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SUMMARY

Alternative to theconventional search forsingle-target,
single-compound treatments, combination therapies
can open entirely new opportunities to fight antibiotic
resistance. However, combinatorial complexity pro-
hibits experimental testing of drug combinations on a
largescale, andmethods to rationallydesigncombina-
tion therapies are lagging behind. Here, we developed
a combined experimental-computational approach to
predict drug-drug interactions using high-throughput
metabolomics. The approach was tested on 1,279
pharmacologically diverse drugs applied to the gram-
negative bacterium Escherichia coli. Combining our
metabolic profiling of drug response with previously
generated metabolic and chemogenomic profiles of
3,807 single-gene deletion strains revealed an unex-
pectedly large space of inhibited gene functions and
enabled rational design of drug combinations. This
approach is applicable to other therapeutic areas and
can unveil unprecedented insights into drug tolerance,
side effects, and repurposing. The compendium of
drug-associated metabolome profiles is available
at https://zampierigroup.shinyapps.io/EcoPrestMet,
providing a valuable resource for the microbiological
and pharmacological communities.

INTRODUCTION

Despite modern phenotypic screening technologies to find

growth-inhibitory compounds at high throughput (Brown and

Wright, 2016; Zheng et al., 2013), it is still extremely hard to

discover radically new antibacterial classes that truly enlarge

the arsenal of antimicrobial compounds in the fight against resis-

tant pathogens (Katz and Baltz, 2016; Payne et al., 2007). The

high rate of rediscovery of known drug modes of action (MoAs)

might be a consequence of the type of synthetic compound

libraries screened (Demain, 2014; Helfrich et al., 2018; Shen,

2015) and possibly reflects a limited space of essential cellular

processes that can be inhibited by a single molecule (Albert
Molecular Cell 74, 1291–1303, Ju
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et al., 2000). One alternative solution to the conventional search

for single-target compound treatments is to expand the search

for novel antibacterials to combination therapies (Wang et al.,

2016; Gonzales et al., 2015; Stokes et al., 2017). However, due

to the explosion in the combinatorial complexity, combination

discovery remains a major challenge. Furthermore, classical

antimicrobial combination screens focus on discovering syner-

gistic pairs of already known antibiotics (Stokes et al., 2017),

thereby ignoring that nonantibiotic molecules can synergistically

interact and become potent antimicrobial alternatives (Ejim et al.,

2011; Andersson et al., 2017; Brochado et al., 2018).

To go beyond combinations of currently available antibiotics,

we exploit high-throughput metabolomics (Zampieri, 2018) to

monitor the metabolic response of Escherichia coli to a library

of 1,279 chemical compounds (Prestwick Library), most of which

are human-targeted drugs that have little if no antimicrobial ac-

tivity (Maier et al., 2018). By combining the newly generated

drug metabolome profiles with previously published compendia

of metabolic (Fuhrer et al., 2017) and fitness (Nichols et al., 2011)

profiles in E. coli gene-knockout mutants, we make de novo pre-

dictions of drug MoAs and systematically predict epistatic drug

interactions. We show that high-throughput metabolic profiling

of bacterial response to small molecules can expand the search

for new antimicrobial treatments to compounds with no growth-

inhibitory activity in vitro. The proposed methodology is appli-

cable to other biological systems and therapeutic fields and

can open new opportunities in drug discovery and aid drug

target deconvolution, assessment of side effects, and prediction

of drug-drug interactions.
RESULTS

Multidimensional Metabolic Profiling of Drug Response
Phenotypic drug screens only select lead compounds that can

kill bacteria or inhibit their growth (Zheng et al., 2013). However,

nonlethal compounds with dispensable targets could become

invaluable tools in combination therapies (Brochado et al.,

2018). To systematically identify compounds that interfere with

nonessential functions in gram-negative bacteria, we exposed

exponentially growing E. coli cultures to a library of 1,279 chem-

ically diverse compounds (i.e., Prestwick Chemical Library). This

library includes US Food and Drug Administration (FDA)-

approved drugs for diverse therapeutic purposes, ranging from
ne 20, 2019 ª 2019 The Author(s). Published by Elsevier Inc. 1291
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Figure 1. Metabolic Profiling of the Drug Response

(A) Distribution (pie chart) of Prestwick chemical compounds across therapeutic classes.

(B) Illustration of the metabolic drug profiling workflow. Growth is monitored using a plate reader up to 6 h after treatment, while metabolomics samples are

collected after 2 h of treatment and analyzed by FIA-TOFMS (Fuhrer et al., 2011).

(C) Inner pie chart shows the distribution of compounds inhibitory activity. Outer pie charts illustrate the number of compounds with at least one (green) significant

change (absolute Z scoreR3 and p value% 1e�5) andmore than 20 (blue) significant affected ions. The percentage of drugs exhibiting ametabolic phenotype is

estimated on (1) annotated ions, (2) detected ions common tometabolome profiles of E. coli knockout strains (Fuhrer et al., 2017), and (3) totality of detected ions.

(D) For each class of therapeutic agents (Table S1), we report the distribution of growth rates relative to the untreated DMSO condition and number of responsive

metabolites (absolute Z score R3 and p value % 1e�5). For each therapeutic class, the tops and bottoms of each box are the 25th and 75th percentiles,

respectively, while the red line in themiddle of each box is the samplesmedian. The lines extending above and below each box are the whiskers. Whiskers extend

from the ends of the boxes delimited by the interquartile to the largest and smallest observations excluding outliers (red crosses). Outliers have values that are

more than three scaled median absolute deviations.
treatment of infectious diseases to cancer and cardiovascular

pathologies (Figure 1A). Only 11% of the compounds are antibi-

otics, while the majority are human-targeted drugs. Individual

compounds were administered at a single concentration of

100 mM in 96 deep-well plate cultivations, and the metabolome

response was monitored by flow injection analysis in a time of

flight mass spectrometer (FIA-TOFMS) 2 h after drug exposure

(Zampieri et al., 2018) (Figure 1B). In parallel, the optical density

of treated cultures was monitored up to 6 h after drug exposure

(Figures 1B and S1). This workflow enabled rapid profiling of

relative changes in the abundance of�39,000 ions, out of which

969 could be putatively annotated as deprotonated metabolites.

In total, we monitored metabolic changes across 1,279 per-

turbed conditions and DMSO treatments as vehicle controls

in three biological replicates.

To estimate drug-induced metabolic changes, raw mass

spectrometry data were normalized by correcting for instru-
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mental and systematic biases (Zampieri et al., 2018). To account

for the confounding effect of different growth inhibitions across

treatments, we employ a non-parametric smoothing function

that for each metabolite normalizes relative changes in concen-

trations to corresponding changes in growth rate (Figure S1).

Finally, a Z score normalization was applied on the growth-

rate-corrected metabolic profiles before estimating average

and SD over the three biological replicates (Table S1; see

STAR Methods for full details).

Out of the 1,279 drugs, only 15% exhibited antimicrobial

activity (i.e., inhibited growth more than 20% with respect to

the untreated condition). As expected, most of these com-

pounds are known antibiotics (Figures 1C, 1D, and S1). How-

ever, the vast majority (70%) induced a strong metabolic

response causing significant changes in the abundance of

at least one metabolite (absolute Z score R3 and p value %

1e�5 Bonferroni-adjusted threshold) (Figure 1C). For each



individual perturbation, on average, 10 metabolites underwent

significant changes (absolute Z score R 3 and p value %

1e�5) (Figures 1D and S1), and most metabolites (92%) ex-

hibited a significant response in at least one of the treatments

(Figure S1). Altogether, we found an unexpectedly large spec-

trum of metabolic effects in E. coli and revealed drugs potentially

targeting nonessential bacterial processes. Hence, we next eval-

uated which bacterial functions were affected by nonantibi-

otic drugs.

Mapping Drug Effects on Microbial Metabolism
To identify metabolic genes that are potential direct drug targets

or that indirectly mediate drug response, we systematicallymap-

ped enzymes to drug-induced metabolic changes using a

genome-scale metabolic network of E. coli (Orth et al., 2011).

