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Abstract:  
Structural alignment of proteins is widely used in various fields of structural biology. In order to further improve the quality of alignment, we describe an 
algorithm for structural alignment based on text modelling techniques. The technique firstly superimposes secondary structure elements of two proteins and then, 
models the 3D-structure of the protein in a sequence of alphabets. These sequences are utilized by a step-by-step sequence alignment procedure to align two 
protein structures. A benchmark test was organized on a set of 200 non-homologous proteins to evaluate the program and compare it to state of the art programs, 
e.g. CE, SAL, TM-align and 3D-BLAST. On average, the results of all-against-all structure comparison by the program have a competitive accuracy with CE and 
TM-align where the algorithm has a high running speed like 3D-BLAST.  
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Background: 
Structural comparison and alignment of proteins is a fundamental step in 
structural biology. It is essential that proteins with similar structures share 
common functionality and properties [1]. Accordingly, the tools are widely 
used to classify all known proteins in the databases or measure similarity of a 
newly discovered structure to the known classified proteins. Moreover, the tool 
is utilized to determine evolutionary relationships between proteins that are 
difficult to detect from protein sequences. Structural alignment algorithms try 
to find optimal correspondence between two compared structures. The 
techniques commonly compare geometrical coordinates of the Cα backbone 
atoms to find the best optimal equivalent pairs of residues. They commonly use 
heuristic techniques due to the complexity of the problem. Several studies have 
been done within the past two decades to develop algorithms for pairwise 
alignment [2, 3, 4] and multiple alignment [5, 6, 7] of protein structure. 
However, none of the introduced tools are able to guarantee the alignment 
optimality for any given scoring function. Recently, various studies have been 
reported to apply sequence alignment techniques in structural comparison and 
alignment of proteins. TOPSCAN [8] models protein structures in two-level 
topology strings and then, uses a global dynamic programming algorithm to 
compare these topology strings and measure the similarity score between two 
structures. SA-Search [9] is a web-based tool which uses a structural alphabet 
derived from hidden Markov model. YAKUSA [10] relies on discrete internal 
angles of protein backbone as a sequence and then, uses a deterministic finite 
automaton for multiple pattern-matching in order to locate analog fragments 
through a probabilistic score. 3D-BLAST [11] has the features of BLAST and 
applies a kappa-alpha (κ, α) plot based on a structural alphabet and a new 
substitution matrix for rapid search of protein structure database. SARST [12] 
is another method that transforms protein structure into text strings through a 
Ramachandran map organized by nearest-neighbor clustering and regenerative 
substitution matrix and then, employs classical sequence similarity search 
algorithms. Moreover, FragBag [13] represents protein structure as a bag-of-

words of backbone fragments for quickly retrieval of structural neighbours. 
Finally, Lajolla [14] uses string representation of a macromolecular structure 
by a structure-to-string translator and a hash table to store n-grams of a certain 
size for searching. The common effort of the above methods is to encode 
protein 3D-structure in a one-dimensional linear sequence to adopt a special 
sequence alignment technique for alignment of two structures. This provides 
distinct speed advantage where the above methods are able to search large 
structure databases hundreds of time faster than CE [5] and TM-Align [4]. 
Additionally, linear encoding schemes provide facilities for multiple structure 
alignment, fold recognition and genomic annotation studies [12]. However, 
these methods are faced with a weakness of low accuracy against high accurate 
search tools like CE and TM-Align. Therefore, considering extensively 
growing protein structure databases, a linear encoding approach can be used 
efficiently to develop high performance structure comparison and alignment 
tools. In this study, we introduce a text modelling based technique for structural 
alignment of proteins. The method simply transforms secondary and 3D-
structure of proteins into two textual sequences and then, these sequences are 
used in a step-by-step text alignment procedure. The method is evaluated in a 
benchmark test and compared with state of the art methods. The results are 
evidence for high running speed of the method where its accuracy is 
comparable with the other well-known structure alignment methods. 
 
