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Objective. Many studies have found that long noncoding RNAs (lncRNAs) are differentially expressed in hepatocellular carcinoma
(HCC) and closely associated with the occurrence and prognosis of HCC. Since patients with HCC are usually diagnosed in late
stages, more effective biomarkers for early diagnosis and prognostic prediction are in urgent need. Methods. The RNA-seq data
of liver hepatocellular carcinoma (LIHC) were downloaded from The Cancer Genome Atlas (TCGA). Differentially expressed
lncRNAs and mRNAs were obtained using the edgeR package. The single-sample networks of the 371 tumor samples were
constructed to identify the candidate lncRNA biomarkers. Univariate Cox regression analysis was performed to further select
the potential lncRNA biomarkers. By multivariate Cox regression analysis, a 3-lncRNA-based risk score model was established
on the training set. Then, the survival prediction ability of the 3-lncRNA-based risk score model was evaluated on the testing set
and the entire set. Function enrichment analyses were performed using Metascape. Results. Three lncRNAs (RP11-150O12.3,
RP11-187E13.1, and RP13-143G15.4) were identified as the potential lncRNA biomarkers for LIHC. The 3-lncRNA-based risk
model had a good survival prediction ability for the patients with LIHC. Multivariate Cox regression analysis proved that the 3-
lncRNA-based risk score was an independent predictor for the survival prediction of patients with LIHC. Function enrichment
analysis indicated that the three lncRNAs may be associated with LIHC via their involvement in many known cancer-associated
biological functions. Conclusion. This study could provide novel insights to identify lncRNA biomarkers for LIHC at a
molecular network level.

1. Introduction

Hepatocellular carcinoma, one of the most common cancers
worldwide, is the third leading cause of worldwide mortality
for various cancers, and its incidence rate per year remains
increasing rapidly [1–3]. The risk factors for HCC include
infection with hepatitis B virus (HBV) or hepatitis C virus
(HCV), aflatoxin B1 intake, alcohol consumption, nonalco-
holic fatty liver disease, and some hereditary diseases [4–6].
Since patients with HCC are usually diagnosed at late stages,
when medication is no longer effective, understanding the
molecular mechanisms of HCC and identifying biomarkers
for early diagnosis and treatment seem to be essential [7, 8].

Long noncoding RNAs (lncRNAs) are non-protein-
coding transcripts longer than 200 nucleotides. According
to the well-known central dogma of molecular biology,
genetic information is stored in protein-coding genes [9,
10], for which noncoding RNA (ncRNAs) have been consid-
ered as “junk genes” or “transcriptional noise” for a long time
[11]. However, with the development of both experimental
technology and computational methods, an increasing num-
ber of lncRNAs have been discovered in human tran-
scriptome. Over the past decades, several researches have
shown that lncRNAs are involved in almost the whole life
cycle of cells through different mechanisms, and they have
played diverse and important roles in many fundamental
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and critical biological processes, including transcriptional
regulation, epigenetic regulation, organ or tissue develop-
ment, cell differentiation and apoptosis, cell cycle control,
metabolic processes, and chromosome dynamics [12–15].
Recently, several lncRNAs have been demonstrated to be
associated with the development and survival in patients
with different kinds of cancers, including HCC [16–18].
Moreover, many studies have highlighted the molecular
mechanism and biological characters of lncRNAs in HCC
occurrence and progression, and the result revealed that
some lncRNAs can also serve as valuable prognostic predic-
tors for HCC patients [19–21]. Despite precision medicine,
which uses molecularly targeted therapy against malignant
tumors and speeds up progress toward the discovery of novel
molecular targets with the diagnostic and prognostic value
[22], the management of patients with HCC remains prob-
lematic [23, 24]. Therefore, there is an urgent requirement
to identify many more lncRNA biomarkers for HCC.