We assessed whether largest metabolic changes are located

in the proximity of an enzyme by using a weighted scoring func-

tion (i.e., locality score) (Zampieri et al., 2018) in which metabolic

changes are weighted by their respective network distance to

the tested enzyme (i.e., length of the shortest path) (Figures S1

and S2; Table S2). Enzymes associated with large metabolic

changes in their proximity (p value% 0.001) were tested for over-

representation against KEGG (Kyoto Encyclopedia of Genes and

Genomes) metabolic pathways. Overall, we found 70 different

metabolic pathways enriched for local metabolic changes

(q-value % 0.001) in at least one treatment, hinting at the diver-

sity of metabolic responses across the drug library.

While distinguishing direct from indirectmetabolic changes re-

mains challenging (Kwon et al., 2008), we systematically show

that the nine drugs with non-promiscuous enzyme targets in

bacteria (e.g., allopurinol; Figure S1) induce largest metabolic

changes in the vicinity of known drug targets (Figures S2 and

S3). This result suggests that local metabolic changes can reveal

the most direct drug effects on metabolism. Surprisingly, in

many cases, local metabolic changes were detected also for

drugs with known molecular targets in humans that are absent

in E. coli (Figure S1). Typical examples are lovastatin, a

commonly used statin for lowering cholesterol, and docetaxel,

a cancer chemotherapy agent. Lovastatin induced strong accu-

mulation of intermediates in steroid degradation pathway (Fig-

ure S3), possibly hinting at the ability of E. coli to degrade the

drug, similarly to other members of the human gut microbiome

(Yoo et al., 2014). Docetaxel is an antineoplastic agent shown

to hyper-stabilize microtubules (Dumontet and Jordan, 2010)

and increase the anti-cancer activity of inhibitors of fatty acid

synthase (Menendez et al., 2004). Although cytoplasmic tubules

have been observed in bacteria, no homologies to eukaryotic

microtubules have so far been established in E. coli (Pilhofer

et al., 2011). Nevertheless, in E. coli, this anticancer compound

induces a distinct metabolic response in the b-oxidation of fatty

acids (Figures 2A and 2B), a pathway enabling fatty acids to be

used as carbon source. Because the pathway is transcriptionally

repressed in glucose minimal medium (Pauli et al., 1974), we

hypothesized that metabolic changes report on the role of doce-

taxel as a direct or indirect transcriptional activator of pathway

genes. To validate our hypothesis, we used a GFP reporter

plasmid (Zaslaver et al., 2004) to monitor the promoter activity

of the fadAB operon (Figure 2C). Consistent with our metabo-
lome-based predictions, we observed a mild (27%) but signifi-

cant (p value = 3.7e�05) increase in fadB promoter activity

upon treatment of E. coli cells with 2 mM docetaxel. To test

the physiological significance of detected changes in fadB pro-

moter activity, we incubated wild-type E. coli cells in glucose

M9 medium with and without 2 mM docetaxel for 9 h and then

transferred growing bacteria to M9 medium with the long-chain

fatty acid oleate as sole carbon source. In agreement with our

metabolome-based prediction, we observed that cells preincu-

bated with docetaxel exhibited faster growth rate when forced

to switch to oleate consumption than E. coli cells preincubated

in the absence of the drug (Figure 2D).

Local metabolic changes can also uncover enzymes that

mediate a tolerance response to drug treatment. To test this

hypothesis, we systematically searched for enzymes that

consistently associated to local metabolic changes in response

to antibiotics. Here, we considered five major antibiotic classes:

protein, RNA, folic acid, cell wall biosynthesis, and DNA replica-

tion inhibitors (Table S2). Enzymes significantly associated

(p value % 1e�5) to inhibitors of cell wall biosynthesis were en-

riched in nucleotide biosynthesis, while inhibitors of DNA replica-

tion associated to enzymes in pentose phosphate pathways and

glycolysis (Table S2). Consistent with our hypothesis, we found

an almost exclusive enrichment of b-lactam antibiotics among

drugs inducing local changes in the proximity of ribose-phos-

phate diphosphokinase (Prs) (p value < 1e�16), an enzyme

that mediates tolerance and facilitates emergence of resistance

to ampicillin (Fridman et al., 2014). Interestingly, quinolone anti-

biotics exhibited most significant changes in proximity of the

glycolytic enzyme enolase (Eno) (Figure 2E) (p value < 1e�21).

This association possibly relates the function of enolase in regu-

lating RNA degradosome and cell filamentation (Murashko and

Lin-Chao, 2017) to the observation that E. coli mutants that are

unable to filament can survive longer upon quinolone treatments

(Piddock and Walters, 1992). To test a potential link of RNA de-

gradosome activity with tolerance to quinolones we measured

ofloxacin susceptibility of an E. coli mutant strain deleted for

the nonessential degradosome component RhlB (Figure 2F).

Consistent with our metabolome-based prediction, disk diffu-

sion assays showed an increased susceptibility ofDrhlB to oflox-

acin. This result is in agreement with previous data (Nichols et al.,

2011) in which DrhlB exhibited significantly reduced fitness to 16

different DNA-damaging agents (p value = 5.5e�4) (Figure 2G).

Taken together, the characterization of metabolic changes

induced by diverse pharmacological compounds unraveled the

potential to selectively interfere with bacterial metabolic pro-

cesses and opens up a large spectrum of potentially druggable

cellular processes in gram-negative bacteria.

Metabolome-Based Grouping of Chemically Diverse
Compounds
Next, we aimed to group compounds inducing similar metabolic

changes. The comparative analysis of metabolome responses

can be a powerful method to find clues about drugMoAs (Allman

et al., 2016; Zampieri et al., 2018) and systematically explore

modes of metabolic interference of nonantibiotic compounds

(Zampieri, 2018). To account for the possibility that drugs with

similar MoAs have different permeability or target affinity, and
Molecular Cell 74, 1291–1303, June 20, 2019 1293
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Figure 2. Locality Score Analysis

(A) A volcano plot of the 966 annotated metabolites in response to docetaxel.

(B) A volcano plot of the locality analysis results in docetaxel-treated cells.

(C) FadB promoter activity in M9minimal mediumwith 2mMdocetaxel or DMSO control or in the presence of oleate as sole carbon source (***p value < 1e�3). As

a negative control, we monitored the effect of docetaxel on recA promoter activity using the same pUA66 plasmid (Zaslaver et al., 2004) (brown bars), mean ± SD

across three biological replicates.

(D) Optical density measurements of an isogenic strain of E. coli growing in M9mediumwith oleate as sole carbon source (0.2%). Cells previously grown for 9 h in

glucoseM9mediumwith (black) and without docetaxel (green) are compared. Thick line and shaded region represent the average and SD estimated across three

biological replicates. Inset histogram represents the doubling times estimated from the two growth curves (**p value < 1e�2).

(E) Distribution of p values estimated from locality score analysis of drug induced metabolic changes in the proximity of enolase enzyme (Eno) for compounds in

five major classes of antibiotics.

(F) Disk diffusion assays testing the susceptibility to ofloxacin (7 mg) in wild-type E. coli (WT) and two knockout mutants, DaspC (negative control) and DrhlB. Bar

plot represents mean ± SD across four biological replicates.

(G) Distribution of DrhlB fitness scores (Nichols et al., 2011) in response to 16 DNA-damaging agents (green boxplot) and 66 chemical perturbations with diverse

MoAs (gray boxplot).
hence induce different magnitude of metabolic changes after the

same time of drug exposure, we developed an alternative metric

to estimate pairwise drug similarity. The herein defined similarity

metric uses an iterative thresholding scheme in which for a given

Z score threshold (thrA), the metabolic effect of drug A is

described by a ternary vector of increased (+1), decreased

(�1), and unchanged (0) metabolites ðZDrugÞ. For each pair of

drugs A and B, we exhaustively searched for the combination

of thresholds (thrA and thrB) that maximizes the dot product be-

tween ternary drug vectors, ZDrugA and ZDrugB, divided by the to-

tal number of metabolites that were found to be changed in at

least one of the two drugs (Figure 3A). The significance of the

percentage of metabolites that exhibit consistent changes be-

tween the two drugs is estimated using a hypergeometric test.

