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Abstract: Enzyme-catalyzed chemical reactions produce heat. We developed an enclosed,
capillary-perfused nanocalorimeter platform for thermometric enzyme-linked immunosorbent assay
(TELISA). We used catalase as enzymes to model the thermal characteristics of the micromachined
calorimeter. Model-assisted signal analysis was used to calibrate the nanocalorimeter and to
determine reagent diffusion, enzyme kinetics, and enzyme concentration. The model-simulated
signal closely followed the experimental signal after selecting for the enzyme turnover rate (kcat)
and the inactivation factor (InF), using a known label enzyme amount (Ea). Over four discrete runs
(n = 4), the minimized model root mean square error (RMSE) returned 1.80 ± 0.54 fmol for the
1.5 fmol experiments, and 1.04 ± 0.37 fmol for the 1 fmol experiments. Determination of enzyme
parameters through calibration is a necessary step to track changing enzyme kinetic characteristics
and improves on previous methods to determine label enzyme amounts on the calorimeter platform.
The results obtained using model-system signal analysis for calibration led to significantly improved
nanocalorimeter platform performance.

Keywords: microfabricated calorimeter; ELISA; thermometric ELISA; biosensor; model-assisted
signal analysis

1. Introduction

Enzyme-linked immunosorbent assays (ELISAs) are the gold standard for detecting and
quantifying antigens and antibodies in biological samples and have been extended to other biological
markers for drug discovery and pregnancy tests [1,2]. Most commercially-available ELISA kits utilize
enzyme-conjugated reagents (e.g., antibodies) specific for a target analyte to produce a colorimetric,
chemiluminescent, or fluorescent signal that can be quantified using a microtiter plate reader [3–5].
Although specific and sensitive, many detection methods prevent ELISAs from on-site use [6–8].
ELISAs with optical-based detection have been developed for point-of-care (POC) operation, but either
lack quantitative results or require samples with particular optical properties [9]. Mattiasson et al. first
developed an ELISA with a calorimetric readout of the heat produced by the enzymatic reaction, named
thermometric ELISA (TELISA) [10]. TELISA produces a direct readout from the heat produced by
the enzymatic reaction. The original TELISA calorimetric biosensor used flow-through columns with
immobilized enzymes, requiring large sample volumes greater than a finger prick, ambient temperature
controls, and external pumps for liquid handling. Flow-through TELISA achieved a limit of detection
(LOD) of 86 picomoles of labeling enzyme for detecting insulin [11]. Although the design of the TELISA
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successfully demonstrated a proof-of-principle, these factors prevented TELISA from reaching the
sensitivity of conventional ELISAs, and the design was not suited for use in POC applications [12,13].
Advances in micromanufacturing have made possible the development of microfluidic calorimeters
that can be used as platforms to carry out TELISA. Calorimeters that achieve nanojoule levels of
sensitivity are defined as nanocalorimeters. Nanocalorimeter-based TELISAs can rapidly detect
small temperature changes in enzyme-based immunoassays to produce fast, quantifiable electronic
readouts [14,15]. As such, microfabricated devices used to carry out TELISAs can be competitive with
traditional ELISAs. Nestorova et al. showed the feasibility of TELISA without complex temperature
control in determining the 8-hydroxy-2-deoxyguansoine (8OHdG) levels in urine [16]. Xu et al. utilized
flow-injection analysis TELISA to detect diazepam in beverages, achieving an LOD of 43.8 picomoles
with minimal sample pretreatment [17]. Both systems take advantage of TELISA for rapid results
without expensive imaging equipment. However, both require external pumps for liquid sample
handling, limiting the approach to a lab setting.

