RT-qPCR, real-time quantitative PCR
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Figure 6 FOXM1 positively regulated BICD2 expression, and BICD2 downregulation enhanced NVB-induced defects of the mitotic spindle. (a) The viability of NCI-H460 cells
after thiostrepton treatment for 24 h was determined by MTTassay. (b) Effects of thiostrepton on the expression of FOXM1 and BICD2 for 24 h were analyzed by western blotting,
and β-actin was served as the loading control. (c–f) BICD2 expression at mRNA and protein level was detected by altering the levels of FOXM1 in NCI-H460 cells by transfecting
FOXM1 plasmid or siRNAs. (g, h) FOXM1 protein levels were analyzed by transfecting BICD2 plasmid or BICD2 siRNAs. (i) Mitotic spindle defects were observed by
immunofluorescence assay in NCI-H460 cells following BICD2 deletion with or without 0.01 μM NVB treatment. Cells were immunostained with the antibody against β-tubulin
(green) and the nucleus was stained with DAPI (blue), the mitotic cells were observed by confocal microscopy (×100 magnification). (j) For each sample, at least 30 mitotic cells
were captured in images. The data were expressed as mean±S.D. in triplicate using Student’s t-test (two-tailed). **Po0.01 and ***Po0.001. NS, no significant changes
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found that co-treatment-induced cytotoxicity was greatly
reduced after FOXM1 overexpression, and NVB sensitivity
was also decreased in both NCI-H460 and A549 cells.
Importantly, BICD2 overexpression also exhibited similar
results in drug sensitivity induced by NVB alone or combina-
tion treatment in both NCI-H460 and A549 cells (Figure 7b;
Supplementary Figure 6B). Meanwhile, the results of
propidium iodide (PI) staining revealed that DT-13/NVB-
induced mitotic arrest was significantly reversed after FOXM1
overexpression, compared with strong synergistic effect in
negative controls (Figures 7c and e; Supplementary Figures
6C and 6E). Likewise, overexpression of BICD2 also reduced
the percentages of cells arrested in mitosis (Figures 7d and f;
Supplementary Figures 6D and 6F). At protein levels, we
found that MPM2 expression and cyclin B1/cdc2 activation
were significantly decreased in combination group by over-
expression of FOXM1 or BICD2 (Figures 7g and h;
Supplementary Figures 6G and 6H). Furthermore, we found
that drug sensitivity induced by NVB alone or combination
treatment was all increased by FOXM1 or BICD2 siRNAs
(Supplementary Figures 7A and 7B). Unexpectedly, we found
that mitotic arrest was attenuated, but apoptosis was
simultaneously induced by combination treatment for 12 h
after FOXM1/BICD2 deletion according to strong PARP
cleavage (Supplementary Figures 7C and 7D). Previous
study had revealed that the prolonged mitotic arrest could
trigger apoptosis. Here, we found that mitotic arrest induced
by combination treatment was greatly enhanced at shorter-
term treatment for 8 h (Supplementary Figures 7E and 7F),
which further demonstrated the important roles of both genes
in mitosis progression. Taken together, these results demon-
strated our hypothesis about the involvement of FOXM1 and
BICD2 in DT-13-/NVB-induced synergistic effects.

Combination treatment exhibited synergistic antitumor
effects in vivo. The above data revealed that DT-13
synergistically enhanced NVB sensitivity in vitro. Here, we
performed an animal experiment to evaluate the combina-
tional effects in NCI-H460-xenografted model. After 21 days
treatment, we found that 1.25 mg/kg DT-13 and 1 mg/kg NVB
showed no effective inhibition on the growth of NCI-H460
xenograft. However, combination treatment exhibited strong
inhibitory effects on relative tumor volume (RTV) and tumor
volume (TV) (Figures 8a and b). Furthermore, DT-13/NVB
co-treatment did not trigger obvious toxicity in vivo according
to the similar nude mice weight (Figure 8c). Analysis of
resected xenograft tumor size and weight further determined
the synergistic effects of DT-13 and NVB in vivo (Figures 8d
and e). To confirm the molecular mechanisms of the
combination treatment in vitro, we performed related detec-
tion in tumor tissues. Interestingly, both of FOXM1 and BICD2
were significantly decreased at mRNA and protein levels after
DT-13/NVB co-treatment (Figures 8f and g). Western blotting
analysis showed that apoptosis and mitotic arrest were
simultaneously induced by the combination treatment accord-
ing to PARP cleavage and MPM2 expression (Figure 8g). In
addition, in the tumor tissues of combination group, the
expression of MPM2 was also increased, whereas FOXM1
and BICD2 were reduced (Figure 8h), and the quantity of
Tunel-positive cells was dramatically induced by combination