To benchmark our approach, we tested the ability of different

similarity metrics to group known antibiotics with similar MoAs.

Remarkably, the herein proposedmetric outperforms correlation

(i.e., Spearman correlation) or dependency (i.e., mutual informa-

tion) measures of similarity (area under the receiver operating

characteristic [ROC] curve >0.8; Figures 3B andS3). The iterative
1294 Molecular Cell 74, 1291–1303, June 20, 2019
thresholding approachwas hence used in an affinity propagation

algorithm (Frey and Dueck, 2007) to group drugs in 164 clusters

exhibiting distinct metabolic profiles (Table S1; Figure S3).

Notably, clustering of metabolome profiles could group antibi-

otics with similar MoAs regardless of whether they target pro-

teins with metabolic or other functions and in spite of different

growth inhibitory activities (Figure S3).

Most of the identified clusters consist of nonantibiotic drugs,

potentially unraveling classes of molecules impinging on cellular

processes different from those affected by classical antibiotics.

Ascorbic acid (vitamin C) belongs to such a group of compounds

and recently gained traction for its potential versatile role as anti-

cancer (Yun et al., 2015) and anti-tuberculosis (Vilchèze et al.,

2013) agent. Ascorbic acid is an essential nutrient for some

mammals (Hodges et al., 1969) and a reducing agent that at

high dosage can increase the production of ferrous iron from

ferric ions and drive the overproduction of reactive oxygen

species (Chen et al., 2008). Our metabolome-based similarity

analysis found ascorbic acid to group with largely diverse thera-

peutic agents (Figure 3C). Because most of these compounds
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B Figure 3. Metabolome-Based Similarity

Analysis

(A) Schematic representation of the computational

framework used to group drugs eliciting similar

metabolic responses. For each pair of drugs A and

B, the combination of thresholds on the respective

drug-induced metabolic changes (i.e., Z scores)

that corresponds to the largest similarity score is

selected. Subsequently, an affinity propagation

algorithm is used to group drugs on the basis of

their metabolome pairwise similarity.

(B) Area under the receiver-operating character-

istic curves (AUCs) measuring the ability to

discriminate antibiotics with similar MoAs using

Spearman correlation (SP), mutual information

(MI), and the herein-presented iterative score (IS).

Only antibiotics that belong to cell wall, folic acid,

DNA replication, protein, and RNA synthesis in-

hibitors are considered here.

(C) Similarity heatmap of the cluster containing

ascorbic acid. Elements on the diagonal indicate

the corresponding drug therapeutic class reported

in Figure 1D.

(D) Differential responsive metabolites character-

istic of the drug cluster of (C) (ANOVA p value %

1e�5). Green and blue boxplots illustrate the dis-

tribution of relative metabolic changes among

drugs in the cluster and all remaining treatments,

respectively.

(E) A volcano plot of the 966 annotated metabolites

in response to ascorbic acid.

(F) Uric acid conversion rate was normalized to the

activity measured with H2O vehicle only. All tested

compounds were dissolved in DMSO (1 mM

kanamycin, ascorbic acid, and allopurinol)

(**p value % 0.01). Values represent mean ± SD

across three replicates.
have citrate as an excipient (Figure S1), we deduced that the

common metabolome response (Figure 3D) mainly reflects

similar iron chelating properties and downstream regulatory ef-

fects between citrate and ascorbic acid (Vilchèze et al., 2013;

Frawley et al., 2013; Imlay, 2013). Consistent with this hypothe-

sis, common metabolic changes that drive drugs to cluster

together (Figure 3D) mainly localized in the tricarboxylic acid

cycle (TCA) cycle and pathways allosterically regulated by

citrate, such as degradation of galactarate and glyoxylate

(Blumenthal and Jepson, 1966; Seo et al., 2014; Imlay, 2013).

Different from other compounds in the cluster, however,

ascorbic acid induces a marked increase in the levels of hypo-

xanthine (Figure 3E). To test the hypothesis that ascorbic acid

also acts as a xanthine oxidase inhibitor, we performed in vitro

enzyme assays measuring the activity of E. coli xanthine oxi-

dases XdhA-B-C with and without ascorbic acid. Indeed, we

found ascorbic acid to directly inhibit xanthine oxidases (Fig-

ure 3F), potentially linking the toxicity of high dosages of ascorbic

acid to its combined action as an oxidative stress agent (Chen

et al., 2008; Vilchèze et al., 2013) and inhibitor of oxidases. These

results further support the potential of nontargeted metabolo-

mics in finding key characteristics of drug MoAs, bridging the
gap between drug-induced phenotype and drug mechanism of

action.

From Drug Metabolic Fingerprint to Drug-Gene
Associations
Next, we compared our compendium of drug metabolome pro-

files with previously generated metabolic profiles in 3,807 indi-

vidual E. coli gene knockouts (Fuhrer et al., 2017) in order to

link drug metabolic phenotypes directly to drug targets or indi-

rectly to genes mediating drug response (Subramanian et al.,

2017). Because metabolome profiles of gene-knockout mutants

were collected in complex glucose medium, we tested the

comparability of drug-induced metabolic changes betweenmin-

imal and complex media for nine antibiotics with four different

MoAs (Zampieri et al., 2017). We found that all respective antibi-

otics are within the top 3% of Prestwick compounds with the

highest similarity (Figure S4), suggesting that the characteristic

metabolic response to inhibition of drug target is highly

conserved across different conditions (e.g., nutrients). However,

future studies with larger number of drugs and conditions are

necessary to generalize this principle to compounds different

from those tested here.
Molecular Cell 74, 1291–1303, June 20, 2019 1295



In light of these results, we employed the same metric used to

compare themetabolome profiles between drugs and compared

individual drug responses with metabolic changes in gene

deletion mutants (Figure 4A). This comparison resulted in

10,227 (i.e., 0.16% of all possible pairwise combinations) signif-

icant similarities (p value % 1e�5 and similarity score R0.15),

reflecting a large space of drug-gene associations (Figures 4A

and S5). Because antibiotic targets are essential genes, our

approach could not be directly tested against known targets of

antimicrobial compounds. However, gene knockouts that elicit

significantly (p value % 5e�5) similar metabolic changes to five

major classes of antibiotics could be often related to the anti-

biotic MoA (Table S3). Emblematic examples are (1) the meta-

bolic similarity between an E. coli mutant deficient in the DNA

repair gene recA and quinolone antibiotics (Liu and Imlay,

2013) (p value = 9.72e�5), (2) deletion of the aminodeoxychoris-

mate synthase (DpabA) and folate inhibitors (Chakraborty

et al., 2013) (p value = 3.43e�5), or (3) the knockout mutant for

sn-glycerol-3-phosphate dehydrogenase (DglpD) and cell wall

biosynthesis inhibitors (Spoering et al., 2006) (p value =

1.74e�27). Unexpectedly, we observed that deletion of aspar-

tate aminotransferase (aspC) features themost similar metabolic

changes to inhibitors of bacterial DNA-dependent RNA polymer-

ase (e.g., rifampicin) (Figures 4B and S5). Because resistance to

these antibiotics is nearly always due to a point mutation in the

b subunit of bacterial RNA polymerase (rpoB) (Campbell et al.,

2001), and aspC has already been shown to be involved in the

general stress response to antibiotics (Shan et al., 2015; Mathieu

et al., 2016), we hypothesized AspC to play an indirect role in

mediating the adaptive response to inhibitors of RNA synthesis.

The significantly (p value % 0.01) higher resistance of DaspC

to rifampicin (Figures 4C and 4D) confirmed our hypothesis

and suggested that E. coli may actively reduce AspC activity to

endure exposure to this class of antibiotics, although the under-

lying mechanisms remain to be clarified.