Methodology: 
Protein Structure Modeling in Linear Sequences: 
Generally, proteins are the arrangement of amino acids in a linear sequence 
which are folded into a complex 3D-structure. Spatial coordinates of amino 
acids are encoded into a linear sequence called relative residue position 
sequence based on the relative position of each residue with respect to the 
position of its previous residue [15]. For each residue i, the position of Cα i-1 is 
supposed to be in the origin of 3D-coordinates. Then, relative position of Cα i in 
3D-coordinates is encoded to a letter. There are 26 different positions in 3D-
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coordinates based on positive and negative directions of x, y and z axes. 
Therefore, 26 letters of alphabet are used to encode these positions [15]. For 
example in Figure 1, letter ‘e’ encodes the relative position of Cα i located 
around the positive direction of z-axis which satisfies |x2-x1|<t, |y2-y1|<t and z2-
z1>0 conditions. Moreover, letter ‘s’ denotes another area with x2-x1>0, y2-y1>0 
and z2-z1>0 conditions. Parameter t was chosen empirically at 0.1 angstrom to 
identify optimally different locations of a residue in 3D-coordinates. 
Additionally, proteins in secondary structure are constituted from highly 
regular substructures of α-helices and β-strands which form the backbone of a 
protein structure. This level of protein structure mostly is represented in a 
sequence of secondary structure elements (SSEs) which we call SSEs 
sequence.  
 

 
Figure 1: Three sample relative position of residues and their defined labels 
 
Protein Structure Superposition: 
The procedure is started with an initial alignment of SSEs sequences as shown 
in Figure 2(a). To this end, SSEs sequence of query protein was represented 
via n-gram model and then, identical words from query and reference proteins 
were marked as matched. The size of n-gram is decreased in an iterative loop 
from n (empirically defined at 6) down to m (chosen at 3). The initial map of 
matched SSEs was revised based on geometrical properties of SSE vectors. As 
shown in Figure 2(b), these properties are the number of residues (chosen 
empirically with least 4 common residues), distance and torsion angles with the 
previous and next matched SSEs (chosen empirically with 2Ǻ and 30° 
difference respectively at the most) and connectivity of the SSEs. A procedure 
now revised the list of matched SSEs and confirmed each matched pair if at 
least three of the above properties are satisfied. Otherwise, the algorithm 
looked for the next or previous unmatched SSEs to find another substitution. In 
the sequel, average distance and angle between the matched SSE vectors were 
computed and a rotation matrix was made and applied to achieve an initial 
overlap between two structures.  
 

 
Figure 2: Structure superposition steps between two proteins. (a) Matching 
SSEs sequences; (b) Refine matched SSEs based on geometrical properties; (c) 
Create Relative Residue Position Sequence for query and reference proteins 
 
Structure Alignment Procedure: 
After initial superposition of two structures, 3D-structure of two proteins was 
encoded into relative residue position sequence as represented in Figure 2(c). 
The alignment algorithm used these sequences in the following step-by-step 

algorithm: (1) inside each pair of matched SSEs, pairs of identical words are 
located and their corresponding residues are marked as aligned. The alignment 
is expanded to the ends of the SSEs for pairs of residues, leaving no unaligned 
pair of residues between the matched ones (Figure 3). (2) For each pair of 
exclusively identical words from two structures, if connectivity of the aligned 
residues was not violated and distance of the residues was less than the 
maximum distance of the previous aligned residues, the corresponding residues 
were marked as aligned. (3) For words of the reference protein that are 
identical with more than a word in the query protein, their connectivity with the 
aligned words in previous steps was considered. Then, residues are marked of 
the selected matched words as aligned. Note that any number of missing 
residues between the identical words is ignored (Figure 4). (4) Finally, the 
remaining unaligned residues, specially, pair of residues located at two adjacent 
areas in 3D-coordinates are aligned. To this end, the above 26 defined letters 
are grouped into 8 different sets in Table 1 (see Supplementary material) 
based on their adjacency in 3D-coordinates. Therefore, pairs of residues with 
codes that belonged to a common group are aligned. In steps 2, 3 and 4, pairs 
of residues are not marked as aligned if they belong to different types of 
secondary structures.  
 

 
Figure 3: Alignment of identical words inside a pair of matched SSEs for 
1GLP:B and 2GST:B PDB chains. The first and fourth lines are amino acids 
sequences and the second and third lines are relative residue position 
sequences. 
 

 
Figure 4: Alignment of the word ‘ivs’ from 1GLP:B PDB chain that is 
matched with two identical words in 2GST:B PDB chain. Considering 
connectivity of the aligned words, the word ‘ivs’ at position 42 of 2GST:B is 
aligned. 
 