One key to achieving personalized medicine is to eluci-
date the molecular mechanisms of individual specific dis-
eases, which generally result from the dysfunction of
individual specific molecular network rather than the mal-
function of single molecules. With rapid advances in high-
throughput technologies, applying molecular networks to
analyze human complex disease is attracting increasing wide
attention [25, 26]. A molecular network, e.g., a gene regula-
tory network or a coexpression network, can be generally
estimated by correlation coefficients of molecule pairs from
expression or sequence data of multiple samples [27, 28]. In
recent years, based on biological and clinical data, a number
of network-based methods were proposed not only to identify
disease modules and pathways but also to elucidate molecular
mechanisms of disease development at the network level [29–
31]. Many studies have shown that network-based biomarkers
are superior to traditional single-molecule biomarkers for
accurately characterizing disease states due to their additional
information on interactions and networks [28, 30, 32, 33]. In
particular, a single-sample network is considered to be reliable
for accurately characterizing the specific disease state of an
individual. It can be directly used to identify the biomarkers
and further elucidate the molecular mechanisms of a disease
for individual patients [29].

In this study, we aimed to identify the lncRNA bio-
markers for the patients with LIHC based on the RNA-seq
data from TCGA. By constructing the single-sample net-
works for the 371 tumor patients, we obtained three lncRNA
biomarkers associated with overall survival (OS) of LIHC
patients. Then, a 3-lncRNA-based risk score model was
established on the training set, which could effectively predict
the OS of LIHC patients. The independence and the predic-
tive ability for survival prediction of the 3-lncRNA-based risk
score were validated on the testing set and the entire set.

2. Materials and Methods

2.1. Dataset. By using GDC API (https://gdc.cancer.gov/
developers/gdc-application-programming-interface-api), RNA
sequencing data and clinical information from individuals
with liver hepatocellular carcinoma (LIHC) were achieved

from TCGA (https://portal.gdc. http://cancer.gov/projects/
TCGA-LIHC), which included 371 tumor samples and 50
normal samples.

2.2. Differential Expression Analysis. EdgeR is a Bioconductor
package for differential expression analysis of replicate count
data, which was widely used in the differential expression
analysis of high-throughput sequencing data. In our study,
we extracted the expression profile of mRNAs and lncRNAs
from RNA-seq count data, which was normalized using the
edgeR package (version 3.22.5). Those mRNAs and lncRNAs
with zero expression value in more than 10% samples were
discarded. The differentially expressed lncRNAs and mRNAs
were calculated by edgeR at a threshold of FDR < 0:05 and ∣
log2ðfold changeÞ ∣ >1.
2.3. Construction of the Single-Sample Networks. In our study,
the differentially expressed mRNAs and lncRNAs which had
the same gene names were removed. As a result, 3329 differ-
entially expressed mRNAs and 956 differentially expressed
lncRNAs for each sample were left for further investigation.
A single-sample network was constructed based on statistical
perturbation analysis of a single test sample against a group
of given reference samples, which can accurately characterize
the disease state of an individual or a sample. The more
detailed description about the single-sample network can be
found in Ref. [34]. In our study, we took 50 normal samples
as the reference samples, while 371 tumor samples were the
test samples. Firstly, based on the gene expression data of
the reference samples, a reference correlation network can
be constructed by computing the Pearson correlation coeffi-
cient (PCC) between lncRNA-lncRNA and lncRNA-mRNA
pairs, which was denoted as Nr . Then, adding a test sample
s to the reference samples, another perturbed correlation
network was obtained in the same way, which was denoted
as Np. By comparing the difference of the two correlation
networks, we can get a single-sample network Nssn for this
test sample sðNssn = jNr −NpjÞ. Finally, 371 single-sample
networks were obtained in our study.

For convenience, we transformed each single-sample net-
work to an adjacency matrix ΔD, and the element ΔDi,j rep-
resents the ΔPCC of the edge for a pair of molecules in the
single-sample network. As the theoretical foundation for this
method, if there were obvious differences between the refer-
ence samples and the single sample s in terms of the gene
expression pattern, adding the tumor sample s to the refer-
ence samples would cause significant changes of the PCC
on some edges in the perturbed network. We assumed that
if a lncRNA might be a key biomarker, the sum of the Δ
PCC of the edges linked by the lncRNA would be higher than
others. Then, a vector SD was used to represent the sum of
ΔPCC of the edges linked by each lncRNA in a single-
sample network, which was denoted as

SD = SD1, SD2,⋯,SDi,⋯,SD956ð ÞT , ð1Þ

where SDi is the sum ofΔPCC of all the edges linked by the ith
lncRNA in a single-sample network and can be calculated by
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ΔDij i = 1, 2,⋯, 956, j = 1, 2,⋯, 4285ð Þ: ð2Þ

Consequently, all the 371 single-sample networks can be
represented by a matrix M956×371:
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where i denotes the ith lncRNA and j denotes the jth tumor
sample.