Overall, most recurrent associations were found between

drugs and genes involved in carbon metabolism and signaling

(Figures 4A and S5), suggesting new targets to hamper adapta-

tion to external stressors (Fridman et al., 2014; Zampieri et al.,

2017; Allison et al., 2011). Moreover, the predicted network of

drug-perturbed genes provides experimentally testable hypoth-

eses for in-depth mechanistic studies of tolerance or resistance

mechanisms and drug MoAs. This comparative approach is

orthogonal to the previously described analysis of locality in

drug-induced metabolic changes, which is purely based on stoi-

chiometry, and does not reveal whether observed changes

correspond to an increased or decreased enzyme activity. By

comparing drug with gene-deletion metabolome profiles, we

not only expand our analysis to non-metabolic genes but also

more directly associate drug changes to inhibition of gene

functions. Overall, 54 drugs out of the 416 with at least one sig-

nificant gene-knockout association showed similar predictions

in the locality and gene-knockout-based analysis. One inter-

esting example is disulfiram, a human-targeted drug used to

treat chronic alcoholism by inhibiting the human enzyme acetal-

dehyde dehydrogenase (Figures 4E and S2). By comparing

disulfiram induced metabolic changes to metabolic profiles of

gene-knockout mutants, we found the largest similarity with
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the deletion of isocitrate dehydogrenase (Dicd) (Figure 4F).

Here, we tested the hypothesis that Icd is directly inhibited by

disulfiram using the commercially available purified Bacillus

subtilis Icd protein. In vitro enzyme assays revealed a mild but

significant (p value % 0.05) inhibitory activity of disulfiram that

at 1 mM causes 25% inhibition of Icd, similar to the Icd allosteric

inhibitor phosphoenolpyruvate (Figure 4G) (Ogawa et al., 2007).

Altogether, we demonstrated that our metabolome-based

strategy is capable of finding genes that directly or indirectly

mediate the metabolic response to drugs, suggesting new

alternative ways to interfere with drug stress response.

Predicting Drug-Drug Interactions from Drug
Metabolome Profiles
Compounds for which their combined inhibitory effect is greater

(e.g., synergistic) than the one predicted on the basis of their in-

dividual effects are attractive alternatives to monotherapies,

because they can optimize efficacy, decrease toxicity, and lower

the risk for resistance evolution (Stokes et al., 2017; Zhao et al.,

2013). Equally important is drug antagonism, where one drug

may block or reduce the effectiveness of complex multiple

drug regimes in patients with multimorbidity. To predict drug

epistatic interactions, we integrated metabolome-based predic-

tion of drug-gene associations with previously published chemo-

genomic data (Nichols et al., 2011). In this dataset, the sensitivity

of all viable E. coli knockout strains to 82 chemical perturbations

was quantified by differences in colony size (i.e., fitness score).

Because drug-induced gene function inactivation can render

E. coli more or less vulnerable to the action of a second drug,

we predict that Prestwick drugs exhibiting a significant metabo-

lome similarity (similarity scoreR 0.15 and p value% 1e�5) to a

gene deletion can epistatically interact with drugs for which the

fitness of the corresponding gene knockout strain largely differs

from the average (Nichols et al., 2011) (Figure S5). It is worth

noting that increased antibiotic susceptibility (i.e., negative

fitness score) or resistance (i.e., positive fitness score) could

reveal genes important for survival, for which expression is not

regulated in response to the stress, and genes that are actively

induced or repressed upon drug perturbation (Palmer et al.,

2018). Our framework cannot resolve the potential conflicts

emerging from drugs that individually trigger opposite (i.e.,

inducing or repressing) gene-regulatory responses (Bollenbach

and Kishony, 2011) and hence whether drug-drug interference

will result in a synergistic or antagonist interaction.

To systematically validate our approach, we used different

thresholds on the fitness score of knockout mutant strains to

distinguish susceptible or resistant strains to a given treatment,

and for each threshold predicted drug epistatic interactions

by identifying drugs and knockout strains that exhibit similar

metabolic profiles. Next, metabolome-based predictions were

compared to experimentally determined interaction scores pre-

viously measured for 465 pairs of drugs (Brochado et al., 2018).

For drug pairs predicted to epistatically interact, we computed

the average of experimentally determined interaction scores

(Nichols et al., 2011) and compared it to drug pairs selected at

random. Despite not including deletions of genes encoding for

antibiotic targets in our predictions and that most experimentally

tested drugs were antibiotics applied in a complex medium
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Figure 4. Prediction of Drug-Perturbed Genes
(A) Circos plot (Krzywinski et al., 2009) shows the distribution of gene knockout-drug associations found among genes in six major biological functions.

(B) Distribution of p values estimated from calculation of the metabolic similarity between deletion of aspartate aminotransferase (aspC) and metabolic changes

induce by drugs in five major classes of antibiotics.

(C) Growth-rate inhibition in liquid culture of different concentrations of rifampicin and ofloxacin in wild-type E. coli (WT) and DaspC with respect to the untreated

condition (mean ± SD across the three replicates).

(D) Disk diffusion assays testing the susceptibility to rifampicin (7 mg) in wild-type E. coli (WT) and DaspC. Bar plot represents mean ± SD across four biological

replicates.

(E) Volcano plot of the 966 annotated metabolites in response to disulfiram.

(F) Volcano plot of the 3,807 gene similarity profiles with disulfiram treatment.

(G) Impact of disulfiram onB. subtilis Icd in vitro activity (mean ± SD across three replicates). Themeasured NADPH conversion rate was normalized to the activity

measured with H2O vehicle only. All tested compounds (kanamycin, disulfiram, and phosphoenolpyruvate) were dissolved in DMSO to a 1 mM concentration.

*p value % 0.05; **p value % 0.01.
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Figure 5. Linking Metabolomics to Chemo-

genomic Drug Profiling

(A) Systematic comparison of metabolome-based

prediction of epistasis and interaction scores

experimentallymeasured in (Brochadoet al., 2018).

The average of absolute drug interaction scores is

calculated for drug pairs predicted to interact via

knockout mutant strains with an increasing fitness

score (dashed black line). Significance is estimated

using a permutation test. For increasing thresholds

on the knockout fitness scores, the red shaded

area represents the mean ± SD of 1,000 randomi-

zation of predicted interacting drug-pairs.

(B) The volcano plot represents the similarity be-

tween all Prestwick drugs and DrpoS metabolic

profiles.

(C) Optical density measurements of wild-type

E. coli in LB medium with (green) and without

(black) 500 mM benzydamine.

(D) Optical density measurements of wild-type

E. coli in M9 glucose minimal medium with (green)

and without (black) 500 mM benzydamine. Thick

line is the average across three biological repli-

cates. Shaded region represents average ± SD

estimated over three biological replicates.

(E) Sensitivity profile of DrpoS against compounds

tested in the chemogenomic screen (Nichols et al.,

2011). Error bars represent the standard deviation

of fitness score measured for different drug con-

centrations in (Nichols et al., 2011).

(F) Response matrix of doxycycline and benzyd-

amine at different doses. For each combination of

drug doses maximum growth rate is measured.
(Brochado et al., 2018), we found that the larger the difference in

fitness of knockout mutants, the stronger (p value < 0.05) the

average epistatic interactions between drug pairs (Figure 5A).

In the following, we selected a conservative threshold of �5;

i.e., only knockout strains with a strong increase in drug suscep-

tibility are selected to predict drug epistatic interactions. This

analysis resulted in 1,032 pairs of potentially interacting drug

pairs (i.e., 0.8% of all possible pairwise combinations) via

drug-mediated inactivation of 139 genes (Figure S6; Table S3).