treatment (Figures 8h and i). These data showed that DT-13/
NVB treatment exhibited synergistic inhibitory effects on the
growth of NCI-H460 xenograft, and boosted the mitotic arrest
and apoptosis via inhibition of FOXM1 and BICD2, which was
in accordance with the mechanisms in vitro.
Furthermore, the combinational effects of DT-13 and NVB

were also evaluated in A549 xenograft nude mice. Compared
with DT-13 or NVB treatment alone, DT-13/NVB co-treatment
exhibited significant inhibitory effects on the RTV of A549
xenograft, while therewas no obvious toxicity in vivo according
to the similar changes of nude mice weight (Supplementary
Figures 8A and 8B). Analysis of the resected xenograft tumor
size furtherly determined the synergistic effect of DT-13 and
NVB in vivo (Supplementary Figures 8C and 8D). In our initial
work, we found that DT-13 also synergistically enhanced the
cytotoxicity of the anti-mitosis drug taxol in NSCLC cells. Here,
our study also demonstrated that 1.25 mg/kg DT-13 combined
with 5 mg/kg taxol exhibited synergistic inhibitory effects on
the RTVand tumor weight in NCI-H1975 xenograft nude mice,
while the nude mice weight showed no significant changes
(Supplementary Figures 8E–H).
Taken together, DT-13 significantly enhanced the antitumor

effects of NVB or taxol in vivo, which provided competent
evidence to confirm that DT-13 might provide an effective
strategy for the chemosensitization of NVB or taxol in the
clinical therapy of NSCLC.

Discussion

In our present study, we determined a feasible synergistic
combination treatment of DT-13 and MTAs to inhibit the
proliferation of NSCLC cells in vitro and in vivo. NVB was
screened out from multiple first-line chemotherapeutic drugs
in NSCLC and showed higher effectiveness when combined
with DT-13 together in NSCLC cells that express wild-type
EGFR. Foremost, the synergistic effects were confirmed by
calculation of CI values and inhibition of colony formation.
Subsequently, mitotic arrest and apoptosis were triggered by
DT-13/NVB co-treatment at different time, and mitotic arrest
was further confirmed to be required for apoptosis induction.
Importantly, transcription factor FOXM1 was identified as the
upstream regulator of motor adaptor BICD2, and this axis was
further demonstrated to be correlated with the synergistic
effectiveness.
Cell cycle progression of eukaryote cells is tightly controlled

by several checkpoint complex, among which mitosis-
promoting factor (MPF) consisted of cyclin B1 and cdc2
kinase plays important roles in G2/M transition. Cyclin B1
accumulation and cdc2 activation through dephosphorylating
the residues Thr 14 and Thr 15 were necessary for the
initiation of mitosis progression.41 Here, our results showed
that combination treatment triggered MPF activation through
upregulating cyclin B1 levels and decreasing the phosphor-
ylation of cdc2 at short-term treatment (Figure 3c). Moreover,
cyclin B1 was reported to be destructed by anaphase-
promoting complex/cyclosome just after SAC was inactivated,
which was needed for anaphase initiation.7,42 As expected, we
found that cyclin B1 expression was greatly decreased by
long-term treatment, and mitotic arrest was required for
apoptosis induction (Figure 4). On the basis of the
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effectiveness of NVB triggering SAC activation,28 we con-
cluded that NSCLC cells treated by combination treatment
were arrested in prophase because of the sustained SAC
activation.
To unravel the molecular mechanisms, we focused our

attention on transcription factor FOXM1, which showed potent

transcription regulator activity on various downstream targets
in cell cycle progression. FOXM1 was expressed in almost all
embryonic tissues, especially in highly proliferative cells from
epithelial and mesenchymal tissues.43,44 Moreover, FOXM1
expression was involved in the drug sensitivity and resistance
of paclitaxel.11,13 However, there is no data regarding effects