Biosensor platforms that can quickly be adapted to new targets are in high demand. Since enzymes
used in ELISAs produce heat as a byproduct of an enzyme-catalyzed reaction, a calorimeter becomes
an easily adaptable and customizable platform to detect enzymes, as indicators of antigen presence,
in TELISAs. Hydrogen peroxide is a commonly used substrate in ELISAs. It is ideal due to
its high reaction enthalpy (−98 kJ/mol) and large catalog of reactive enzymes (e.g., catalase or
horseradish peroxidase, etc.). Catalase (CAT; Enzyme Commission number (EC) 1.11.1.6) catalyzes
the decomposition of H2O2 into water and oxygen, a well-characterized reaction. CAT also features
fast turnover rates, so small amounts of the enzyme can turn over substrate quickly. This maximizes
sensitivity when labeling small amounts of target analyte with an enzyme. TELISA relies on knowing
the reaction kinetics, which degrade over time and change in different conditions. CAT becomes
inactivated after catalyzing 107 hydrogen peroxide molecules, adding a complication to the assay when
using high-substrate concentrations over a long duration [18]. Using these enzymes as labels creates
adaptable biosensors that apply the same transduction method and simply require reliable labeling
of the target analyte. The TELISA approach reads the signal as the reaction is occurring, producing
real-time results.

We have successfully developed highly sensitive nanocalorimeter TELISA platforms and showed
the detection of clinically relevant levels of herceptin and phenylalanine in serum [19,20]. The devices
feature a small footprint, require nanoliter volumes of sample, and are mass produced by standard
batch microfabrication techniques that can be commercially produced at a cost of less than $1 USD per
device. In our previous studies, modeling using radial, two-dimensional (2D) simulation guided our
nanocalorimeter platform design. However, that approach did not apply to the nanocalorimeter’s
microfluidic channel geometry, and did not include the kinetics of chemical reactions. Previous work
showed a calorimeter thermal time constant of 325 ms, and an energy sensitivity of 1.4 nJ/Hz1/2.
For comparison purposes, this translates to an LOD of 25 femtomoles (fmol) for an acid–base
neutralization reaction [19]. Nanocalorimeter fluid handling was driven by capillary forces, and assay
readouts were obtained via direct voltages, showing promise for POC operation. Although the
nanocalorimeter platform’s performance has been explored and is well understood, determining the
enzyme amount is challenging. Previously, enzyme-based calorimeter assays were simplified using a
phenomenological approach, by solely measuring the total amount of substrate consumed or the decay
time for the first several seconds of a heat/voltage-generating reaction to determine results. This method
did not exploit the full reaction time course and required reactions with high enthalpies and fast
kinetics. A more robust technique that considers the entire time course of the enzymatically-catalyzed
reaction would reduce run-to-run variability and decrease uncertainty in TELISA results, increasing
the limit of detection.

In the present study, we incorporate finite element numerical modeling, simulating both
the enzyme reaction and substrate diffusion, as well as the physical characteristics of a
capillary-driven POC calorimeter platform. We use a single, comprehensive model to interrogate the
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Michaelis–Menten-governed enzyme kinetic reaction, to determine the enzyme amount to extract using
the entire time course. We demonstrate the use of model-assisted signal analysis to calibrate enzyme
kinetics for experimental sets and determine the enzyme amounts correlated to a target substance in a
TELISA operation. This complete numerical approach allowed us to reduce the extrapolated LOD
to attomole levels of catalase and achieve experimental detection of femtomoles of catalase on our
nanocalorimeter platform as a proof of concept for an adaptable TELISA biosensor.