As a proof-of-concept, we selected five drug pairs that have

not been previously tested and measured the dose-response

matrix for different compound concentrations. Drug epistasis is

defined as the deviation of measured growth inhibition from

the product of the single-drug response curves using the

Bliss approximation (Bliss, 1939). To test prediction robustness,

we also used an alternative metric of epistasis, the fractional

inhibitory concentration index (FICi) (Odds, 2003). An FICi <1 in-

dicates synergy, while an FICi >1 identifies antagonistic drug

combinations.
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Strongest predictions of drug interac-

tion mediated by regulatory genes involve

the action of regulators that play key roles

in in vivo cellular adaptation, such as the

sigma factor RpoS and the ferric uptake

regulator Fur (Griffiths, 1993; Dong and

Schellhorn, 2010) (Table S3). These pre-
dicted interactions can potentially suggest promising drug

candidates to enhance activity of known antibiotics in an in vivo

setting (Dong and Schellhorn, 2009; Hryckowian and Welch,

2013). Here, we tested the RpoS-mediated interaction between

the anti-inflammatory drug benzydamine and the protein synthe-

sis inhibitor doxycycline. RpoS deletion induces metabolic

changes similar to those produced by benzydamine (Figure 5B),

which exhibits a metabolic profile similar also to that produced

by deletions of crp and pflA, involved in the response to nutrient

and oxygen availability, respectively (Figure S7). Phenotypically,

we observed that cells treated with benzydamine exhibit a pre-

mature entry into stationary phase and that this effect is more

prominent when cells are grown in rich medium (Figures 5C

and 5D). This observation is consistent with the role of RpoS in

catabolism of fermentative products, such as acetate, and with

previous experimental evidence of a higher expression of rpoS

during entry in stationary phase in complex media (Rahman

et al., 2006). In parallel, DrpoS is significantly more sensitive to

doxycycline (Figure 5E). Consistent with our metabolome-based
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Figure 6. Conflictual Response to Drug Combination

(A) The volcano plot represents the similarity between all Prestwick drugs and Dfur metabolic profiles (Fuhrer et al., 2017).

(B) Sensitivity profile of Dfur against compounds tested in the chemogenomic screen (Nichols et al., 2011).

(C) Response matrix of deferoxamine mesylate and propidium iodide at different doses.

(D) EntC promoter activity measured in cells treated with different doses of deferoxamine and propidium iodide.

(E) Probability density function of residuals from fitting analysis of EntC promoter activity upon treatment of cells with different combinations of deferoxamine and

propidium iodide (PEntC(drug x, drug y)) (Figure S7). Residuals of a multiplicative model (PEntC(drug x, drug y) � [ PEntC(drug x) d PEntC(drug y)]) are compared to

those of an additivemodel (PEntC(drug x, drug y)� [ PEntC(drug x) + PEntC(drug y)]). Median and SD of the two distributions are reported on the top of the histogram.
predictions, the growth-inhibitory activity of different dose com-

binations of doxycycline and benzydamine revealed strong syn-

ergism (FICi = 0.2) (Figures 5F and S7).

Another important transcriptional regulator predicted to

mediate drug epistatic interactions is the ferric uptake regulator

Fur (Griffiths, 1993). As a transcriptional repressor, fur deletion

causes an upregulation of genes involved in iron homeostasis,

siderophore-mediated uptake, and enterobactin biosynthesis

(McHugh et al., 2003). Dfur was found to be more sensitive to

two cell-staining compounds, propidium iodide and acriflavine,

and two oxidative stress agents, streptonigrin and pyocyanin

(Figures 6A and 6B). The increased susceptibility of Dfur to fluo-

rescent intercalating and oxidative stress agents possibly links

the toxicity of compounds like propidium iodide to oxidative

stress, which is known to be severely accentuated when iron

levels are high (Touati et al., 1995; Imlay, 2013). Among Pre-

stwick compounds exhibiting similar metabolic changes to

Dfur, we found many metal chelators (e.g., deferoxamine, pen-

tetic acid, and clioquinol) (Figure 6A). In particular, we observed
the most significant similarity between Dfur and deferoxamine

mesylate, an iron-chelating compound used in the clinic to treat

acute iron poisoning. This finding is consistent with the expecta-

tion that lowering iron availability induces a compensatory

response reducing Fur activity (i.e., increasing iron uptake).

Even at high deferoxamine concentrations (>500 mM), E. coli

can compensate for the presence of deferoxamine and scav-

enge enough iron to sustain normal growth (Figure 6C). However,

while reduced Fur activity should aggravate propidium iodide

toxicity, we found that deferoxamine antagonizes propidium

iodide toxicity (FICi = 1.7) (Figure 6C). This finding suggests

that the two compounds trigger opposite cellular responses

regulating iron homeostasis. To verify this hypothesis, we

monitored the promoter activity of the Fur-repressed entCEBAH

operon (Zaslaver et al., 2004). This operon encodes for

enterobactin biosynthetic enzymes required when iron is

limiting. As expected, we found that deferoxamine induces an

overexpression of the operon (Figure 6D). Vice versa, in

response to propidium iodide, cells actively reduce the
Molecular Cell 74, 1291–1303, June 20, 2019 1299
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Figure 7. Experimental Validation of Predicted Drug Epistatic Interactions

(A) The volcano plot represents the similarity between all Prestwick drugs and DnudB metabolic profiles.

(B) Sensitivity profile of DnudB against compounds tested in the chemogenomic screen.

(C) Response matrix of sulfamethizole and zidovudine at different doses.
transcription of the operon (i.e., increase Fur activity) (Figure 6D).

Therefore, consistent with our hypothesis, propidium iodide and

deferoxamine trigger opposite regulatory effects. Hence, the

next question is how this regulatory conflict is resolved upon

perturbation of cells with both compounds. We experimentally

show that propidium iodide at high concentrations exerts a

stronger control than deferoxamine on entC promoter activity

(Figures 6D and S7). Therefore, the combined action of the two

compounds results in the simultaneous reduction of free avail-

able iron due to deferoxamine and decreased expression of

iron uptake genes, ultimately reducing the toxicity of propidium

iodide. Notably, we showed that a multiplicative model fits

EntC promoter activities (Figure S7) better than an additive

model (i.e., R2 of 0.9 and 0.6, respectively) (Figure 6E). This

observation suggests that Fur activity is independently regulated

by different signals triggered by the two compounds, possibly

including changes in growth rates (Scott et al., 2010).

Next, since enzymes identified to underlie the predictions of

drug-drug interactions were significantly enriched in nucleotide

metabolism (p value% 0.05), we tested three drug pairs involving

the mediating action of enzymes in purine, pyrimidine, and folate

biosynthesis, namely PyrE, PurL, and NudB. We validated the

predicted synergistic interactions of the b-lactam antibiotic

cefoxitin combined with the folic acid biosynthesis inhibitor

sulfamethizole (FICi = 0.42) and the cell-wall synthesis inhibitor

meropenem (FICi = 0.44), mediated respectively by enzymes in

purine and pyrimidine de novo biosynthesis pathways, purL

and pyrE (Figures S6 and S7). Notably, these two enzymes are

essential in glucose minimal medium. In contrast, NudB is a

dispensable enzyme upstream of folic acid biosynthesis. Here,

we show that zidovudine, a structural analog of thymidine and

a potent inhibitor of HIV replication, exhibits similar metabolic

patterns to DnudB (Figure 7A), and as predicted, a strong

synergistic interaction with sulfamethizole (FICi = 0.1) (Figures

7B, 7C, and S7). To test whether deletion of nudB would be

sufficient to abolish the synergistic interaction between the two

drugs, we repeated the growth assay experiment with a nudB

deletion strain (Figure S6). We found that in DnudB, zidovudine

minimum inhibitory concentration (MIC) was reduced �800-
1300 Molecular Cell 74, 1291–1303, June 20, 2019
fold with respect to wild-type E. coli (Figure S6). However,

upon sulfamethizole treatment, DnudB exhibits only a 2-fold

reduction in MIC, but the lag-phase was strongly prolonged

with respect to wild type (Figure S6). Most important, the syner-

gism between the two drugs is largely reduced in a DnudB

genetic background (FIC = 0.84), suggesting that NudB plays a

key role inmediating the interaction between zidovudine and sul-

famethizole. Hence, our methodology not only predicts epistatic

drug interactions but also provides insights on the mechanisms

underlying the interaction.