Figure 8 DT-13 and NVB cooperated to suppress tumor growth in NCI-H460 xenograft nude mice. Statistical analysis of relative tumor volume (a), tumor volume (b), nude
mice weight (c) and tumor weight (d) was performed, and 10 mg/kg NVB was used as a positive control. (e) Image of resected xenograft tumor after combination treatment was
shown. (f) Relative mRNA levels of FOXM1 and BICD2 from tumor tissue were determined by RT-qPCR analysis. (g) The protein levels of PARP, MPM2, FOXM1 and BICD2 were
examined by western blotting, and β-actin was served as the loading control. (h) Tumor tissues from NCI-H460-xenografted nude mice after DT-13/NVB treatment were performed
by TUNEL assay. Molecular alterations of MPM2, FOXM1 and BICD2 in each group were detected by immunohistochemistry analysis. (i) The quantity of tunnel-positive cells in
each visual field was statistically analyzed in the histograms. The data were expressed as mean±S.D. using Student’s t-test (two-tailed). *Po0.05, **Po0.01 and ***Po0.001.
RT-qPCR, real-time quantitative PCR
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of FOXM1 expression on the sensitivity of microtubule-
destabilizing agents before, and our present study showed
that FOXM1 deletion by siRNAs greatly enhanced NVB-
induced inhibition of cell proliferation (Supplementary
Figure 7A). In contrast, FOXM1 overexpression significantly
increased the IC50 of NVB and attenuated the G2/M arrest
induced by NVB alone (Figures 7a and e). Meanwhile, we
found that DT-13/NVB co-treatment greatly reduced nuclear
FOXM1 levels, and we further demonstrated that down-
regulation of FOXM1 expression was related to the synergistic
effectiveness.
In prophase progression, SAC was served as a mechanism

to prevent chromosome missegregation and aneuploidy
formation by regulating correct attachment of microtubule to
kinetochores.7 Traditional mitosis-targeting drugs, such as
taxanes and vinca alkaloids, directly interfered with the
polymerization or depolymerization of microtubules to activate
SAC and induce mitotic arrest.14 Moreover, microtubule-
associated proteins (MAPs) also showed activities to alter
microtubule dynamics and played great roles in tumorigenesis
and tumor development.45 Collectively, MAPs included onco-
genes, tumor suppressors, apoptosis regulators and micro-
tubule motor proteins, and showed potency to influence the
effectiveness of MTAs.45,46 Generally speaking, microtubule-
stabilizing proteins, such as MAP1, 2, 4, 7, Tau and VHL,
promoted the effects of microtubule-stabilizing taxanes,
whereas microtubule-destabilizing proteins, such as stathmin,
XKCM1 and TFC-D, increased the effects of microtubule-
destabilizing vinca alkaloids.45

In mitosis progression, KIF20A, a downstream target of
FOXM1, was a motor protein from kinesin-6 subfamily, which
regulated separation of spindle poles and was related to
paclitaxel-induced mitotic catastrophe and cellular
senescence.11 Furthermore, CENP-A, CENP-B and CENP-
F35,36 were also reported to be regulated by FOXM1 and
modulate chromosomal segregation in the prophase of
mitosis. In our study, we found that DT-13/NVB co-treatment
showed no significant and consistent effects on these down-
stream targets of FOXM1 in both NCI-H460 and A549 cells
(Supplementary Figure 4).
Microtubules were one of the major cytoskeleton in

eukaryote cells and provided a rail for microtubule motor
proteins to transport their cargos.47 Dyneins were microtubule
minus-end-directed molecular motors involved in multiple
crucial fundamental processes including vesicles transporta-
tion and mitosis.48 Importantly, dyneins played crucial roles in
removing mitotic checkpoint components before SAC was
inactivated by the correct attachment of plus-endmicrotubules
to kinetochores.7 As reported, most dynein activities required
the combination with dynactin, and this interaction was
strongly maintained by BICD2, which is an evolutionarily
highly conserved motor adaptor and involved in dynein-
dependent cargos trafficking in drosophila and mammals.49

In our study, we found that the combination of DT-13 and NVB
significantly reduced BICD2 expression at mRNA and protein
levels. Interestingly, BICD2 exhibited the similar kinetics with
FOXM1 in both NCI-H460 and A549 cells under different drug
treatment, such as thiostrepton, DT-13 or NVB. To confirm our
speculation that FOXM1might be a crucial upstream regulator
of BICD2 expression, we demonstrated that BICD2

expression was determined by FOXM1 levels, whereas
FOXM1 expression was not influenced by the changes of
BICD2 expression (Figures 6c–h). Moreover, we found that
BICD2 deletion alone showed no significant effects on mitotic
spindle formation, but strongly potentiated the mitotic spindle
defects that were induced by NVB treatment (Figures 6i and j).
In addition, overexpression of BICD2 significantly attenuated
the effectiveness of NVB alone or combination treatment in
both NCI-H460 and A549 cells (Figure 7b; Supplementary
Figure 6B). Therefore, we concluded that the reduction of
BICD2 induced by DT-13/NVB co-treatment dramatically
influenced the activities of dynein and the subsequent SAC
inactivation. Hence, SAC was strongly prolonged by DT-13 on
the basis of SAC activation triggered by NVB treatment. These
results further demonstrated the important roles of BICD2 in
maintaining the interaction of dynein and dynactin, which
could remove the mitotic checkpoint components to inactivate
SAC signaling.
In summary, our study confirmed that DT-13 synergistically