2. Materials and Methods

2.1. Nanocalorimeter Platform Layout

Figure 1A shows a top-down representation of the nanocalorimeter platform base. The platform
consists of a thermally isolated reaction zone, with a differential thermopile to measure reaction
enthalpies. The reaction zone is integrated in a microfluidic channel, which consists of two thin
membranes separated by two strips of thick photoresist forming the channel walls. The two membranes
are supported by a silicon wafer. A thin layer of the epoxy-based polymer photoresist Su-8 (MicroChem)
is hard-baked on the surface of the silicon wafer. Anisotropic etching of the silicon above and below the
calorimeter location forms a suspended membrane, and the bismuth (Bi) and titanium (Ti) thermopile
are deposited to form the calorimeter. A second thin layer of Su-8 encapsulates the thermopile, ensuring
that the nanocalorimeter is isolated electrically and protected from chemical reactions occurring on
the platform. Walls complete a Su-8 polymer-lined microfluidic channel for substrate delivery to the
reaction zone above the calorimeter (Figure 1B). The nanocalorimeter senses temperature differences
using a 27 junction Bi/Ti thermopile (Figure 1C). Sensing and reference junctions are arranged in 500
µm diameter semicircles. The low thermal conductance and thin profile of the membrane minimizes
heat flux away from the sensing elements into the silicon base, thermally isolating the reaction zone
on the nanocalorimeter to ensure high sensitivity. Both junction sets are located in the microfluidic
channel, which allows for compensation for unwanted reaction enthalpies in differential calorimetry.
We used this to subtract the heat of dissolution by exposing the reference junctions with denatured
enzyme [19].

The thermopile self-generates a voltage difference proportional to a difference in temperature
between the sensing and reference junctions. The output voltage is amplified by a 10,000x, custom-built
low-noise amplifier, and recorded using a custom National Instruments LabVIEW software module.
In order to verify our results from modeling and determine the LOD for TELISA on the nanocalorimeter
platform, simplified experiments measuring the amounts of enzyme were performed using CAT and
hydrogen peroxide. Experiments were performed on the platform by first depositing a 10 nl volume of
enzyme onto the area directly above the nanocalorimeter sensing junctions. Once the small volume
was dried, the lid was added to form the microfluidic channel, and the platform was connected to the
electrical amplifier. A total of 650 nl of substrate was placed at the entrance to the microfluidic channel
and was drawn in by capillary force, filling the entire channel. This filling created a large signal artifact
lasting approximately 100 milliseconds, obscuring any signal during that time. The reaction began
when the substrate reconstituted the dried enzyme, producing heat in the reaction volume above the
sensing junctions. Since the heat-producing reaction occurred in the channel with both the sensing and
reference sets of junctions of our differential calorimeter, thermal diffusion modeling was important
when designing assays, to ensure that a detectable change in temperature was produced at the sensing
junctions before the heat diffused through the channel to the reference junctions.
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Figure 1. (A) Nanocalorimeter platform consisting of an Su-8 polymer thin membrane on a silicon 
base, Su-8 walls, and a thermopile calorimeter. (B) A second Su-8 membrane on silicon seated on the 
walls forms a microfluidic channel around the calorimeter. The thin membrane thermally isolates the 
reaction zone, calorimeter sensing, and reference junctions from the environment. Liquid placed at 
entrance to the microfluidic channel is drawn in by capillary forces, filling the channel without 
external pumps. (C) The calorimeter consists of a 27 junction Bi/Ti thermopile in a differential format. 
Sensing junctions and reference junctions are each arranged in a semicircle on the freestanding thin 
membrane. The temperature difference between the sensing junctions and reference junctions 
generates a proportional voltage differential between the thermopile contacts. Additional details on 
platform design and construction can be found in Lubbers [21]. Figure adapted from Kazura et al. 
[19]. 