DISCUSSION

Finding effective multidrug combinations against bacterial

infections represents a pressing challenge. However, screening

all possible combinations in large compound libraries is not

feasible, because thenumberof experimentsgrowsexponentially

with the number of drugs and doses. Moreover, despite the large

efforts in integrating high-throughput data in computational

models (Cokol et al., 2011; Ejim et al., 2011), predicting drug

epistatic interactions remains challenging (Bansal et al., 2014;

Chandrasekaran et al., 2016; Facchetti et al., 2012). By scaling

with the typical size of compound libraries screened in large

phenotypic drug-discovery campaigns, our methodology com-

plements other molecular profiling technologies (Subramanian

et al., 2017;Maier et al., 2018) and offers the possibility to expand

the search for potentially novel antimicrobial treatments to com-

pounds that alone exhibit poor growth inhibitory activity. By

comparing the metabolic signatures associated to drug and ge-

netic perturbations, we identified drug-perturbed genes that

combinedwithchemogenomicdataenablepredictionof epistatic

drug interactions. Hence, our approach can be extended to

largely diverse compounds and potentially lead to the discovery

of nonantibiotic compounds that, when combined, exhibit prom-

ising antimicrobial properties. A key strength of our approach is

that during the very early steps in the drug discovery pipeline, it

can identify theMoA andmode of drug-drug interactions of com-

pounds that could be optimized by traditional chemistry to

improve selectivity and reduce toxicity. Follow-up experiments



confirmed new MoAs in E. coli for three compounds (i.e., doce-

taxel, ascorbic acid, and disulfiram), the key role of aspartate

aminotransferase and enolase inmediating the response to inhib-

itors of RNA synthesis and DNA replication, respectively, and five

novel epistatic interactions between drug pairs.

Recent advances in sequencing technology coupled with

random transposon mutagenesis can expedite the phenotypic

screening of large mutant libraries upon drug treatments (Wang

et al., 2011). In parallel, expanding the inventory of reference

metabolic profiles in genetically perturbed bacteria to a larger

set of relevant conditions (e.g., starvation) and more naturalistic

media composition can increase the predictive power of in vivo

relevant drug-perturbed genes. Because here we compared

drugwithgenetic perturbationsunder different nutritional environ-

ments, it is likely thatweunderestimated the numberof gene-drug

associations and that the spaceof potential synergistic drug inter-

actions is larger than we estimated. Moreover, technologies for

systematic genetic perturbations, such as RNAi or targeted

genome editing, can facilitate generating large compendia of

referencemetabolomeprofiles andexpand the comparative anal-

ysis also toknockdownsofessential genes. Finally, integratingour

metabolome-based approach with transcriptional drug profiling

(Subramanian et al., 2017) and gene regulatory models (Ortmayr

et al., 2018) could help to resolvepotential conflictsbetweencom-

pounds acting on the same cellular process and predict whether

drugs would synergize with or antagonize each other.

Bymapping the landscapeofmetabolic responses inE. coli toa

representative sample of the current drugchemical space,weun-

raveled an unexpectedly broad impact of general medications on

bacterial metabolism. Understanding interference of human-tar-

geted drugs with bacterial metabolism can guide drug repurpos-

ing, inform on drug metabolism, and open new ways by which

nonantibiotic compounds can create selective pressures altering

the overall gut microbiome composition (Maier et al., 2018), ulti-

mately affecting human health and therapeutic outcome. Overall,

by identifyingdrugmetabolic fingerprints ona largescale,wepro-

vide a proof-of-principle of how to enlarge the space of potential

combinatorial mechanisms by which we can inhibit bacterial

growth and propose an alternative solution to the antibiotic dis-

covery problem. We envisage that the proposed approach will

become a broadly useful tool in many other therapeutic areas,

including anti-cancer discovery (Ortmayr et al., 2018).
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Farha, M.A., Sieron, A.O., Whitfield, C., Coombes, B.K., and Brown, E.D.

(2017). Pentamidine sensitizes Gram-negative pathogens to antibiotics and

overcomes acquired colistin resistance. Nat. Microbiol. 2, 17028.

Subramanian, A., Narayan, R., Corsello, S.M., Peck, D.D., Natoli, T.E., Lu, X.,

Gould, J., Davis, J.F., Tubelli, A.A., Asiedu, J.K., et al. (2017). A next generation

connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171,

1437–1452.e17.

Touati, D., Jacques, M., Tardat, B., Bouchard, L., and Despied, S. (1995).

Lethal oxidative damage and mutagenesis are generated by iron in delta fur

mutants of Escherichia coli: protective role of superoxide dismutase.

J. Bacteriol. 177, 2305–2314.
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Meropenem trihydrate Sigma-Aldrich M2574

Docetaxel Sigma-Aldrich 01885

Ascorbic acid Sigma-Aldrich A5960

Disulfiram Sigma-Aldrich D2950000

Phosphoenolpyruvate Sigma-Aldrich P0564

Benzydamine Sigma-Aldrich BP610

Sulfamethizole Sigma-Aldrich S2050000

Critical Commercial Assays

Xanthine Oxidase (microbial) Sigma-Aldrich CAS # X2252

Isocitrate dehydrogenase (Bacillus subtilis) Megazyme CAS # E-ICDHBS

Deposited Data

Phenotypic screen of the KEIO library http://ecoliwiki.net/tools/chemgen/

(Nichols et al., 2011)

N/A

Metabolic profiles of the KEIO library https://www.ebi.ac.uk (Fuhrer et al., 2017) S-BSST5

Metabolic profile of the Prestwick library https://www.ebi.ac.uk (This paper) S-BSST245

Software and Algorithms

Mutual Information CLR package (Faith et al., 2007) http://m3d.mssm.edu

Iterative Similarity Score This paper N/A

Prediction of interacting drug pairs This paper N/A

MATLAB Mathworks https://www.mathworks.com/

products/matlab.html

Other
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mattia

Zampieri (zampieri@imsb.biol.ethz.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strain and growth conditions
E. coli BW25113 was used throughout this study. Culture medium consisted of standard M9 minimal media with (per liter): 5g of

glucose, 7.52 g Na2HPO4$2H2O, 3 g KH2PO4, 0.5 g NaCl, 2.5 g (NH4)2SO4, 14.7 mg CaCl2$2H2O, 246.5 mg MgSO4$7H2O,

16.2 mg FeCl3$6H2O, 180 mg ZnSO4$7H2O, 120 mg CuCl2$2H2O, 120 mg MnSO4$H2O, 180 mg CoCl2$6H2O and 1 mg thiami-

ne$HCl. Cells were grown at 37�C.
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METHOD DETAILS

Metabolome profiling of drug response
E. coli overnight cultures growing onM9minimal mediumwere diluted to an initial Optical Density (OD600) of 0.05. 700 mL cell cultures

were distributed in 96 deep well plates and cells were grown at 37�C until exponential phase and an OD600of 0.4 before exposure to

the drug treatment by the addition of 7ul of a drug solution or DMSO. Here we selected the Prestwick library, consisting of 1280 FDA

approved drugs prepared in DMSO solution. It is worth noting that the final drug concentration of 100 mM is close to the estimated

concentrations of human-targeted drugs in the small intestine and colon (Maier et al., 2018). Samples for metabolomics profiling

were taken after 2 hours from drug exposure. 50 ml of whole cell broth were directly transferred to 120 ml extraction liquid solution

containing 50% (v/v) methanol and 50% (v/v) acetonitrile at �20�C. The extraction was carried out by incubating the samples for

1 hour at�20�C. Samples were centrifuged for 5minutes at 4000 RPMand 80 ml of the supernatant was transferred to 96well storage

plates and stored at�80�C. All treatments weremeasured in 3 biological replicates. DMSO control treatments were included in every

plate as control. Because of technical issues during measuring, the drug Chicago sky blue 6B was excluded from further analysis.