enhanced NVB-induced mitotic arrest and subsequent apop-
tosis in NSCLC cells. Most importantly, FOXM1-BICD2
signaling axis was confirmed to be involved in NVB sensitivity
and the synergistic effects of DT-13/NVB co-treatment. More-
over, in vivo study revealed that DT-13 combined with NVB
significantly suppressed tumor growth in nude mice xenograft
model, meanwhile, the changes of FOXM1 and BICD2 in
tumor tissues further demonstrated the molecular mechan-
isms in vitro. Our research indicated that targeting FOXM1 and
motor adaptor BICD2 is an effective strategy to sensitize NVB,
and DT-13 might be a practical candidate agent for the
adjuvant chemotherapy of microtubule-interfering agents
in NSCLC.

Materials and Methods
Chemicals and reagents. DT-13 was derived from Liriope muscari, and
supplied by Tianjin Tasly Pharmaceutical Co., Ltd (Tianjin, China). NVB was
obtained from J&K chemical (Shanghai, China). 3-(4, 5-dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide (MTT) and crystal violet were purchased from
Sunshine Biotechnology Ltd (Nanjing, China). Apoptosis detection kit (Annexin
V-PI Staining) and TUNEL detection kit were purchased from Vazyme Biotech Co.,
Ltd (Nanjing, China). Cell cycle detection kit (PI staining) and Nuclear Extract Kit
were obtained from Beyotime Biotechnology (Shanghai, China). zVAD.fmk was
purchased from MCE (MedChem Express, Princeton, NJ, USA).

Cell culture. Human lung cancer NCI-H460, A549, NCI-H1975 and HCC827
cells were obtained from Cell Bank of Shanghai Institute for Biological Sciences,
University of Chinese Academy of Sciences. Both cells were authenticated by short
tandem repeat analysis to exclude possible contamination. Cells were cultured in
RPMI-1640 medium (Gibco, Grand Island, NY, USA), 10% fetal bovine serum (FBS,
PAN Biotech, Aidenbach, Germany) and supplemented with 100 U/ml penicillin and
100 pg/ml streptomycin. Cells were incubated in a humidified atmosphere (BB15
incubator, Thermo, Langenselbold, Germany) with 5% CO2 at 37 °C.

Cell viability assay. Effects of DT-13/NVB co-treatment on NSCLC cells were
determined by MTT assay. Cell suspensions were prepared and 2000 cells were
seeded into 96-well plate. After incubation for 24 h, cells were treated with DT-13 or
NVB alone or in combination for another 48 h. Subsequently, 20 μl MTT (0.5 mg/ml)
was added into each well and incubated for another 4 h, and the cell supernatant
was discarded and replaced with 150 μl DMSO to dissolve the formazan precipitate.
The absorbance was detected at 570 nm using a Universal Microplate Reader
(Infinite M100, Tecan, Germany) The inhibition rate was calculated by the formula:
Inhibition rate (%)= (1-Absorbance of the treated group/Absorbance of the control
group) × 100.
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Colony formation assay. Effect of combination treatment on cell proliferation
was detected by colony formation assay. About 500 cells were seeded into six-well
plate and incubated for 24 h. Subsequently, cells were treated with 10 μM DT-13
and 0.01 μM NVB alone or in combination for 12 h. Cells were then cultured in
drug-free medium for another 8 days before fixation with 0.5% crystal violet and
staining with 4% formaldehyde. The number of colonies was then counted
macroscopically.

Apoptosis detection. Induction of apoptosis was determined by Annexin V/PI
staining. Cells were collected with EDTA-free trypsin, and washed with ice-cold PBS
for two times. Subsequently, cells were suspended with 500 μl binding buffer, and
stained with 5 μl PI and 5 μl FITC-conjugated Annexin V for 15 min. Apoptotic cells
were analyzed by FACSCalibur flow cytometry (BD Biosciences, San Jose,
CA, USA).