Finding Optimal Correspondence:  
To achieve the optimal spatial correspondence between two structures, we 
employed a heuristic iterative procedure based on Kabsch’s rotation matrix 
[16]. The procedure started with the largest neighboring fragment of aligned 
residues and applied Kabsch rotation matrix. To select the starting fragment 
from a list of fragments with proximate length, the algorithm computed TM-
score [17] for each item and chooses the fragment with the highest value (see 
Supplementary material). Optimality of the procedure in selection of the 
starting fragment was confirmed by an experiment using 954 proteins from 
PDB database with less than 40% sequence identity. The results represent only 
76 (8%) items with different values of TM-score suggesting an alternative 
choice. According to the convergence of the alignment after 3 or 4 iterations 
based on the above rotation matrix, the proximity of the results to the optimal 
alignment seemed to be enough. 
 
Results and Discussion: 
To study performance of the algorithm and compare it to other well-known 
structure alignment tools, we used the set of 200 non-homologous protein 
chains that were collected by Zhang and Skolnick [4] from the PDB with range 
of 46 to 1058 residues in size and a pairwise sequence identity of less than 
30%. We compared the results of our method to outputs from three known 
geometrical alignment tools, CE [5], SAL [18] and TM-align [4] which are 
reported by Zhang and Skolnick [4] and 3D-BLAST as a known linear 
encoding method. Tables 2 & 3 (see Supplementary material) represent a 
summary of the alignments. The results are averages over all-against-all 
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comparison of the structures. The table represents the accuracy of the 
alignment by RMSD, length of alignment and the coverage which is defined as 
fraction of residues aligned within the target protein [4]. As it can be seen from 
the table, the methods with higher coverage generally produce an output with 
lower accuracy. For instance, the highest coverage of 47.3% belongs to SAL 
which gives the lowest accuracy of 7.33 Ǻ for RMSD. Also, the highest 
accuracy of 4.99 belongs to TM-align. The accuracy of our method ranks 
second after TM-align where its alignment length is less than TM-align. 
Moreover, our method outperforms 3D-BLAST in terms of RMSD and length 
of alignment. Different evaluation scores show different ranking between the 
methods in Table 2. Certainly, different requirements are needed for high 
quality of alignment by achieving a lower RMSD and a higher length of 
alignment. TM-score is appropriate to measure the quality of alignment that 
computes a reasonable balance between the accuracy and coverage parameters 
as defined in equation (1). The results of average TM-score in Table 2 
represents that TM-align is the best. Our method is in the third rank where its 
value is close to SAL. The results in Table 2 are averaged over all pairs of 
structures in the dataset where they are collected from different protein folds. 
Another significant comparison is performed considering only the pair having 
the highest TM-score for each query protein in the dataset. The results in table 
3 are averaged for all 200 query proteins and their most similar pair. In this 
table, our method ranks second in terms of TM-score. The last column in Table 
2 shows the average processing time the CPU takes for comparison of each 
protein pair. The experiments are performed using a 1.26 GHz CPU for all of 
the methods. 3D-BLAST and our method rank first where their running speeds 
are about 200, 800 and 3000 times faster than TM-align, CE and SAL methods 
respectively.  
 
According to the above benchmark test which evaluates and compares two 
linear encoding schemes and three geometrical algorithms for protein structure 
alignment, sequence-based methods run hundreds of time faster than the 
methods that use directly the geometry of protein structure. Indeed, these 
methods overcome the complexity of the problem by summarizing protein 3D-
structure to 1D-sequence. Moreover, our method adopts a relatively simple 
procedure to initially superimpose two structures and then, align them in a step-
by-step algorithm. Further, the Kabsch rotation matrix is utilized to obtain an 
optimal correspondence between two structures which converges after 3-4 
iterations. Therefore, this method is competitive, in terms of running speed, 
with 3D-BLAST as a quick alignment tool. Geometrical methods generally 
gain higher accuracy in structure alignment while compared to linear encoding 
methods. This is because of missing details of 3D-structure during creation of 
sequence from protein structure [12]. However, our method has improved 
accuracy in terms of TM-score which is a balance between RMSD and length 
of alignment. This improvement in accuracy may be obtained due to the utility 
of Kabsch rotation matrix to achieve optimal correspondence between two 
structures.  
 