Bacterial culture growth was estimated by measuring the optical density at 600 nm (OD600) in a plate reader. OD600measurements

were acquired immediately before drug exposure and after 60, 120, 240 and 360minutes. Growth rates were calculated as a slope of

a linear fits to the logarithmically transformed growth curves (Table S1).

Mass spectrometry measurementand processing
The analysis was performed on a platform consisting of an Agilent Series 1100 LC pump coupled to a Gerstel MPS2 autosampler and

an Agilent 6550 Series Quadrupole Time of Flight mass spectrometer (Agilent, Santa Clara, CA) as described previously (Fuhrer et al.,

2011). Mass spectra were recorded from m/z 50 to 1000 using the highest resolving power (4 GHz HiRes). All steps of mass spec-

trometry data processing and analysis were performed withMATLAB (TheMathworks, Natick). For each acquired spectra, ion-peaks

were identified with the findpeaks function of the Signal toolbox. Identified peaks with less than 5000 ion counts were excluded from

further analysis. Detected ions were matched to a list of metabolites based on the corresponding molar mass (Zampieri et al., 2018).

For the full list of metabolites used for annotation see Table S1. The chemical formula of each metabolite was used to calculate the

deprotonatedmonoisotopicmolecular mass. Detected ionswithin amass tolerance difference of less than 0.003 Dawere associated

to the nearest reference metabolites. In total 969 different reference masses could be detected (see Table S1).

In vitro enzyme assays
To test in vitro the activity of XanthineOxidase, we purchased the purified enzymes XdhA/B/C fromSigma (i.e., X2252) and performed

the reaction in 150 uL volume following protocol instructions. �0.05U/ml of enzyme dissolved in 50mM Tris/HCl was incubated with

500 mMof Hypoxanthine in 0.1M Tris/HCl buffer at 37�C. A plate reader was used to continuously measure Optical Density at 290 nm

every 13 s to measure the production rate of uric acid within the first 5 min. Rate of conversion were estimated using a linear regres-

sion scheme. Similarly, to test in vitro the activity of isocitrate dehydrogenase, we purchased the purified Bacillus enzyme Icd from

Megaenzyme (i.e., E-ICDHBS) and performed the reaction in 150 uL volume following protocol instructions. �0.31U/ml of enzyme

dissolved in 50mM Tris/HCl was incubated with 1 mM of D-/L-Isocitric acid, 7.1 mM MgCl2 and 1 mM of NADP+, in 0.1M Tris/HCl

buffer at 37�C. A plate reader was used to continuously measure Optical Density (OD340) at 340 nm every 13 s to measure the pro-

duction rate of NADPH in the first 2 min after reaction start. Rate of conversion were estimated using a linear regression scheme.

Notably, Isocitrate dehydrogenase from Bacillus subtilis has vast sequence (70% calculated using the online tool PDBeFold) and

structural similarities (87%)with Isocitrate dehydrogenase from E. coli (EcIDH). The active sites of the enzymes are almost completely

conserved and they have similar steady-state kinetic parameters for the dehydrogenase reaction. E.coli icd reported binding and

catalytic sites were not only conserved, but also in matching structural positions when compared to B. subtilis analogous residues.

Disk diffusion assay
Filter paper circles of 6 mm diameter were impregnated with 7 ml of antibiotic solution (2.8 mM for oxfloxacin and 1.21 mM for rifam-

picin) and left to dry at room temperature. 106–107 bacteria at exponential phase were plated on M9 glucose minimal medium agar

plate. The plate was left to dry before applying the disk in the middle and incubating for 12 hours at 37�C. The amount of antibiotic in

each disk shown in the figures is mentioned in the legend.

Measurement of promoter activity
WeusedGFP transcriptional reporter plasmids in which the promoter regions of fadAB and entCEBAH are fused to green fluorescent

protein (Zaslaver et al., 2004). Promoter activity was measured in M9 minimal medium with glucose or oleate as sole carbon source

using a plate reader recording GFP intensity and optical density. GFP levels were normalized by estimating their proportionality with

optical density during exponential phase (i.e., at steady state). Instead of reporting dynamic changes of promoter activity throughout

growth as in (Zaslaver et al., 2004), a linear model in which GFP signal is proportional to OD600 (i.e., GFP = ad OD600+ Y) is fitted

on experimental measurements in exponential phase using least square regression analysis. To account for different offsets caused
Molecular Cell 74, 1291–1303.e1–e6, June 20, 2019 e2



by differences in background fluorescence across conditions we introduce an offset parameter Y. Estimates of a report on the actual

gene promoter activity at steady state.

QUANTIFICATION AND STATISTICAL ANALYSIS

Metabolomics data normalization
Data preprocessing and normalization consists of mainly three steps: (i) elimination of artifacts caused by drug-compounds with an

identical mass to reference metabolites, (ii) detection and correction of systematic variations, (iii) removal of dependencies with

growth rate inhibition. Procedures are described below:

i. To detect ions associated to external perturbing agents, each compound stock was diluted in water (to reach a concentration of

10 mM), injected in the mass spectrometer and profiled in parallel to the cell extracts. For each Prestwick drug, detected ions

with ameasured intensity greater than three times the standard deviation estimated across all pure drug spectra were removed

from further analysis. The importance of this preliminary step is nicely illustrated by allopurinol. Allopurinol has amolecular mass

identical to that of hypoxanthine, which is one of the substrates of the inhibited reactions (xanthine dehydrogenase). Because

our mass spectrometry platform cannot distinguish between metabolites with an identical mass to drug compounds, drug

related ions are removed from analysis of the corresponding metabolic response (see also Figure S1).

ii. Raw data normalization was performed by using a multiple linear regression approach. Detected ion counts are considered to

be a linear combination between: extracted biomass (measured by OD600 (O)), plate to plate variance (P), drug effect (D), and

white noise ðεÞ, using the following model:
Im = fðO;P;DÞ+ ε
�

Im;c = am,O

2
c + bm,Oc +gm;p

�
+ ε

Where Im;c is the measured intensity of ion m upon treatment c, Oc represents biomass (OD600) at the time of extraction, am and bm
represent quadratic and linear dependency between ion intensity and OD600. In our model the variance associated to plate effects

across the large number ofMS injections (�4000) is captured by the parameter gm;p. By assuming that overall, each ion concentration

within the cell is ‘‘directly’’ affected only by few drugs, equivalently to assume sparsity of D, the proportionality factors a, b and g could

be determined by multiple least square fitting analysis performed on all collected samples, for each ion individually.

The function fitlm using ordinary least-squares, was used for the regression analysis. The relative difference between the model-

derived expected intensity and the corresponding measured ion intensity under each condition was used to estimate the compound

effect D:

Dm =
Im;c

am,O2
c + bm,Oc +gm;p

Variance in the measurements (ε) was estimated from the standard error between replicate fold changes:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDReplicate1

m +DReplicate2
m +DReplicate3

m Þ=3
q

.

iii. To correct for the dependency between relative changes in metabolite abundance and growth rate inhibition (Figure S1), a

nonparametric function was adopted. Specifically, locally weighted smoothing regression (LOWESS) based normalization

with a window size of 20% of total data was performed on each individual ion profile, using the MATLAB function ‘‘malowess.’’