Western blotting analysis. Western blotting analysis was performed as the
previous study.19 Antibodies used were as following: rabbit polyclonal anti-PARP,
rabbit polyclonal anti-caspase-3, rabbit polyclonal anti-cleaved caspase-3, rabbit
polyclonal anti-caspase-9, rabbit polyclonal anti-cleaved caspase-9, rabbit
polyclonal anti-cyclin B1, mouse polyclonal anti-cdc2 and rabbit polyclonal anti-p-
cdc2 (Tyr15) were purchased from Cell Signaling Technology (Beverly, MA, USA).
Mouse polyclonal anti-MPM2 and rabbit polyclonal anti-BICD2 were commercially
available from Millipore Corporation (Bedford, MA, USA), and rabbit polyclonal anti-
FOXM1 antibody was purchased from ABclonal Technology (Wuhan, China). Mouse
polyclonal anti-β-actin was purchased from Sunshine Biotechnology Ltd. Goat
polyclonal anti-rabbit IgG conjugated to HRP and goat polyclonal anti-mouse IgG
conjugated to HRP (Cell Signaling Technology) were used as secondary antibodies,
and enhanced chemiluminescence reagents (Millipore) was used for detection and
exposed by Gel 2000 image analyzer (Bio-Rad, Richmond, CA, USA).

Cell cycle analysis. Distribution of cell cycle was detected by PI staining.
Cells were collected and fixed in 75% ethanol overnight after drug treatment.
Afterwards, cells were washed with ice-cold PBS for one time and stained with PI
staining for 30 min at 37 1C. Cell cycle analysis was performed using FACSCalibur
flow cytometry (BD Biosciences).

Quantitative real-time PCR. Real-time quantitative PCR is described in
Supplementary Methods.

Plasmids transfection. FOXM1 and BICD2 plasmids were purchased from
Hanbio Biotechnology Co., Ltd, and had been verified by direct sequencing. Plasmids
were transfected into NCI-H460 cells by using Lipofectamine 2000 (Invitrogen, Carlsbad,
CA, USA), according to the manufacturer’s instructions. Cells were incubated in
transfection medium for 6 h, and then incubated in complete medium for another 18 h.
All experiments were then performed and repeated for three times.

RNA interference. The transfection of siRNA against FOXM1 and BICD2 is
described in Supplementary Methods.

Immunofluorescence assay. The immunofluorescence assay was
described previously.24 Cells were immunostained with the antibody against
β-tubulin (Cell Signaling Technology) and the nuclei were stained with 4',
6-diamidino-2-phenylindole (DAPI, Thermo Fisher Scientific, San Jose, USA).
Mitotic cells were observed by confocal laser scanning microscopy (FV10-ASW,
Version 2.1, Olympus, Tokyo, Japan).

Nude mice xenograft study. Female BALB/c athymic nude mice (5 weeks)
with body weight from 18 to 22 g were purchased from the Model Animal Research
Center of Nanjing University. About 3 × 106 NCI-H460 cells were injected into the
subcutaneous tissue of armpit. Tumor tissues were grown with a volume about
400 mm3, then resected and cut into small pieces. Subsequently, the pieces of
tissue were planted subcutaneously into each nude mice. After 10 days, tumor sizes
were measured by micrometer calipers. After excluding the mice with unsuitable
tumor size, the mice with analogous TV were randomly divided into five groups with
six individuals per group. DT-13 was intragastrically administrated with a
concentration of 1.25 mg/kg, and NVB was intravenously administrated with
dosages of 1 and 10 mg/kg (positive control). The negative group was given an
equal amount of normal saline. After administration for 21 days, mice were killed,
and the tumor tissues were then resected and detected. TV and RTV were

calculated by the following formula: TV (mm3)= A/2 × B2, where A represents the
longest diameter of tumor, and B represents the shortest diameter. RTV=Vt/V0,
where Vt represents the TV of day t, and V0 represents the TV of day 0. Animal care
and surgery operation were all guided by Animal Care and Control Committee in
China Pharmaceutical University.

Immunohistochemical analysis. The expression of MPM2, FOXM1 and
BICD2 in tumor tissues of BALB/c nude mice was detected as previously
described.24 Apoptotic cells in tumor tissues were determined by TUNEL
BrightGreen Apoptosis Detection Kit (Vazyme Biotech Co., Ltd), according to the
manufacturer’s protocol.

Statistical analysis. Drug interactions were assessed as CI, which was
calculated by CalcuSyn software program (Version 2.1, Biosoft, Cambridge, UK).
CIo0.9 represents synergism, 0.9oCIo1.1 represents additivity and CI41.1
represents antagonism. All data in the study were expressed as mean± S.D. using
Student’s t-test (two-tailed). *Po0.05, **Po0.01, ***Po0.001 and NS represents
no significant changes.
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