Different from the method in Ref. [34], we designed a
ranking system to identify the candidate lncRNA biomarker
according to the matrix M. Firstly, each column in matrix
M was sorted by the value size of SDij, and the items in the
column returned to the corresponding lncRNA in matrix
ML. Then, we calculated the frequency of each lncRNA in
the top K rows of matrix ML and the top 5% lncRNAs were
retained. Finally, in order to improve the effectiveness of our
method, we took the intersection of the candidate lncRNAs
under different K (K = 5,10,20,30) as the final candidate
lncRNA biomarkers by SSN. The flowchart of the ranking
system is shown in Figure 1.

2.4. Survival Analysis. The differentially expressed lncRNAs,
of which the expression level was zero that exceeded 10% of
all subjects, were removed from the prognostic analysis. In
the meantime, clinicopathological features, including sur-
vival information, were also achieved from TCGA. Samples
without sufficient clinical data were omitted. Finally, the
prognostic analysis included a total of 307 tumor samples
with the expression data from 956 lncRNAs. The univariate
and multivariate Cox regression analyses were conducted to
evaluate the association between the variables and the OS of
LIHC patients on the training set, the testing set, and the
entire set, and statistical significance was assessed using p <
0:05. The Kaplan-Meier plots were employed to observe the
prognosis effect. The ROC curve analysis was used to evalu-
ate the prognosis performance for 5-year survival rate. All
analyses were performed on the R3.4.3 framework.

2.5. Construction of the Risk Score Model. The 307 patients
were randomly divided into two datasets. 154 patients were
used as the training set to build a risk score model based
on the candidate lncRNA biomarkers, while the other 153
patients were used as the testing set to evaluate the predictive

ability of the risk score model. Firstly, the multivariate Cox
regression analysis was used to evaluate the association
between the expression of the lncRNA biomarkers and the
patient’s OS in the training set. Then, a risk score model
was built by linear combination of the expression levels of
the lncRNA biomarkers weighted by their Cox regression
coefficients. The calculation formula of the risk score model
was as follows:

Risk Score RSð Þ = 〠
n

i=1
Expi × Coeið Þ, ð4Þ

where i represents the total number of the lncRNA bio-
markers, Exp indicates the expression profiles of lncRNA,
and Coe is the estimated regression coefficient of the ith
lncRNA derived from the multivariate Cox analysis. Based
on this formula, each patient with LIHC had an RS and the
median RS was treated as a cut-off point to divide the patients
into the low-risk group and the high-risk group.

2.6. Pathway and Functional Enrichment Analysis. Metas-
cape (http://metascape.org/gp/index.html) is a free gene
annotation and analysis resource that helps biologists make
sense of one or multiple gene lists [35]. To understand the
function of the identified lncRNA biomarkers in our study,
the Gene Ontology (Go) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis was
performed by Metascape. A value of p < 0:01 was set as the
cut-off for significance.

3. Results

3.1. Differentially Expressed lncRNAs and mRNAs in LIHC.
We downloaded the expression data of 60483 RNA, from
which 14822 lncRNAs and 19814 mRNAs were obtained by
the gene type data reported by the genome GRCh38.p13.
By calculating with edgeR, a total of 956 lncRNAs and 3329
mRNAs were considered to be differentially expressed
between tumor samples and normal samples. The volcano
plot of the differentially expressed mRNAs and lncRNAs is
shown in Figure 2.

3.2. The Candidate lncRNAs Identified by Single-Sample
Networks. In our study, the top 48 lncRNAs (5% of 956
lncRNAs) that had the highest frequency of occurrence in
all the 371 tumor samples remained as the candidate lncRNA
biomarkers by the ranking system. Furthermore, by taking
the intersection of the candidate lncRNAs identified under
different KðK = 5, 10, 20, 30Þ, 27 lncRNAs were obtained as
the final candidate lncRNA biomarkers by the ranking sys-
tem according to 371 single-sample networks. The detailed
differential expression information of these lncRNAs is listed
in Table S1.