Briefly, for a given growth rate the expected relative abundance of an ion is estimated as the average of the relative ion intensity

for proximal growth rate inhibition. Subsequently expected ion changes in correspondence of a given growth inhibition are

subtracted from original measurements: Log2ðDm jgÞ� Lðm jgÞ. Where Dm jg corresponds to the abundance of metabolite

m in conditions with growth inhibition g, and Lðm jgÞ represents the LOWESS fit to the dependency between relative

abundance and growth inhibition (red line in Figure S1D). A z-score normalization was applied to finally estimate average

and standard deviation over biological replicates, yielding for each metabolite an estimate of D and ε, respectively (Table

S1 and https://zampierigroup.shinyapps.io/EcoPrestMet)
Pairwise drug distance metric
To compare the metabolome response between two different drugs we developed an iterative thresholding algorithm. For each pair

of drugs A and B, we selected two thresholds, thrA and thrB, between 2 and 6. Themetabolic effects of drug A and B are described by

a ternary vector of increased (+1, Z-scores R thr), decreased (�1, Z-scores % -thr) and unchanged (0, -thr % Z-scores % thr)

metabolites ðZDrugÞ. Only annotated ions were used in this comparative analysis. For each pair of drugs A and B, we exhaustively
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searched for the combination of thresholds (thrA and thrB) that maximizes the dot product between ternary drug vectors,ZDrugA and

ZDrugB, divided by the total number of metabolites that were found to be changed in at least one of the two drugs:

ZDrugA;m =

8>><
>>:

1 if Z � scoremRthrA

�1 if Z � scorem%� thrA

0 otherwise

d
�
ZDrugA;ZDrugB

�
=

ZA,ZB

jZA j ,jZB j
The significance of the percentage of metabolites that exhibit consistent changes between the two drugs is estimated using a hy-

pergeometric test:

PðXRsÞ=
Xn

k = s

�
K
k

��
N� K
n� k

�
�
N
n

�

Where consistent changes in both conditions represent observed successes (s), the number of changes in one condition represents

the maximum possible number of successes (K), the total number of metabolites represents the total population (N), and the number

of changes in the second condition represents the number of events or draws (n). P values were calculated in MATLAB using the

hygecdf function. In parallel, pairwise similarity between drug responses were estimated using mutual information, and Spearman

correlation. The 3 different metrics were empirically compared by ROC curves performances determined from the set of antimicrobial

compounds in the Prestwick library with known MoAs (Figure S3). Overall, we observed the best performance with the iterative

similarity metric proposed in this study. The resulting matrix of drug pairwise similarities is then used to group drugs eliciting similar

metabolic adaptive changes using an affinity propagation algorithm (Frey and Dueck, 2007) (Table S1).

Mutant drug association analysis
Drug-induced metabolic changes were compared to E. coli gene-knockout strains metabolic profiles previously collected in (Fuhrer

et al., 2017). To this end, the same iterative similaritymetric presented in this studywas used. Here, we compared Z-scores estimated

in 1996 ions detected at the same mass-to-charge ratio (m/z) in the compendium of drug metabolome profiles and the previously

published large compendium of gene-deletion metabolome profiles. Hence, ions between our compound screens were matched

to those detected in the knockout dataset, regardless of whether they could be annotated to a reference metabolite or not, with a

mass difference threshold of 0.003 Da (Table S3).

Locality score
A genome-scale network model of E. coli K12 model iJO1366 (Orth et al., 2011) metabolism was used to determine the distance

between each enzyme-metabolite pair. The resulting pairwise distance matrix (D) between metabolic enzymes and metabolites

was estimated by means of the minimum number of reactions separating the two in a non-directional network. All highly connected

metabolites were removed prior to calculation. Specifically, we removed all metabolites that participate in more than 20 reactions, as

small changes in the selected threshold do not affect the overall distance between enzyme andmetabolites (Figure S3 and Table S2).

To assess whether largest metabolic changes were statistically more probable in the proximity of the deleted enzymes, we used a

locality scoring function, in which all metabolic changes are weighted by the respective distance to a tested enzyme, as follows:

SðeiÞ=
PM
m= 1

D�2
i;m

		Zd
m

		
PM
m= 1

D�2
i;m
Sk
randðeiÞ=

PM
m= 1

Dk�2

randi;m

		Zd
m

		
PM
m=1

Dk�2

randi;m
p� valueðgiÞ=
P1000
k

�
Sk
randRS

�

1000
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where for each enzyme ei, a weighted mean over corresponding Zd
i,m (metabolite m Z-score corresponding to drug d) is computed.

Weights are functions of the inverse of the squared distance between the enzyme i and the metabolitem. We perform a permutation

test by randomly shuffling the distance matrix D (Drand) K times (K = 10000). For each gene we ensure to preserve original degree of

connectivity in the stoichiometric network (Table S2).

Synergistic pair prediction validation
E. coli cultures were grown in glucose M9mediumwith combinations of different concentrations of 2 drugs. For each combination of

drugs concentrations, growth was monitored by OD600measurements every 5 minutes for 48 hours using a plate reader and

maximum growth rate was estimated. Drug epistatic interaction is estimated as the deviation of growth rate from the BLISS indepen-

dence model (Bliss, 1939) ðEx;yÞ.
Ex;y =Ex 3Ey

For a given concentration of drug x and y,Ex;y is the expected growth inhibitory effect of the combination of the two compounds, while

Ex and Ey represent the growth inhibitions of individual compounds, measured as a percentage of growth rate with respect to the

untreated condition. By measuring the dose response curves to the individual compounds and their combinations, the expected

growth inhibition under each combination ðEx;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
Þ can be computed, and synergy ðSx;yÞ can be calculated as the deviation

of measured (ðEx;yÞ) from expected growth rates:

Sx;y =Ex;y � Ex;y

Sx;y is the epistasis score: positive values indicate antagonism (i.e., the drug combination yields a milder growth inhibitory effect than

expected), while negative values indicate synergism (i.e., the drug combination yields a stronger growth inhibitory effect than

expected).

Fractional Inhibitory Concentration index
As an alternative to the BLISS scoring formula for drug-drug interactions, we calculated the Fractional Inhibitory Concentration index

(FICi) (Odds, 2003):

FICIa;b =
MICfa:combinedg

MICa

+
MICfb:combinedg

MICb

WhereMIC stands for Minimum Inhibitory Concentration, a,b represent two drugs and a.combined stands for theMIC of drug awhen

combined with drug b, and b.combined for the MIC of drug b when combined with drug a. An FICi < 1 indicates that paired

combinations of drugs can exert inhibitory effects that are more than the sum of their effects alone (synergy), while an FICi > 1 identify

combinations of drug for which their combined effect is less than the sum of their effects alone (antagonism) (Odds, 2003). To cope

with the potential error in MIC estimation using a finite number of drug dilutions, we identify a set of boundaries around which the

individual MICs should lay, and for each drug pair we calculated three FICi indexes based on three selection criteria:

d Worst case scenario – This scenario penalizes the synergy estimation the most. We assume the individual drug MICs to be the

highest concentration tested, for which we still observe bacterial growth. This score causes MICx to be underestimated.

d Best case scenario – This scenario assumes the individual drug MICs to be the lowest concentration point tested for which

complete growth inhibition was observed.

d Average case scenario – We assume the true value of MICx to be the average between the estimates from the worst and

best-case MICx scenarios.

For sulfamethizole, the only compound for which we did not have an estimate for the best-case scenario the MIC was assumed to

be always the highest concentration used (10mM), which hence corresponds to the worst case scenario.

Prediction of epistatic drug-pairs
The procedure consists of three main steps.

d Association matrix between Prestwick drugs and knockout strains: each Prestwick drug is associated to gene knockouts

exhibiting a significant similar metabolic profile (p value% 1e-5 and similarity scoreR 0.15). To this end, drugmetabolic profiles

generated here are compared to knockout strains metabolic profiles generated in (Fuhrer et al., 2017).

d Association matrix between knockout strains and chemical compounds: each knockout strain is associated to drugs which

exhibit a stronger or milder inhibitory activity (i.e., fitness score), based on the data reported in (Nichols et al., 2011).

d Matrix of pairwise drug epistatic interactions: the dot product between the two association matrices is used to find pairs of

epistatically interacting drugs.
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Statistical parameters
Result definitions (e.g., point estimates and error bar explanations), as well as details on the number of replicates are reported in the

figure legends.

DATA AND SOFTWARE AVAILABILITY

The data generated in this work are available as Supplementary Tables (Table S1). Metabolome data can be downloaded from

https://www.ebi.ac.uk/biostudies with accession number S-BSST245. Results from data analysis can be found as Supplementary

Tables (Tables S2 and S3).

Additional Resources
The results of our work aremade available through an interactive public data portal: https://zampierigroup.shinyapps.io/EcoPrestMet.
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