2.2. Model Construction 

To model TELISA performed on the platform, a three-dimensional (3D) model was constructed 
in COMSOL Multiphysics. Figure 2A shows the model representation of the sample liquid within the 
microfluidic channel, consisting of a block 2355 μm wide by 3000 μm long by 50 μm tall. A cylindrical 
volume of diameter 500 μm and height 5 μm in the channel liquid is designated as the reaction zone, 
where the enzymatic reaction governed by Michaelis–Menten kinetics occurs. The microfluidic 
channel liquid and reaction zone were defined as water to properly simulate the diffusion of substrate 
and enzyme, as well as heat capacity and thermal conductivity to compute temperature profiles. The 
3D model was then extended to include the calorimeter platform (Figure 2B) and assigned material-
related thermal properties Gi, taken from our previous modeling effort, to simulate the calorimeter 
platform’s thermal response to the heat input from the enzymatic reaction [19]. The liquid channel 
was confined by the two thin Su-8 membranes and the two Su-8 channel walls with thermal 
properties Gmem (thermal conductivity k = 0.2 W/(m*K); density ρ = 1123 kg/m3; heat capacity Cp = 1200 
J/(kg*K)), and the sensing thermocouple junctions were embedded within the membrane. The sensing 
and reference junction areas were simplified as cylinders within the membrane, with effective 
thermal conductance Gjunct (k = 0.46 W/(m*K); ρ = 1268 kg/m3; Cp = 1180 J/(kg*K)), and the thermopile 
tracks as a rectangular block between them, with effective thermal conductance Gtherm (k = 2.4 
W/(m*K); ρ = 2346 kg/m3; Cp = 1034 J/(kg*K)), as seen in Figure 2C. This can be done because the 
thermocouples within the differential thermopile calorimeter add temperature differences, but in a 
manner that makes a temperature difference at one pair of thermocouples indistinguishable from 
another in the generated signal. Due to the thermocouples’ close proximities to each other and the 

Figure 1. (A) Nanocalorimeter platform consisting of an Su-8 polymer thin membrane on a silicon
base, Su-8 walls, and a thermopile calorimeter. (B) A second Su-8 membrane on silicon seated on the
walls forms a microfluidic channel around the calorimeter. The thin membrane thermally isolates
the reaction zone, calorimeter sensing, and reference junctions from the environment. Liquid placed
at entrance to the microfluidic channel is drawn in by capillary forces, filling the channel without
external pumps. (C) The calorimeter consists of a 27 junction Bi/Ti thermopile in a differential format.
Sensing junctions and reference junctions are each arranged in a semicircle on the freestanding thin
membrane. The temperature difference between the sensing junctions and reference junctions generates
a proportional voltage differential between the thermopile contacts. Additional details on platform
design and construction can be found in Lubbers [21]. Figure adapted from Kazura et al. [19].

2.2. Model Construction

To model TELISA performed on the platform, a three-dimensional (3D) model was constructed in
COMSOL Multiphysics. Figure 2A shows the model representation of the sample liquid within the
microfluidic channel, consisting of a block 2355 µm wide by 3000 µm long by 50 µm tall. A cylindrical
volume of diameter 500 µm and height 5 µm in the channel liquid is designated as the reaction zone,
where the enzymatic reaction governed by Michaelis–Menten kinetics occurs. The microfluidic channel
liquid and reaction zone were defined as water to properly simulate the diffusion of substrate and
enzyme, as well as heat capacity and thermal conductivity to compute temperature profiles. The 3D
model was then extended to include the calorimeter platform (Figure 2B) and assigned material-related
thermal properties Gi, taken from our previous modeling effort, to simulate the calorimeter platform’s
thermal response to the heat input from the enzymatic reaction [19]. The liquid channel was confined
by the two thin Su-8 membranes and the two Su-8 channel walls with thermal properties Gmem