3.3. Identification of Prognostic lncRNA Biomarkers.Hypoth-
esized that the candidate lncRNA biomarkers selected by
SSN might be involved in LIHC development and progres-
sion, we examined whether these lncRNAs were associated
with the survival of patients with LIHC. The univariate
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survival analysis was performed based on the expression
value of these lncRNAs and the OS of the LIHC patients.
The follow-up period of these patients involved was 5 years
(1825 days). According to the expression of the three lncRNA
biomarkers, 307 patients were divided into high expression

group (n = 154) and low expression group (n = 153). The
results showed that of all the 27 lncRNAs identified by SSN,
three lncRNAs (RP11-150O12.3, RP11-187E13.1, and
RP13-143G15.4) had significant prognostic differences
(p < 0:05). The Kaplan-Meier plots employed to observe the
prognosis effect of the three lncRNAs are presented in
Figure 3. The detailed description of the three lncRNAs is
shown in Table 1.

3.4. Construction of Risk Score Model in the Training Set. By
using the multivariate Cox regression analysis in the training
set, based on the expression value of the three lncRNAs and
the regression coefficients, a 3-lncRNA-based risk score
model was constructed as follows: risk score ðRSÞ = 0:5324
∗ expression level of RP11 − 150O12:3 + 0:7105 ∗
expression level of RP13 − 143G15:4 + 0:3738 ∗ expression
level of RP11 − 187E13:1. Based on the above risk score for-
mula, the RS of each patient in the training set was calculated.
The 154 patients in the training set were divided into two
groups of low-risk group (n = 77) and high-risk group
(n = 77) according to the median point of the risk score.
The risk distribution and vital status of 154 patients and the
expression heat map of the 3 lncRNAs are presented in
Figure 4. The Kaplan-Meier survival analysis displayed that
the survival of LIHC patients in the high-risk group was sig-
nificantly shorter than that in the low-risk group (Figure 5(a),
p = 0:04). The median survival of patients in the high-risk
group and the low-risk group was 3.72 years and 4.89 years,
respectively. To assess the prognostic performance of the risk
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Figure 1: The ranking system for identifying the candidate lncRNA biomarkers by SSN.
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Figure 2: The volcano plot of the differentially expressed mRNAs
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score, a 5-year ROC curve analysis was performed. The result
showed that the 3-lncRNA-based risk score model had a
good prediction efficiency in the training set (Figure 5(d),
AUC = 0:706).

3.5. Evaluation of the Risk Score Model in the Testing Set and
the Entire Set. To assess the robustness of the 3-lncRNA-
based risk score model in OS prediction for LIHC patients,
we further examined it in the testing set and the entire set.
The same 3-lncRNA-based risk score model and cut-off
point derived from the training set were used to divide the
testing set and the entire set into the high-risk group and
the low-risk group (n = 77 and 77, n = 154 and 153, respec-
tively). In the testing set, the Kaplan-Meier curve showed that
the survival of LIHC patients in the low-risk group exhibited
a longer OS as compared to those in the high-risk group
(Figure 5(b), p = 0:0037). The median survival of patients in
the high-risk group and the low-risk group was 2.29 years
and 6.69 years, respectively. In the entire set, a similar result
was shown that patients in the high-risk group exhibited a
shorter OS as compared to those in the low-risk group
(Figure 5(c), p = 0:0011). The median survival of patients in
the high-risk group and the low-risk group was 3.39 years
and 5.52 years, respectively. The AUC of 5-year ROC curve
in the testing set and the entire set was 0.704 and 0.664,
implying a good prognostic capacity of the 3-lncRNA-based
risk score (Figures 5(e) and 5(f)).