Conclusion: 
We have developed a text modelling technique for structural alignment of 
proteins. The technique firstly superimposes two structures by a procedure for 
matching secondary structure elements and then, encodes the 3D-structure of 
each protein in a sequence called relative residue position sequence. The map 
of matched SSEs and relative residue position sequences are submitted to a 
step-by-step procedure to align two structures. Moreover, to achieve an optimal 
correspondence between two structures, an iterative algorithm is employed 
based on Kabsch rotation matrix. The uniqueness of the introduced method is 
that it utilizes linear encoding scheme and geometrical techniques concurrently 
to obtain optimal alignment. Therefore, it gains the advantages of both. 
According to the results, the method obtains a high running speed and its 
precision is comparable with other high accurate tools. The current study 
provides evidence that linear encoding algorithms have the capability to 
achieve competitive accuracy with conventional structure alignment methods. 
However, the introduced method in this paper still has the potential to improve 
and develop more efficiently to solve the structure alignment problem. In future 
investigations, we will focus on linear encoding of secondary structure 
geometry to make a pure representation of protein structure in linear sequences. 
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Supplementary material: 

                   (1) 
Here, Lq is the length of query protein, Ln is the alignment length and di denotes distance of the i-th pair of aligned residues. Also, d0 is computed via: 
 

                          (2) 
which is a distance parameter to normalize distances and make the score independent on the protein size where LN is the length of the shorter protein. Then,  all of 
the residue pairs with maximum distance d0 are inserted into the fragment. The iterations are continued until convergence of the rotation matrix.  
 
 
Table 1: Grouping of the codes defined for relative residue position based on their adjacency in 3D-coordinates 

 Conditions for x,y,z Group members 
1) x2 - x1 ≥ 0, y2 - y1 ≥ 0, z2 - z1 ≥ 0, {a, c, e, g, k, o, s} 
2) x2 - x1 ≥ 0, y2 - y1 ≥ 0, z2 - z1 ≤ 0, {a, c, f, h, l, o, t} 
3) x2 - x1 ≥ 0, y2 - y1 ≤ 0, z2 - z1 ≥ 0, {a, d, e, i, k, p, u} 
4) x2 - x1 ≥ 0, y2 - y1 ≤ 0, z2 - z1 ≤ 0, {a, d, f, j, l, p, v} 
5) x2 - x1 ≤ 0, y2 - y1 ≥ 0, z2 - z1 ≥ 0, {b, c, e, g, m, q, w} 
6) x2 - x1 ≤ 0, y2 - y1 ≥ 0, z2 - z1 ≤ 0, {b, c, f, h, n, q, x} 
7) x2 - x1 ≤ 0, y2 - y1 ≤ 0, z2 - z1 ≥ 0, {b, d, e, i, m, r, y} 
8) x2 - x1 ≤ 0, y2 - y1 ≤ 0, z2 - z1 ≤ 0, {b, d, f, j, n, r, z} 

 
Table 2: Average alignment results using different methods for all-against-all comparison of 200 non-homologous proteins, considering all structure-pairs. Except 
for 3D-BLAST and our method, other data were taken from [4]. Experiments were performed using a 1.26 GHz CPU for all of the methods. Coverage denotes 
fraction of residues aligned within the target protein. 

 Length of alignment RMSD Coverage TM-score Average Time
CE 64.3 6.52 34.7% 0.169 2.25 
SAL 95.3 7.33 47.3% 0.229 10.00 
TM-Align 87.4 4.99 42.0% 0.253 0.51 
3D-BLAST 65.7 6.69 36.2% 0.172 0.002 
Our method 78.2 6.24 39.5% 0.224 0.003 

 
Table 3: Average Alignment results for the same dataset used in Table 2, considering only the pairs with the largest TM-score for each query protein. Except for 
3D-BLAST and our method, other data were taken from literature [4]. 

 Length of alignment RMSD Coverage TM-score 
CE 128.8 3.95 61.4% 0.441 
SAL 164.8 5.84 72.8% 0.474 
TM-Align 166.2 4.45 73.1% 0.510 
3D-BLAST 131.4 4.32 63.1% 0.454 
Our method 155.7 4.41 69.6% 0.481 

 
 
 
 
 
 
 
 