(thermal conductivity k = 0.2 W/(m*K); density ρ = 1123 kg/m3; heat capacity Cp = 1200 J/(kg*K)),
and the sensing thermocouple junctions were embedded within the membrane. The sensing and
reference junction areas were simplified as cylinders within the membrane, with effective thermal
conductance Gjunct (k = 0.46 W/(m*K); ρ = 1268 kg/m3; Cp = 1180 J/(kg*K)), and the thermopile tracks
as a rectangular block between them, with effective thermal conductance Gtherm (k = 2.4 W/(m*K);
ρ = 2346 kg/m3; Cp = 1034 J/(kg*K)), as seen in Figure 2C. This can be done because the thermocouples
within the differential thermopile calorimeter add temperature differences, but in a manner that makes
a temperature difference at one pair of thermocouples indistinguishable from another in the generated
signal. Due to the thermocouples’ close proximities to each other and the high thermal conductivity
of the aqueous environment above them, the sensing and reference junctions can each be simplified
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to uniform regions that average the temperature differences between them in an amplified voltage
signal. The effective conductance Gjunct and Gtherm were determined by the proportional volumes
of the membrane, Bi, and Ti within the respective regions. The lid and base were designated as
silicon within COMSOL’s included material library and the membrane as Su-8 polymer (Gmem) for the
material properties required to simulate heat flow through the platform. The portions of the membrane
embedded with the nanocalorimeter were assigned their specific heat and thermal conductivity values
for the respective ratios of Su-8, bismuth, and titanium within each volume.
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Figure 2. Three-dimensional (3D) calorimeter platform model, constructed in COMSOL Multiphysics.
(A) The microfluidic channel liquid is represented in the model by a block, designated as water for
physical and thermal properties and assigned an initial homogeneous substrate concentration. (B) The
nanocalorimeter platform, consisting of the base, lid, walls, and membrane containing the calorimeter
thermopiles, was added to the microfluidic channel liquid. (C) The sensing and reference junctions are
simplified to uniform half circles that average the temperature differences between them. The Bi/Ti
thermopile tracks between the junctions are modeled in the volume between the two half-circles.
Top-down (D) and cross-section (E) spatial distribution of heat at 0.43 s, at which temperature difference
between the reference and sensing junctions was the greatest.

2.3. Model Operation and Data Processing

Thermal ELISA reactions were simulated using the COMSOL Transport of a Diluted Species
physics suite, which models the concentration field of a dilute solute in a solvent. The microfluidic
channel liquid was assigned a homogeneous initial concentration of a substrate. A chemical reaction
was assigned within the reaction volume, which reduced the substrate concentration over time
as defined by the Michaelis–Menten kinetics of the enzyme to be simulated. CAT was explored.
The simulation was run for 30 s, with the reaction beginning at t = 0.05 s to offset for the filling noise.
In order to find the amount of substrate consumed by the reaction, the substrate was integrated across
the microfluidic channel liquid and subtracted from the integral of the previous time point. This change
in substrate per ∆t was multiplied by the enthalpy of the decomposition of hydrogen peroxide to find
the heat produced by the reaction, and assigned as an energy source located within the reaction zone.
Using the COMSOL Heat Transfer in Solids suite, the heat transfer through conduction, convection,
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and radiation was simulated, as shown in Figure 2D. The differential temperature between the sensing
and reference junctions was multiplied by the total calorimeter Seebeck coefficient to yield a predicted
electrical output signal. The cross-section in Figure 2E demonstrates that the 50 µm high microfluidic
channel generates a large heat gradient from the reaction zone across the width of the channel, creating
the temperature difference measured between the sensing and reference junctions. Thus, the reference
junctions can be located within the same channel for differential calorimetry, instead of being thermally
anchored to the silicon substrate. For a TELISA at a given substrate level, the model can be varied
over inputs of enzyme amount (Ea), enzyme turnover rate (kcat), and the inactivation factor (InF).
The inactivation factor models the inactivation of catalase after (InF × 107)−1 number of turnover
events. The modeled signal y’ was compared to experimental TELISA signal y by root mean square
error (RMSE).

g(Ea, kcat, InF) = y′(n) (1)

t = n ∗ ∆t (2)

RMSE =

√∑n
1(y− y′)2

n
(3)

2.4. Catalase Experiment

Bovine liver catalase was obtained from Fisher Scientific (2190015MU). All solutions were made
using 1× PBS Buffer (Thermo Scientific 28348). Suspended CAT was allowed to dry over the sensing
thermocouple junctions of the calorimeter, and the capillary channel was assembled. The channel was
then filled with dilute H2O2, by placing a drop at the entrance of the channel and allowing capillary
forces to draw the liquid in. The voltage of the thermopile was recorded over time. After a voltage
peak, the signal then formed a baseline dependent on the diffusion of substrate into the reaction zone,
the reaction rate of the enzyme, and the active enzyme amount remaining after inactivation from past
turnover events. Calorimeter platforms were cleaned between experiments using deionized water
and isopropanol.