3.6. Independence of the 3-lncRNA-Based Risk Score for
Survival Prediction. To evaluate the independent prediction

performance of the three lncRNAs when considering the tra-
ditional clinical factors, univariate and multivariate Cox
regression analyses were conducted on the training set, the
testing set, and the entire set. For each dataset, the explana-
tory variables included 3-lncRNA-based risk score, age, sex,
weight, grade, and tumor stage. In the multivariate Cox
regression analysis, the above factors were regarded as covar-
iates, while the OS was used as a dependent variable. The
results showed that the 3-lncRNA-based risk score was sig-
nificantly associated with the OS of patients (HR = 0:416,
95% CI [0.207-0.836], p = 0:014 for the training set; HR =
0:459, 95% CI [0.225-0.936], p = 0:032 for the testing set;
HR = 0:498, 95% CI [0.313-0.792], p = 0:003 for the entire
set), which revealed that the 3-lncRNA-based risk score was
an independent predictor of OS for LIHC patients. More
detailed results are provided in Table 2.

3.7. Pathway and Functional Enrichment Analysis. We
were also interested in the molecular mechanisms of the
three lncRNAs. Unfortunately, little publication was found
on the functional mechanism of these lncRNAs. Finally,
we performed Pearson correlation analyses between the
three lncRNAs and protein-coding genes based on their
expression levels in TCGA LIHC cohort. The protein-
coding genes that correlated with at least 1 of the three
lncRNAs (Pearson coefficient > 0:45, p < 0:01) were consid-
ered to be significantly correlated coexpressed genes of the
three lncRNAs, which are listed in Table 3. Then, pathway
and process enrichment analyses were carried out with the
following ontology sources in Metascape: KEGG pathways
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Figure 3: Kaplan-Meier curves of the survival probability of the three lncRNAs.

Table 1: The three lncRNAs significantly associated with OS of LIHC patients.

No. Gene symbol Ensemble ID Chromosome Hazard ratio p value

1 RP11-150O12.3 ENSG00000254290.1 Chr.8:37,597,480-37,599,858 0.61 (0.4-0.94) 0.023

2 RP11-187E13.1 ENSG00000258474.1 Chr.14:31,944,853-31,950,382 0.52 (0.33-0.81) 0.003

3 RP13-14G15.4 ENSG00000237596.2 Chr.6:136415853-136546733 0.64 (0.42-0.99) 0.044
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and GO biological processes. All genes in the genome were
used as the enrichment background. Terms with p < 0:01,
minimum count = 3, and enrichment factor > 1:5 were col-
lected and grouped into clusters based on membership simi-
larities. We found that the coexpressed genes of three
lncRNAs were mainly associated with terms related to endo-
thelial cell migration, ncRNA metabolic process, cell cycle
arrest, etc. (Figure 6). The retrieved data is also provided in
Table S2.

4. Discussion

HCC is the most common type of liver cancer, accounting for
about 80% of the tumours in this organ. Although there are
advances in the diagnosis and treatment of HCC, the OS time
of patients with HCC remains poor. Recently, molecular bio-
markers have been identified throughout the various clinical
stages and pathological tissue types, and multiple studies
have revealed that differential expression of lncRNAs played
critical roles in cancer development, indicating their poten-
tial as novel biomarkers for cancer diagnosis and prognosis
[36, 37]. However, until now, only a few lncRNAs had been
experimentally verified for HCC. Thus, it is necessary to
identify more potential lncRNA biomarkers for HCC.

In the present study, we analyzed the expression profiles
and clinical information of LIHC patients from TCGA data-
base. The differential expressed lncRNAs and mRNAs were
screened to construct the single-sample networks for 371
LIHC patients. According to the 371 single-sample networks,
27 candidate lncRNAs were selected by the ranking system
designed for identifying the lncRNA biomarkers from the
single-sample networks. Furthermore, by using the univari-
ate Cox regression, three lncRNAs (RP11-150O12.3, RP11-
187E13.1, and RP13-143G15.4) were selected as the lncRNA
biomarkers associated with patients’ OS. Next, multivariate
Cox regression was performed in the training set to establish
a 3-lncRNA-based risk score model based on the expressions
and relative contributions in the multivariate Cox regression
model. The 3-lncRNA-based risk score had a good prognosis
prediction ability for OS of patients with LIHC, which was
tested in the testing set and the entire set. Moreover, we
performed multivariate Cox regression analyses using the
3-lncRNA-based risk score and other clinical data in the
training set, the testing set, and the entire set. The result
showed that the 3-lncRNA-based risk score was an inde-
pendent predictor for the OS of LIHC patients.

The results of function enrichment analysis showed that
these KEGG pathways and functional categories of the three
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Figure 4: Construction of the 3-lncRNA-based risk score model. (a, b) The risk score distribution and survival status of the patients in the
training set. (c) Heat map of the expression levels of the three lncRNAs.

6 BioMed Research International



lncRNA biomarkers were all closely associated with tumori-
genesis. For instance, the transcription factor p53 is a tumor
suppressor, activating downstream targets to trigger cell cycle

arrest and apoptosis [38], and several lncRNAs participate in
the p53 regulatory network and serve as p53 regulators or
effectors [39]. Moreover, a recent global transcriptome study
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Figure 5: Kaplan-Meier survival analysis and ROC curve analysis of the 3-lncRNA-based risk score model. (a–c) Kaplan-Meier survival
analysis in the training set, the testing set, and the entire set. (d–f) 5-year ROC curve analysis for survival prediction in the training set,
the testing set, and the entire set.
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identified that sixteen p53 target lncRNAs forming a pathway
web constitute tumor suppressor signature with high diag-
nostic power [40]. Importantly, Jelena et al. revealed that
p53 might play multifunctional roles in different stages in
HCC [41]. Moreover, the metastatic characteristics of liver
cancer are the key factors affecting the survival and prognosis
of tumor patients, and the process of cell migration is
involved in tumor metastasis [42]. The COP9 signalosome
is a highly conserved protein complex implicated in diverse
biological functions that involve ubiquitin-mediated prote-
olysis [43]. Also, research demonstrates that COP9 signa-
losome is an important regulator of cell cycle and cell
survival mediating the proliferation of HCC cells and high-
light that COP9 signalosome might be a promising strategy
for anti-HCC therapy [44]. The unfolded protein response

is a signal transduction cascade, which acts as a quality con-
trol mechanism for protein synthesis and consequently can
act to protect cells from an adverse external microenviron-
ment. The study declared that the unfolded protein response
is activated in the majority of HCC and may play a role in
chemoresistance to the most widely used chemotherapy
agent, doxorubicin, and have effects on newer antiestrogen
and multikinase inhibitor therapies [45]. The present results
indicated that the three lncRNAs might have an important
role in LIHC via their involvement in these known cancer-
associated biological functions.

Besides, previous studies have demonstrated that RP11-
150O12.3 was significantly and independently associated
with survival of HCC patients [46]. Moreover, RP11-
150O12.3 also has been recognized as an independent

Table 2: Univariate and multivariate Cox proportional hazards regression analysis.

Variables
Univariate analysis Multivariate analysis

HR 95% CI p value HR 95% CI p value

Training set (n = 154)
aRisk score (high vs. low) 0.526 0.282-0.980 0.043 0.416 0.207-0.836 0.014

Age 1.031 1.006-1.058 0.015 1.029 0.998-1.059 0.061

Sex (male vs. female) 0.851 0.462-1.566 0.605 1.077 0.519-2.236 0.841

Weight 0.999 0.983-1.016 0.939 0.997 0.981-1.014 0.772

Grade (I+II vs. III+IV) 0.138 0.312-0.607 0.009 0.352 0.032-1.524 0.290

Stage (I+III vs. II+IV) 0.379 0.143-1.000 0.050 0.730 0.189-2.830 0.670

Testing set (n = 153)
aRisk score (high vs. low) 0.384 0.197-0.751 0.003 0.459 0.225-0.936 0.032

Age 1.025 0.998-1.053 0.069 1.023 0.994-1.052 0.114

Sex (male vs. female) 0.605 0.325-1.126 0.113 0.711 0.361-1.397 0.322

Weight 0.999 0.983-1.017 0.971 0.999 0.983-1.016 0.979

Grade (I+II vs. III+IV) 1.242 0.166-9.313 0.833 0.510 0.180-1.441 0.996

Stage (I+III vs. II+IV) 0.478 0.204-1.123 0.090 0.675 0.220-2.068 0.204

Entire set (n = 307)
aRisk score (high vs. low) 0.487 0.313-0.756 0.001 0.498 0.313-0.792 0.003