3. Results and Discussion

3.1. Enzyme-Based Model Operation

Diffusion modeling, shown in Figure 3A, shows the progression of substrate concentration within
the microfluidic channel over the time course of the simulation. In Figure 3A, beginning with a
homogeneous concentration (a), the H2O2 within the reaction zone was consumed within the first
second (b–f). The reaction then sharply slowed as the substrate diffused into the reaction zone (g–k).
The change in H2O2 concentration was converted to the total substrate consumed (Figure 3B, left
axis), and multiplied by the reaction enthalpy to find the energy produced by the reaction over time
(Figure 3B, right axis). A quick spike of heat was released (a–b), then quickly decreased as all initial
substrate within the reaction zone was consumed (c–h). Substrate slowly diffused into the reaction zone
and was quickly consumed, approaching a steady state (i–k). The energy curve was assigned as a heat
source within the reaction volume, where it produced a change in temperature set by the specific heat
of the liquid, which was treated as water due to the dilute nature of the H2O2 substrate. Heat diffusion
through the connected membrane and surrounding liquid was simulated, governed by the assigned
thermal conductivities. Figure 3C shows the temperature difference between the sensing and reference
junction regions of the membrane (left axis), which was converted to a predicted calorimeter signal by
multiplying by the Seebeck coefficient of the thermopile. With the inputs of substrate concentration,
enzyme amount, and kcat, the model predicts the full time course of the reaction as measured by the
nanocalorimeter platform.
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3.2. Validation of Numerical Model 
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inactivation effects. The enzyme amount of 10 fmol CAT quickly consumed the local substrate within 
the enzyme volume, then was limited by diffusion. In order to minimize the error between the 
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was iterated over a range of values (Figure 3D). RMSE was minimized at a kcat value of 260,000 1/s. 

Figure 3. (A) Cross-sections across the width of the microfluidic channel show H2O2 depletion over
time. (B) Total substrate consumed over time (left axis) was converted to the energy released within
the reaction zone (right axis). A quick spike of heat was released (a–b), then quickly decreased as all
initial substrate within the reaction zone was consumed (c–h). The substrate slowly diffused into the
reaction zone and was quickly consumed, approaching a steady state (i–k). In steady state, there is a
finite amount of substrate diffusing into the reaction zone, which results in the signal not returning
to baseline. The relatively large concentration and volume of substrate maintains the steady state
above baseline. (C) Temperature difference between sensing and reference junctions (left axis) and
predicted voltage generated by the thermopile during the reaction (right axis). (D) Root mean square
error (RMSE) minimization found the best fit over the full 30 s of simulation, allowing for the enzyme
parameter (kcat) determination. (E) Model and experiment comparison for 1 mM initial H2O2 and
10 femtomoles of catalase. Results from the calorimeter response model (red dashed line) closely match
experimental (blue line) data.

3.2. Validation of Numerical Model

The model was first evaluated at a substrate concentration of 1 mM H2O2 to avoid enzyme
inactivation effects. The enzyme amount of 10 fmol CAT quickly consumed the local substrate within
the enzyme volume, then was limited by diffusion. In order to minimize the error between the
predicted and experimentally-measured signals, the kcat value governing the rate of the CAT reaction
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was iterated over a range of values (Figure 3D). RMSE was minimized at a kcat value of 260,000 1/s.
The temperature difference between sensing and reference junctions produced a simulated signal
that closely followed the experimental signal (Figure 3E). This confirms that the model has improved
from previous iterations to include enzyme kinetics, extending its utility from calorimeter sensitivity
modeling to include enzyme-based assay design and model-assisted determination of assay results [19].