Age 1.028 1.010-1.047 0.002 1.023 1.004-1.043 0.017

Sex (male vs. female) 0.715 0.463-1.105 0.131 0.811 0.506-1.299 0.384

Weight 0.999 0.988-1.011 0.930 0.999 0.988-1.011 0.966

Grade (I+II vs. III+IV) 0.436 0.134-1.418 0.168 0.582 0.116-2.910 0.510

Stage (I+III vs. II+IV) 0.427 0.226-0.804 0.008 0.570 0.256-1.269 0.169

Notes. aDerived from the 3-lncRNA-based risk score model.

Table 3: The coexpressed genes of three lncRNAs.

Key lncRNA Coexpressed gene

RP11-150O12.3 CLK1, BAG3, MXD1, GRIK1, TNFSF9, DNAJA4, FAM83A, FOXL1, PPP1R15A, SNORD14E, HSPA6, FOXC2

RP13-143G15.4 ZNF703, TMCC1, NKD1, RNF43, CYB5B

RP11-187E13.1

UFSP1, HN1, C7orf61, LSM8, AP1S1, ELOB, TSR3, PSMG3, COPS9, COPS6, ZNF593, LOC101927420,
CLDND2, ST7-AS1, C6orf52, LOC106660606, B9D1, FIS1, PRSS3, S100A13, S100A16, NSUN5, LMNA,
LAGE3, ACD, SNHG19, HSPB1, TMEM54, LINC00896, TMSB10, SFN, BRI3, EIF3B, HRAS, MRPL28,
MIR6132, NT5C, PTCD1, RASSF1-AS1, MINCR, LOC105371849, METTL26, DPM3, BCL7C, NUDT1,

AP1M2, MCM7, BOLA2B, JOSD2, LOC400684, PUSL1, ARF4-AS1, UQCC3, POLR2J, NAA10,
LOC101928659, PGP, S100P, POP7, LAMTOR4
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Figure 6: Pathway and process enrichment analysis. (a) KEGG functional analysis of the coexpressed genes of the three lncRNAs. (b) Detailed
net structure of the coexpressed genes of the three lncRNAs.
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predictor of gastric cancer prognosis [47], which also
related to survival time of patients with colorectal adeno-
carcinoma [48]. RP13-143G15.3 is abnormally expressed
in liver cancer and may act as an important role of tumor
suppressor in human HCC [49]. The results of these studies
provided some grounding to validate our findings.

In our study, the single-sample networks were con-
structed for identifying the lncRNA biomarkers associated
with LIHC patients. Actually, a single-sample network in this
study is not a real molecular network for each sample but a
perturbation network for a single sample against the refer-
ence network. It mainly reflects the variation between normal
and disease samples in terms of interactions or a network.
Similarly, a differential expression of a gene is not the real
gene expression level for each sample but the variation of
the gene expression between normal and disease samples.
The advantage of the single-sample network is that it cannot
only characterize the personalized features for all the single
samples but also can be directly applied to the data analysis
of single samples at the molecular network level, which is
superior to traditional single molecular biomarker.

There are several limitations to the present study. First,
the primary purpose of the present study was to identify
lncRNA biomarker for LIHC at the molecular network level.
The lncRNA biomarkers selected in our study should be fur-
ther investigated incorporating more specific clinical charac-
teristics to fully understand the associations involved.
Second, the three lncRNA biomarkers were only validated in
the datasets from TCGA database, which required additional
confirmation in other large cohorts of LIHC patients in the
future. Third, the lncRNA biomarkers identified in our study
have no validation in fresh samples and experiment studies.

5. Conclusion

In this study, we constructed the single-sample networks for
LIHC patients and identified three lncRNA biomarkers asso-
ciated with the OS of LIHC patients. A 3-lncRNA-based risk
score model with the ability to effectively predict the survival
of LIHC patients was established, which was validated to be
an independent predictor for the OS of LIHC patients. Func-
tional enrichment analysis revealed that three lncRNAs may
be associated with LIHC via their involvement in many
known cancer-associated biological functions. This study
provides a new perspective for identifying the lncRNA bio-
markers at the molecular network level.
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