3.3. Model Adaptation at High Substrate Concentration

Increased H2O2 increased the maximum rate of turnover, which produced a greater magnitude
signal. This can be seen in the relative magnitudes of the experimental signals (solid blue) in Figures 3E
and 4. Figure 3E shows a peak amplitude of 9 µV for 10 femtomoles of catalase and 1 mM concentration
of H2O2, whereas the experiment in Figure 4 peaked at 17 µV for only 2.5 femtomoles of catalase,
but 10 mM H2O2. This amplified signal improved the sensitivity of a TELISA performed on the
nanocalorimeter platform. The effect lessens as the substrate concentration approaches the enzyme Km

constant, when the enzyme is saturated with substrate. This sets an upper limit of the Km value of
93 mM H2O2 [22]. At substrate concentrations greater than 10 mM, the oxygen gas produced by the
reaction formed bubbles within the reaction zone. These bubbles reduced and moved the reaction zone
away from the sensing junctions of the calorimeter, and were impossible to model, so initial substrate
concentrations were limited to 10 mM. CAT deactivates in the presence of high concentrations of H2O2

and after approximately 107 turnover events [18,23]. By adding a component that reduced the amount
of active enzyme proportionally to the change in substrate concentration (inactivation factor InF),
model results improved in matching experiments using high H2O2 concentrations. As seen in Figure 4,
TELISA with 10 mM H2O2 model and experimental results agreed with enzyme parameters of Km of
93 mM, kcat of 100 × 103 1/s, and deactivation after 4 × 107 turnover events. We have observed loss
of activity in CAT over time, and enzyme degradation is accelerated by a number of factors, so the
change in kcat from previous runs was expected [24,25].
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3.4. Model-Assisted TELISA

TELISA relies on knowing the reaction kinetics of the enzyme generating the heat-producing
change. These characteristics can be determined by calibrating the reaction with a known enzyme
amount. CAT-based TELISA experiments were performed at 10 mM H2O2 substrate levels on multiple
devices and days. In order to calibrate for differences in enzyme and platform performance, TELISA
experimental results with the known amount of 2.5 fmol CAT were compared to model results iterated
over ranges of kcat and InF values. RMSE was minimized, as seen in Figure 5A, and model-determined
best-fit kcat and InF values were then used to determine unknown Ea values for the subsequent TELISA
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experiments run on the same device and day. Over four discrete runs (n = 4), the minimized model
RMSE (Figure 5B–E) returned 1.80 ± 0.54 fmol for the 1.5 fmol experiments and 1.04 ± 0.37 fmol
for the 1 fmol experiments. We estimate the primary source in error to be related to experimental
factors. The TELISA protocol required repeated deposition of exact volumes of the enzyme, and pipette
calibration showed an average error of 6.5%. This, combined with inaccuracies in weighing reagents
and differences in placement location of the enzyme in relation to the calorimeter sensing junctions,
all contributed to the error seen in the TELISA results.
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Figure 5. (A) RMSE surface for enzyme parameter calibration for thermometric, enzyme-linked
immunosorbent assay (TELISA). With 2.5 fmol of catalase (CAT) and 10 mM H2O2 held constant,
enzyme parameters kcat and InF were varied in the model and compared to 30 s of the experimental
signal to determine best fits for the conditions. These parameter values were then used for subsequent
modelling to determine unknown enzyme amounts. Calorimeter output (blue) is shown for TELISA
with 10 mM H2O2 at 1.5 fmol (B) and 1.0 fmol (C) of CAT. Modeled signals (red dashed line) were
generated using kcat and InF values from the calibration step and enzyme amounts shown as a red
circle in the corresponding figures (D) and (E). RMSE minimization from the simulated signals allow
for the determination of the enzyme amount.

3.5. Determining TELISA Limit of Detection

The extrapolated LOD of the CAT-based TELISA at 10 mM substrate was calculated as the
enzyme amount where the average standard deviation (Figure 6, dashed red line) of the model-assisted
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determination of the enzyme amount intersected with the x-axis. At the intersection, the signal
generated by the enzyme is dominated by background noise. The extrapolated LOD was found to be
260 attomoles. Table 1 shows the LOD comparison between this approach, previous phenomenological
TELISA methods, and a different nanocalorimeter design. This is a considerable improvement over the
25 fmol acid–base neutralization LOD reported earlier [19]. Furthermore, this represents a significant
improvement on the 43.8 picomole LOD of the flow-through TELISA assay [17]. The improvement
is due to the model-assisted interpretation of a reaction occurring over time and enzyme calibration,
instead of phenomenological determination of either the signal peak or decay time constant [19,20].
The calibration step accounted for changes in the enzyme activity at the times of the experiments.Biosensors 2020, 10, x 11 of 12 
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Table 1. TELISA limit of detection (LOD) comparison.

Source TELISA Quantification LOD (Femtomole)

Flow-injected immunosorbent column
(Mecklenburg et al. [11]) Baseline shift 86,000

Flow-injection nanocalorimeter
(Xu et al. [17]) Baseline shift 43,800

Capillary nanocalorimeter
(Kazura et al. [19]) Phenomenological 25

Model-assisted capillary nanocalorimeter Model-assisted signal interpretation 0.260

Measurements at 1 fmol of catalase were significantly different than 0 fmol, giving a measured
LOD of femtomoles of catalase. Although the LOD was improved, the measured TELISA limit
of quantification did not achieve attomole sensitivity. Measurements at 1 fmol catalase were not
significantly different than 1.5 fmol. Most of this error is experimental in nature, and unrelated to
the device-based model calibration and determination. Error sources include volume and location
inconsistencies when depositing the enzyme onto the nanocalorimeter platform. Enzyme diffusion out
of the reaction zone was not considered by the model, which would reduce the calorimeter signal over
time. Catalase diffuses much slower than H2O2, due to the relative molecular sizes, but this could have
introduced error between the experimental and simulated signals, since we are considering a longer
reaction time course. Enzyme diffusion simulation can be added to the model, but future work plans
to include enzyme immobilization to the sensing region surface, in order to retain activity within the
reaction zone and eliminate signal fall-off [26]. The 10 mM substrate assay can be used from the LOD to
a maximum of 3 femtomoles, when the reaction forms oxygen bubbles at the reaction site, affecting the
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heat signal. The range of the assay can be extended by reducing the substrate concentration, allowing
for higher enzyme amounts to be probed. Signal linearity will depend on application-dependent
factors, including functionalization effects on the enzyme and matrix effects from the biological sample.
By using the model to investigate 30 s of data for enzyme amount determination, assay design was no
longer limited to enzyme/substrate ratios that produce a large initial spike of the signal. TELISA results
were also adjusted for changing enzyme kinetics and platform conditions by determining enzyme
kinetics as model inputs with a calibration experiment of a known amount of enzyme.

4. Conclusions

A finite element numerical model was constructed to compute the calorimeter response to an
enzyme reaction. The simulated calorimeter signal closely follows experimental results for CAT.
Determination of enzyme parameters through calibration is a necessary step to improve the robustness
of the modeling and track changing enzyme kinetic characteristics. Model-assisted TELISA improves on
previous methods to determine label enzyme amounts on the calorimeter platform. Our high-resolution
nanocalorimeter platform, combined with modeling, projects to the attomole limit of detection of
a CAT for a TELISA. In order to achieve this LOD, the labeled analyte would need to be delivered
directly to the reaction volume without any loss. Future work will focus on validating TELISA in a
comprehensive clinical study before developing point-of-care applications for this adaptable platform.
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